MaplePrimes Questions

I have a problem when using units in a solve

restart;
Following is from the assignment
Q := 20*Unit('m')^3/Unit('s');

I__e := 0.2e-1;

B := 2*Unit('m');

k := 0.3e-2*Unit('m');

g := 9.82*Unit('m')/Unit('s')^2;

Mannings number
M := 8.1*g^(1/2)/k^(1/6);
A := y*B;


R := y*B/(B+2*y);


V := M*R^(2/3)*sqrt(I__e);
y__0 := solve(Q = V*A, y);
=
/ (5/3)\// /
\0.002644870772 Units:-Unit('m') / \RootOf\
(8/3) 3 (5/3)
-625 Units:-Unit('m') + 5000000 _Z Units:-Unit('m')

5 \ \
+ 1890451531 _Z Units:-Unit('m')/^2/

 

Hope you can use this.. It's the first time I ask a question on this site...

Hello dear forum,

I'm trying to create a function in maple, but I'm stuck at this problem:

I need to extract the values from an expression, for example I've got the expression:

544X-228412+1836Y-1296Z=0

I want to get/extract all the values from the expression, but ONLY the numerical values like "544", "228412", "1836", "1296" and "0". How would this be done?

My goal is to then insert these values in a igcd command and get a common divider for the function, so I'll be able to end up with something like 4(136X-57103+459Y-324Z)=0

 

Thank you in advance, and have a lovely day!
Best regards, Martin.

Could anyone please hepl me? I have the following system

e1 := exp(F(r)/phi_0)*L*A(r) = (1/2)*(2*(diff(A(r), r, r))*B(r)*A(r)*r*C(r)+2*B(r)*A(r)*(diff(A(r), r))*(diff(C(r), r))*r-(diff(A(r), r))^2*B(r)*r*C(r)-(diff(A(r), r))*(diff(B(r), r))*A(r)*r*C(r)+4*B(r)*A(r)*(diff(A(r), r))*C(r))/(B(r)^2*A(r)*r*C(r));
e2 := alpha*(diff(F(r), r, r))+(alpha^2+omega)*(diff(F(r), r))^2+(1/4)*(4*(diff(C(r), r, r))*B(r)*A(r)^2*C(r)*r+2*(diff(A(r), r, r))*A(r)*B(r)*r*C(r)^2-2*B(r)*A(r)^2*(diff(C(r), r))^2*r-(diff(A(r), r))^2*B(r)*r*C(r)^2-2*A(r)^2*C(r)*(diff(C(r), r))*(diff(B(r), r))*r-(diff(A(r), r))*(diff(B(r), r))*A(r)*r*C(r)^2+8*B(r)*A(r)^2*C(r)*(diff(C(r), r))-4*A(r)^2*C(r)^2*(diff(B(r), r)))/(r*A(r)^2*B(r)*C(r)^2)-(1/4)*(2*(diff(A(r), r, r))*B(r)*A(r)*r*C(r)+2*B(r)*A(r)*(diff(A(r), r))*(diff(C(r), r))*r-(diff(A(r), r))^2*B(r)*r*C(r)-(diff(A(r), r))*(diff(B(r), r))*A(r)*r*C(r)+4*B(r)*A(r)*(diff(A(r), r))*C(r))/(B(r)*A(r)^2*r*C(r)) = 0;
e3 := (1/4)*(-2*(diff(C(r), r, r))*B(r)*A(r)*r^2-B(r)*(diff(A(r), r))*(diff(C(r), r))*r^2+A(r)*(diff(C(r), r))*(diff(B(r), r))*r^2-8*B(r)*A(r)*(diff(C(r), r))*r-2*B(r)*(diff(A(r), r))*C(r)*r+2*A(r)*C(r)*(diff(B(r), r))*r+4*B(r)^2*A(r)-4*B(r)*A(r)*C(r))/(B(r)^2*A(r)) = -(1/4)*(2*(diff(A(r), r, r))*B(r)*A(r)*r*C(r)+2*B(r)*A(r)*(diff(A(r), r))*(diff(C(r), r))*r-(diff(A(r), r))^2*B(r)*r*C(r)-(diff(A(r), r))*(diff(B(r), r))*A(r)*r*C(r)+4*B(r)*A(r)*(diff(A(r), r))*C(r))*r/(B(r)^2*A(r)^2);
e4 := -(alpha^2+2*omega)*(diff(F(r), r))*(-(1/2)*(-(diff(A(r), r))*B(r)*r^4*C(r)^2-A(r)*(diff(B(r), r))*r^4*C(r)^2-4*A(r)*B(r)*r^3*C(r)^2-2*A(r)*B(r)*r^4*C(r)*(diff(C(r), r)))/(A(r)*B(r)*r^4*C(r)^2)-(diff(B(r), r))/B(r)+(diff(F(r), r, r))/(diff(F(r), r))+alpha*(diff(F(r), r)))/B(r) = -exp(F(r)/phi_0)*V_0*(alpha-1/phi_0);

