MaplePrimes Questions

I have an assignment for my class but I don't know how to get the answer without getting an error. Maple_2.mw
 

Vector Valued Functions

and

Level Sets of Scalar Valued Functions

 

This worksheet is meant to give you some tools that you can use to

explore vector valued functions and scalar valued functions of several variables.

We will use the Student[VectorCalculus]  and the plots  packages.

 

First we load the packages with a restart at the beginning.  That is

meant to make it easier to check what happens when you run your

solutions.

 

restart;
with(Student:-VectorCalculus);
BasisFormat(false):
with(plots):
with(plottools):

Deivatives and integrals for vector valued functions

   

Plotting velocity and acceleration along a curve

   

Plotting functions of two variables and contours.

   

Exercises

   


 

Download Maple_2.mw

 

Dear all 
I have a finite set, I would like to compute all possible sigma algebra

Using the following code ( thanks to vv), for helping me to use this code:

sigma_algebra_all.mw 

 

This code give me the sigma algebra if I fix the generator of the sigma algebra, How can I find all possible sigma algebra in the global set {1,2,3}

 

Thank you

Hi,

I have a problem with maple. I used to work with maple until 2019. Now I installed Maple 2021 and I wanted to plot something, but it didn't worked anymore. I have problems to plot anything. When I try to plot something, maple only writes a very long list instead of a graphic. Here you can see, what I wrote in the worksheet:

restart;
with(LinearAlgebra):
with(plots):