phi_0 := -alpha/(2*alpha^2+2*omega); L := V_0*(1-(alpha-1/phi_0)*alpha/(3*alpha^2+2*omega)); V_0 := -lambda*exp(-fc/phi_0); fc := ln((4*alpha^2+2*omega)/(G_0*(3*alpha^2+2*omega)))/alpha; m := (2/(1+g))^(1/2); n := g*(2/(1+g))^(1/2); P := (G_0*(3*alpha^2+2*omega)/(4*alpha^2+2*omega))^(-2*alpha/(n-m)); eta := 1.4*G_0*Ms*(2/(1+g))^(-1/2)/c^2; g := 1-alpha^2/(2*alpha^2+omega);

omega := -10^5; alpha := 1; G_0 := 6.67*10^(-11); lambda := 10^(-52); c := 2.9*10^8; Ms := 1.9*10^30;
ri := evalf(1000*eta);

ics := A(2.109660445*10^6) = 1, (D(A))(2.109660445*10^6) = 2.370091128*10^(-15)*sqrt(2)*sqrt(99998)*sqrt(199997), B(2.109660445*10^6) = 1, C(2.109660445*10^6) = 1, (D(C))(2.109660445*10^6) = 4.740182256*10^(-15)*(1-(99999/19999300006)*sqrt(2)*sqrt(99998)*sqrt(199997))*(1-1.000017501*10^(-8)*sqrt(2)*sqrt(99998)*sqrt(199997))^(-(99999/19999300006)*sqrt(2)*sqrt(99998)*sqrt(199997))*sqrt(2)*sqrt(99998)*sqrt(199997), f(2.109660445*10^6) = 23.43081116, (D(f))(2.109660445*10^6) = 4.749681180*10^(-15):

eta:=2109.660445: sys:=e1,e2,e3,e4; vars:=[A(r),B(r),C(r),F(r)];

dsn3 := dsolve([sys, ics], numeric, vars, range = 3*eta .. 50*eta);

Results in

Warning, cannot evaluate the solution past the initial point, problem may be complex, initially singular or improperly set up

Setting f(r)=Const,V_0=0 which is a physically relevant case, results in

Error, (in simplify/normal) numeric exception: division by zero

I suugest the problem is that the equation contain sqared derivatives, hence there are several solution branches corresponding to different signs of square root. Maple chooses the singular branch. How can I force it to choose another branch or calculete all of them?

Thanks in advance..





Hi all,

 

It's been a while since I have used Maple. To be honest I haven't used it for over six years.

 

I am trying to solve simple differential equations, however I have many issues.

 

I am trying to simulate what author of this paper did 06421188.pdf

 

My file looks like this (Pendulum.mw)

 

Can someone help me to simulate this system? I simply can't remember how to do it.

 

Cheers,

Bart

Attached is a photo with the code I am working for.  

On the top is practice code with a simpler ODE to help with trouble shooting, on the bottom is the ODE I am working with.

I was hoping to gain insight about the _z1 symbol in the solution, I haven't been able to find much help on other threads.  I would like to know how I can go about working with it - if it is something on my end or if it is the nature of the equation I am working with.

 

Thank you for any help,

Josh

Hello there

I'm quite an amature so please don't judge.  I'm trying to use fsolve to solve a system of non-linear equations but Maple is just "spitting" on me the equations with no intention to solve them:

> delta5 := P*(1+mu5)*((1-2*mu5)*x/(sqrt(x^2+zeq^2)*(sqrt(x^2+zeq^2)*x))+x*zeq/sqrt(x^2+zeq^2)^3)/(2*Pi*E5);
print(`output redirected...`); # input placeholder
> shrinkage := P*(1+mu5)*((1-2*mu5)*x/(sqrt(x^2+Zb^2)*(sqrt(x^2+Zb^2)*x))+x*Zb/sqrt(x^2+Zb^2)^3)/(2*Pi*E5)-P*(1+mu5)*((1-2*mu5)*x/(sqrt(x^2+Za^2)*(sqrt(x^2+Za^2)*x))+x*Za/sqrt(x^2+Za^2)^3)/(2*Pi*E5);
> eq10 := subs(x = 1800, delta5)+subs(x = 1800, Zb = z2, Za = z1, shrinkage)+subs(x = 1800, Zb = z3, Za = z2, shrinkage)+subs(x = 1800, Zb = z4, Za = z3, shrinkage)+subs(x = 1800, Zb = z5, Za = z4, shrinkage) = 36.7*10^(-3);
print(`output redirected...`); # input placeholder
> eq9 := subs(x = 1500, delta5)+subs(x = 1500, Zb = z2, Za = z1, shrinkage)+subs(x = 1500, Zb = z3, Za = z2, shrinkage)+subs(x = 1500, Zb = z4, Za = z3, shrinkage)+subs(x = 1500, Zb = z5, Za = z4, shrinkage) = 47.2*10^(-3);
print(`output redirected...`); # input placeholder
> eq8 := subs(x = 1200, delta5)+subs(x = 1200, Zb = z2, Za = z1, shrinkage)+subs(x = 1200, Zb = z3, Za = z2, shrinkage)+subs(x = 1200, Zb = z4, Za = z3, shrinkage)+subs(x = 1200, Zb = z5, Za = z4, shrinkage) = 63.8*10^(-3);
> eq7 := subs(x = 900, delta5)+subs(x = 900, Zb = z2, Za = z1, shrinkage)+subs(x = 900, Zb = z3, Za = z2, shrinkage)+subs(x = 900, Zb = z4, Za = z3, shrinkage)+subs(x = 900, Zb = z5, Za = z4, shrinkage) = 91.1*10^(-3);
print(`output redirected...`); # input placeholder
> eq6 := subs(x = 600, delta5)+subs(x = 600, Zb = z2, Za = z1, shrinkage)+subs(x = 600, Zb = z3, Za = z2, shrinkage)+subs(x = 600, Zb = z4, Za = z3, shrinkage)+subs(x = 600, Zb = z5, Za = z4, shrinkage) = 137.9*10^(-3);
> eq5 := subs(x = 450, delta5)+subs(x = 450, Zb = z2, Za = z1, shrinkage)+subs(x = 450, Zb = z3, Za = z2, shrinkage)+subs(x = 450, Zb = z4, Za = z3, shrinkage)+subs(x = 450, Zb = z5, Za = z4, shrinkage) = 175.2*10^(-3);
> eq4 := subs(x = 300, delta5)+subs(x = 300, Zb = z2, Za = z1, shrinkage)+subs(x = 300, Zb = z3, Za = z2, shrinkage)+subs(x = 300, Zb = z4, Za = z3, shrinkage)+subs(x = 300, Zb = z5, Za = z4, shrinkage) = 230.9*10^(-3);
print(`output redirected...`); # input placeholder
> sys := {eq10, eq5, eq6, eq7, eq8, eq9};
print(`output redirected...`); # input placeholder
> fsolve(sys, {E1 = 1000 .. 2000, E2 = 0 .. 2000, E3 = 0 .. 2000, E4 = 0 .. 2000, E5 = 0 .. 2000, h4 = 100 .. 400});

and this is what Maple gives after the fsolve

 

fsolve({(3937.500000*(.2/(202500+(146.0507832*(E1/E5)^(1/3)+197.1094212*(E2/E5)^(1/3)+295.6641318*(E3/E5)^(1/3)+1.*h4*(E4/E5)^(1/3))^2)+(450*(146.0507832*(E1/E5)^(1/3)+197.1094212*(E2/E5)^(1/3)+295.6641318*(E3/E5)^(1/3)+1.*h4*(E4/E5)^(1/3)))/(202500+(146.0507832*(E1/E5)^(1/3)+197.1094212*(E2/E5)^(1/3)+295.6641318*(E3/E5)^(1/3)+1.*h4*(E4/E5)^(1/3))^2)^(3/2)))/E5-0.3888888889e-2/E5+(3937.500000*(.2/(202500+(650+h4)^2)+(450*(650+h4))/(202500+(650+h4)^2)^(3/2)))/E5 = .1752000000, (3937.500000*(.2/(360000+(146.0507832*(E1/E5)^(1/3)+197.1094212*(E2/E5)^(1/3)+295.6641318*(E3/E5)^(1/3)+1.*h4*(E4/E5)^(1/3))^2)+(600*(146.0507832*(E1/E5)^(1/3)+197.1094212*(E2/E5)^(1/3)+295.6641318*(E3/E5)^(1/3)+1.*h4*(E4/E5)^(1/3)))/(360000+(146.0507832*(E1/E5)^(1/3)+197.1094212*(E2/E5)^(1/3)+295.6641318*(E3/E5)^(1/3)+1.*h4*(E4/E5)^(1/3))^2)^(3/2)))/E5-0.2187500000e-2/E5+(3937.500000*(.2/(360000+(650+h4)^2)+(600*(650+h4))/(360000+(650+h4)^2)^(3/2)))/E5 = .1379000000, (3937.500000*(.2/(810000+(146.0507832*(E1/E5)^(1/3)+197.1094212*(E2/E5)^(1/3)+295.6641318*(E3/E5)^(1/3)+1.*h4*(E4/E5)^(1/3))^2)+(900*(146.0507832*(E1/E5)^(1/3)+197.1094212*(E2/E5)^(1/3)+295.6641318*(E3/E5)^(1/3)+1.*h4*(E4/E5)^(1/3)))/(810000+(146.0507832*(E1/E5)^(1/3)+197.1094212*(E2/E5)^(1/3)+295.6641318*(E3/E5)^(1/3)+1.*h4*(E4/E5)^(1/3))^2)^(3/2)))/E5-0.9722222220e-3/E5+(3937.500000*(.2/(810000+(650+h4)^2)+(900*(650+h4))/(810000+(650+h4)^2)^(3/2)))/E5 = 0.9110000000e-1, (3937.500000*(.2/(1440000+(146.0507832*(E1/E5)^(1/3)+197.1094212*(E2/E5)^(1/3)+295.6641318*(E3/E5)^(1/3)+1.*h4*(E4/E5)^(1/3))^2)+(1200*(146.0507832*(E1/E5)^(1/3)+197.1094212*(E2/E5)^(1/3)+295.6641318*(E3/E5)^(1/3)+1.*h4*(E4/E5)^(1/3)))/(1440000+(146.0507832*(E1/E5)^(1/3)+197.1094212*(E2/E5)^(1/3)+295.6641318*(E3/E5)^(1/3)+1.*h4*(E4/E5)^(1/3))^2)^(3/2)))/E5-0.5468750000e-3/E5+(3937.500000*(.2/(1440000+(650+h4)^2)+(1200*(650+h4))/(1440000+(650+h4)^2)^(3/2)))/E5 = 0.6380000000e-1, (3937.500000*(.2/(2250000+(146.0507832*(E1/E5)^(1/3)+197.1094212*(E2/E5)^(1/3)+295.6641318*(E3/E5)^(1/3)+1.*h4*(E4/E5)^(1/3))^2)+(1500*(146.0507832*(E1/E5)^(1/3)+197.1094212*(E2/E5)^(1/3)+295.6641318*(E3/E5)^(1/3)+1.*h4*(E4/E5)^(1/3)))/(2250000+(146.0507832*(E1/E5)^(1/3)+197.1094212*(E2/E5)^(1/3)+295.6641318*(E3/E5)^(1/3)+1.*h4*(E4/E5)^(1/3))^2)^(3/2)))/E5-0.3500000000e-3/E5+(3937.500000*(.2/(2250000+(650+h4)^2)+(1500*(650+h4))/(2250000+(650+h4)^2)^(3/2)))/E5 = 0.4720000000e-1, (3937.500000*(.2/(3240000+(146.0507832*(E1/E5)^(1/3)+197.1094212*(E2/E5)^(1/3)+295.6641318*(E3/E5)^(1/3)+1.*h4*(E4/E5)^(1/3))^2)+(1800*(146.0507832*(E1/E5)^(1/3)+197.1094212*(E2/E5)^(1/3)+295.6641318*(E3/E5)^(1/3)+1.*h4*(E4/E5)^(1/3)))/(3240000+(146.0507832*(E1/E5)^(1/3)+197.1094212*(E2/E5)^(1/3)+295.6641318*(E3/E5)^(1/3)+1.*h4*(E4/E5)^(1/3))^2)^(3/2)))/E5-0.2430555555e-3/E5+(3937.500000*(.2/(3240000+(650+h4)^2)+(1800*(650+h4))/(3240000+(650+h4)^2)^(3/2)))/E5 = 0.3670000000e-1}, {E1, E2, E3, E4, E5, h4}, {E1 = 1000 .. 2000, E2 = 0 .. 2000, E3 = 0 .. 2000, E4 = 0 .. 2000, E5 = 0 .. 2000, h4 = 100 .. 400})

I have a nice procedure that is as follows, that explores the behaviour of a mapping in R^2.