plot(x^2,x=0..2);
INTERFACE_PLOT(CURVES(Matrix(200,2,{(2, 1) = HFloat(.105152100502512568e-1), (2
, 2) = HFloat(.110569642400905045e-3), (3, 1) = HFloat(.196644380904522631e-1),
(3, 2) = HFloat(.386690125413229849e-3), (4, 1) = HFloat(.299537019095477385e-1
), (4, 2) = HFloat(.897224258086043816e-3), (5, 1) = HFloat(.403111696482412116\
e-1), (5, 2) = HFloat(.162499039840928341e-2), (6, 1) = HFloat(.\
506194101507537672e-1), (6, 2) = HFloat(.256232468401023337e-2), (7, 1) =
HFloat(.601764686432160745e-1), (7, 2) = HFloat(.362120737836796758e-2), (8, 1)
= HFloat(.700722491457286406e-1), (8, 2) = HFloat(.491012010034106838e-2), (9,
1) = HFloat(.803064794974874402e-1), (9, 2) = HFloat(.644913064928037075e-2), (
10, 1) = HFloat(.905078885427135632e-1), (10, 2) = HFloat(.819167788846026160e-\
2), (11, 1) = HFloat(.101001291658291470), (11, 2) = HFloat(.102012609166432580\
e-1), (12, 1) = HFloat(.110243886834170857), (12, 2) = HFloat(.\
121537145843054698e-1), (13, 1) = HFloat(.120648859899497501), (13, 2) = HFloat
(.145561473950485756e-1), (14, 1) = HFloat(.131096556783919599), (14, 2) =
HFloat(.171863072005994551e-1), (15, 1) = HFloat(.141164848643216101), (15, 2)
= HFloat(.199275144924621096e-1), (16, 1) = HFloat(.150307822211055264), (16, 2
) = HFloat(.225924414178301988e-1), (17, 1) = HFloat(.161179702110552769), (17,
2) = HFloat(.259788963724465298e-1), (18, 1) = HFloat(.170389610452261309), (18
, 2) = HFloat(.290326193500733548e-1), (19, 1) = HFloat(.181102923316582926), (
19, 2) = HFloat(.327982688338121151e-1), (20, 1) = HFloat(.190586020502512554),
(20, 2) = HFloat(.363230312109841386e-1), (21, 1) = HFloat(.200990481105527641)
, (21, 2) = HFloat(.403971734950314618e-1), (22, 1) = HFloat(.21089798804020101\
8), (22, 2) = HFloat(.444779613594047732e-1), (23, 1) = HFloat(.221235432160804\
046), (23, 2) = HFloat(.489451164433777272e-1), (24, 1) = HFloat(.2307284328643\
21625), (24, 2) = HFloat(.532356097320257696e-1), (25, 1) = HFloat(.24096791658\
2914582), (25, 2) = HFloat(.580655368223104776e-1), (26, 1) = HFloat(.251603862\
412060286), (26, 2) = HFloat(.633045035806669570e-1), (27, 1) = HFloat(.2608624\
84522613070), (27, 2) = HFloat(.680492358313105478e-1), (28, 1) = HFloat(.27086\
2050050251268), (28, 2) = HFloat(.733662501574248171e-1), (29, 1) = HFloat(.281\
192579698492429), (29, 2) = HFloat(.790692668774930219e-1), (30, 1) = HFloat(.2\
91298987537688459), (30, 2) = HFloat(.848551001404823785e-1), (31, 1) = HFloat(
.301077456783919617), (31, 2) = HFloat(.906476349834729883e-1), (32, 1) =
HFloat(.311934779698492481), (32, 2) = HFloat(.973033067855470363e-1), (33, 1)
= HFloat(.321690567236180891), (33, 2) = HFloat(.103484821048735812), (34, 1) =
HFloat(.332106952763819130), (34, 2) = HFloat(.110295028074069587), (35, 1) =
HFloat(.341545746231155745), (35, 2) = HFloat(.116653496768597043), (36, 1) =
HFloat(.351864840603015094), (36, 2) = HFloat(.123808866052585217), (37, 1) =
HFloat(.361574304221105480), (37, 2) = HFloat(.130735977472976550), (38, 1) =
HFloat(.371723491356783953), (38, 2) = HFloat(.138178354026477046), (39, 1) =
HFloat(.381646176884422095), (39, 2) = HFloat(.145653804330495601), (40, 1) =
HFloat(.392034309045226126), (40, 2) = HFloat(.153690899468567871), (41, 1) =
HFloat(.402039314974874384), (41, 2) = HFloat(.161635610785466260), (42, 1) =
HFloat(.412270878592964851), (42, 2) = HFloat(.169967277335815153), (43, 1) =
HFloat(.422417719698492511), (43, 2) = HFloat(.178436729915274178), (44, 1) =
HFloat(.431741612864321611), (44, 2) = HFloat(.186400820278685764), (45, 1) =
HFloat(.442427846633165867), (45, 2) = HFloat(.195742399476460133), (46, 1) =
HFloat(.451985741507537675), (46, 2) = HFloat(.204291110526118674), (47, 1) =
HFloat(.462176450954773888), (47, 2) = HFloat(.213607071817150523), (48, 1) =
HFloat(.471930260201005036), (48, 2) = HFloat(.222718170493388323), (49, 1) =
HFloat(.482760611859296529), (49, 2) = HFloat(.233057808362762353), (50, 1) =
HFloat(.492138900603015073), (50, 2) = HFloat(.242200697486744360), (51, 1) =
HFloat(.502783342211055251), (51, 2) = HFloat(.252791089204919106), (52, 1) =
HFloat(.512484595175879409), (52, 2) = HFloat(.262640460292584976), (53, 1) =
HFloat(.523096241306532650), (53, 2) = HFloat(.273629677669022242), (54, 1) =
HFloat(.532252297286432086), (54, 2) = HFloat(.283292507966684481), (55, 1) =
HFloat(.542679976281407073), (55, 2) = HFloat(.294501556656788566), (56, 1) =
HFloat(.552752599396984956), (56, 2) = HFloat(.305535436140123740), (57, 1) =
HFloat(.562818642311557871), (57, 2) = HFloat(.316764824133425327), (58, 1) =
HFloat(.572847654070351764), (58, 2) = HFloat(.328154434773905379), (59, 1) =
HFloat(.582482394673366821), (59, 2) = HFloat(.339285740104419864), (60, 1) =
HFloat(.592897804422110597), (60, 2) = HFloat(.351527806488559302), (61, 1) =
HFloat(.602824445125628161), (61, 2) = HFloat(.363397311641021459), (62, 1) =
HFloat(.613271767035175941), (62, 2) = HFloat(.376102260242447139), (63, 1) =
HFloat(.622729109145728654), (63, 2) = HFloat(.387791543377432824), (64, 1) =
HFloat(.633181242613065298), (64, 2) = HFloat(.400918485997025453), (65, 1) =
HFloat(.643192565125628168), (65, 2) = HFloat(.413696675832885441), (66, 1) =
HFloat(.653179519798995023), (66, 2) = HFloat(.426643485084845731), (67, 1) =
HFloat(.663610932663316611), (67, 2) = HFloat(.440379469950276936), (68, 1) =
HFloat(.673218644723618143), (68, 2) = HFloat(.453223343603505191), (69, 1) =
HFloat(.683058256080402049), (69, 2) = HFloat(.466568581199600096), (70, 1) =
HFloat(.693922356180904587), (70, 2) = HFloat(.481528236407658183), (71, 1) =
HFloat(.703758908944723593), (71, 2) = HFloat(.495276601919067749), (72, 1) =
HFloat(.713818626633165865), (72, 2) = HFloat(.509537031728459100), (73, 1) =
HFloat(.724049100402010093), (73, 2) = HFloat(.524247099792960136), (74, 1) =
HFloat(.733452896582914682), (74, 2) = HFloat(.537953151505867755), (75, 1) =
HFloat(.743477038793969869), (75, 2) = HFloat(.552758107213850214), (76, 1) =
HFloat(.753424876582914571), (76, 2) = HFloat(.567649044653980028), (77, 1) =
HFloat(.764065970854271415), (77, 2) = HFloat(.583796807817480334), (78, 1) =
HFloat(.773456275577889429), (78, 2) = HFloat(.598234610230820030), (79, 1) =
HFloat(.784290737889447254), (79, 2) = HFloat(.615111961539173691), (80, 1) =
HFloat(.794068004824120544), (80, 2) = HFloat(.630543996285359509), (81, 1) =
HFloat(.803742099396984933), (81, 2) = HFloat(.646001362343072816), (82, 1) =
HFloat(.814144858894472301), (82, 2) = HFloat(.662831851264300220), (83, 1) =
HFloat(.824589699698492495), (83, 2) = HFloat(.679948172848850008), (84, 1) =
HFloat(.834092958291457243), (84, 2) = HFloat(.695711063071394631), (85, 1) =
HFloat(.844184996783919672), (85, 2) = HFloat(.712648308795066465), (86, 1) =
HFloat(.854033840000000044), (86, 2) = HFloat(.729373799865145722), (87, 1) =
HFloat(.864710089949748739), (87, 2) = HFloat(.747723539660902548), (88, 1) =
HFloat(.873948014472361812), (88, 2) = HFloat(.763785132000183498), (89, 1) =
HFloat(.884558106633165808), (89, 2) = HFloat(.782443044010451172), (90, 1) =
HFloat(.894532151055276392), (90, 2) = HFloat(.800187769271579863), (91, 1) =
HFloat(.904409857085427094), (91, 2) = HFloat(.817957189593282674), (92, 1) =
HFloat(.914295420904522649), (92, 2) = HFloat(.835936116686978203), (93, 1) =
HFloat(.924378070251256290), (93, 2) = HFloat(.854474816761436551), (94, 1) =
HFloat(.935065509648241200), (94, 2) = HFloat(.874347507333725016), (95, 1) =
HFloat(.944864845025125577), (95, 2) = HFloat(.892769575364354528), (96, 1) =
HFloat(.954538047336683348), (96, 2) = HFloat(.911142883813328308), (97, 1) =
HFloat(.964878541407035106), (97, 2) = HFloat(.930990599667767538), (98, 1) =
HFloat(.975196525125628155), (98, 2) = HFloat(.951008262617099920), (99, 1) =
HFloat(.984457528241206137), (99, 2) = HFloat(.969156624910785136), (100, 1) =
HFloat(.995427854271356827), (100, 2) = HFloat(.990876613059277656), (101, 1) =
HFloat(1.00460731437185924), (101, 2) = HFloat(1.00923585608943966), (102, 1) =
HFloat(1.01534372402010042), (102, 2) = HFloat(1.03092287790700587), (103, 1) =
HFloat(1.02559058693467331), (103, 2) = HFloat(1.05183605200900776), (104, 1) =
HFloat(1.03473981497487433), (104, 2) = HFloat(1.07068648469423722), (105, 1) =
HFloat(1.04502907879397000), (105, 2) = HFloat(1.09208577552497355), (106, 1) =
HFloat(1.05538654653266328), (106, 2) = HFloat(1.11384076260214138), (107, 1) =
HFloat(1.06569478703517584), (107, 2) = HFloat(1.13570537911394887), (108, 1) =
HFloat(1.07525184552763808), (108, 2) = HFloat(1.15616653131059177), (109, 1) =
HFloat(1.08514762603015091), (109, 2) = HFloat(1.17754537027887229), (110, 1) =
HFloat(1.09538185638190955), (110, 2) = HFloat(1.19986141129067825), (111, 1) =