InversePoincare := proc (v) options operator, arrow; v*Norm(v, 2)/(1-Norm(v, 2)^2) end proc

SphereVectorPlot := proc (T, radius, radiusIncrements, angleIncrements, lengthParam)
local listOfPairs;
listOfPairs := {seq(seq([[radius*r*cos(2*angle*Pi/angleIncrements)/radiusIncrements, radius*r*sin(2*angle*Pi/angleIncrements)/radiusIncrements], T(InversePoincare(`<,>`(radius*r*cos(2*angle*Pi/angleIncrements)/radiusIncrements, radius*r*sin(2*angle*Pi/angleIncrements)/radiusIncrements)))-InversePoincare(`<,>`(radius*r*cos(2*angle*Pi/angleIncrements)/radiusIncrements, radius*r*sin(2*angle*Pi/angleIncrements)/radiusIncrements))], r = 0 .. radiusIncrements), angle = 0 .. angleIncrements)};
if lengthParam = false then
 return arrow(listOfPairs, scaling = constrained, shape = arrow)
else
 return arrow(listOfPairs, length = lengthParam, scaling = constrained, shape = arrow)
end if
end proc

Essentially, we plot vectors v at location u. Since the vectors v in general vary wildly in magnitude, I would like to visualize the magnitude change by using color and/or transparency, preferably the latter. Is it possible to do so, and if so, how?

Is it possible to plot the equation 1=x^2+(y-1)^2 within Maple without rewriting it into a function or something like that? I can see that it is an easy to plot circle, but I just wonder whether it is possible.

Hi, 

i have this:

and i don't want the letter to be strings.

I want something like:

[z,d,i,p,s,...,y]

Thank you a lot

I am thinking about plotting a star chart of the whole sky. While it might not be difficult to get the (x,y)-coordinates of fairly good number of stars from star catalogues and to plot them accordingly in a 2d-plot, it might be more difficult to plot the stars according to their brightness. Also, I would like to plot the chart in cylindrical coordinate with astronomical coordinate axes for x and y. Moreover, only the brighter stars should be visible when the whole chart is shown, but when zooming in (while still having the axes visible) to have a closer look at some specific locations where I wand to make some square to show some fields, fainter stars should appear.

Is this possible in Maple ? I'd prefer to do a plot as I can really draw several squares where I want them which is not possible in my planetarium software.

Trying to solve the 1-dimensional heat equation with maple with constant boundary temperatures:

restart;

with(PDETools):
U := diff_table(u(x,t)):
pde := U[t]=U[x,x];
bc := u(0, t) =0, u(1, t) = 1, u(x,0)=x;
pdsolve([pde,bc]);

The solution of this equation is u(x,t)=x , but pdsolve(...) does not return anything at all! What is going wrong? Is it too hard PDE for maple? And if it is too hard, where can be found the types of equations, which are too hard and not too hard? Thank you.

how can you graph when piecewise function is not continuous?

 

example:

BB := piecewise (-1.57 < c and c < -1.56, h, -0.06< c and  c < -0.05, aa, -0.5< c and c < 0.04, bb);

 

 

so if i want to perform a function on elements from a list i do 

 

X:=[3, 5, 6, 7]

 

add(x*ln(x), x = X)

 

 

but what if i want to have two lists X and Y and perform the function xi*ln(yi) and add that up?

 

 

PS: keep in mind that im working with integers aswell as floats

 

thanks :)

how to graph in maple 

for example

 

-2 < x < -3, h

-1 < x < -2, b

 

why do I get the error Error, (in rtable/Sum) invalid arguments

In positive numbers, I get it ok

Hello

I am trying to do a do loop

X[1] := Statistics:-Sample(Binomial(200, .5), 1);

for i to 10 do X[i+1] := Statistics:-Sample(Binomial(200-X[i], .5), 1) end do;

And it shows error like this

Error, (in rtable/Sum) invalid arguments.

Did I do something wrong in my code?

First 1303 1304 1305 1306 1307 1308 1309 Last Page 1305 of 2434