HFloat(1.10558326542713559), (111, 2) = HFloat(1.22231435679252809), (112, 1) =
HFloat(1.11607666854271348), (112, 2) = HFloat(1.24562713006540182), (113, 1) =
HFloat(1.12531926371859292), (113, 2) = HFloat(1.26634344529615617), (114, 1) =
HFloat(1.13572423678391954), (114, 2) = HFloat(1.28986954201841653), (115, 1) =
HFloat(1.14617193366834180), (115, 2) = HFloat(1.31371010152902579), (116, 1) =
HFloat(1.15624022552763828), (116, 2) = HFloat(1.33689145912820373), (117, 1) =
HFloat(1.16538319909547727), (117, 2) = HFloat(1.35811800073400879), (118, 1) =
HFloat(1.17625507899497483), (118, 2) = HFloat(1.38357601086147453), (119, 1) =
HFloat(1.18546498733668337), (119, 2) = HFloat(1.40532723620116284), (120, 1) =
HFloat(1.19617830020100513), (120, 2) = HFloat(1.43084252587176586), (121, 1) =
HFloat(1.20566139738693479), (121, 2) = HFloat(1.45361940514901633), (122, 1) =
HFloat(1.21606585798994971), (122, 2) = HFloat(1.47881617096883256), (123, 1) =
HFloat(1.22597336492462317), (123, 2) = HFloat(1.50301069150460331), (124, 1) =
HFloat(1.23631080904522617), (124, 2) = HFloat(1.52846441656206178), (125, 1) =
HFloat(1.24580380974874383), (125, 2) = HFloat(1.55202713238448431), (126, 1) =
HFloat(1.25604329346733667), (126, 2) = HFloat(1.57764475506427404), (127, 1) =
HFloat(1.26667923929648252), (127, 2) = HFloat(1.60447629526471558), (128, 1) =
HFloat(1.27593786140703536), (128, 2) = HFloat(1.62801742617195888), (129, 1) =
HFloat(1.28593742693467328), (129, 2) = HFloat(1.65363506599136811), (130, 1) =
HFloat(1.29626795658291449), (130, 2) = HFloat(1.68031061526364467), (131, 1) =
HFloat(1.30637436442211063), (131, 2) = HFloat(1.70661398001927345), (132, 1) =
HFloat(1.31615283366834168), (132, 2) = HFloat(1.73225828157320549), (133, 1) =
HFloat(1.32701015658291466), (133, 2) = HFloat(1.76095595567421159), (134, 1) =
HFloat(1.33676594412060301), (134, 2) = HFloat(1.78694318936064711), (135, 1) =
HFloat(1.34718232964824125), (135, 2) = HFloat(1.81490022931646267), (136, 1) =
HFloat(1.35662112311557781), (136, 2) = HFloat(1.84042087168337165), (137, 1) =
HFloat(1.36694021748743699), (137, 2) = HFloat(1.86852555818460164), (138, 1) =
HFloat(1.37664968110552777), (138, 2) = HFloat(1.89516434448795135), (139, 1) =
HFloat(1.38679886824120602), (139, 2) = HFloat(1.92321110095508985), (140, 1) =
HFloat(1.39672155376884422), (140, 2) = HFloat(1.95083109876245442), (141, 1) =
HFloat(1.40710968592964836), (141, 2) = HFloat(1.97995766823703367), (142, 1) =
HFloat(1.41711469185929650), (142, 2) = HFloat(2.00821404988346908), (143, 1) =
HFloat(1.42734625547738680), (143, 2) = HFloat(2.03731733302531737), (144, 1) =
HFloat(1.43749309658291469), (144, 2) = HFloat(2.06638640272353680), (145, 1) =
HFloat(1.44681698974874351), (145, 2) = HFloat(2.09327940182561578), (146, 1) =
HFloat(1.45750322351758776), (146, 2) = HFloat(2.12431564656415928), (147, 1) =
HFloat(1.46706111839195996), (147, 2) = HFloat(2.15226832509746835), (148, 1) =
HFloat(1.47725182783919595), (148, 2) = HFloat(2.18227296285424543), (149, 1) =
HFloat(1.48700563708542721), (149, 2) = HFloat(2.21118576472383710), (150, 1) =
HFloat(1.49783598874371848), (150, 2) = HFloat(2.24351264917587256), (151, 1) =
HFloat(1.50721427748743708), (151, 2) = HFloat(2.27169487826197702), (152, 1) =
HFloat(1.51785871909547732), (152, 2) = HFloat(2.30389509113416313), (153, 1) =
HFloat(1.52755997206030147), (153, 2) = HFloat(2.33343946824086901), (154, 1) =
HFloat(1.53817161819095460), (154, 2) = HFloat(2.36597192700818004), (155, 1) =
HFloat(1.54732767417085437), (155, 2) = HFloat(2.39422293125498564), (156, 1) =
HFloat(1.55775535316582903), (156, 2) = HFloat(2.42660174031679654), (157, 1) =
HFloat(1.56782797628140713), (157, 2) = HFloat(2.45808456321065272), (158, 1) =
HFloat(1.57789401919598005), (158, 2) = HFloat(2.48974953581444369), (159, 1) =
HFloat(1.58792303095477383), (159, 2) = HFloat(2.52149955223659550), (160, 1) =
HFloat(1.59755777155778911), (160, 2) = HFloat(2.55219083346468922), (161, 1) =
HFloat(1.60797318130653277), (161, 2) = HFloat(2.58557775180105187), (162, 1) =
HFloat(1.61789982201005023), (162, 2) = HFloat(2.61759983406015229), (163, 1) =
HFloat(1.62834714391959801), (163, 2) = HFloat(2.65151442111111191), (164, 1) =
HFloat(1.63780448603015083), (164, 2) = HFloat(2.68240353446048641), (165, 1) =
HFloat(1.64825661949748747), (165, 2) = HFloat(2.71674988371728521), (166, 1) =
HFloat(1.65826794201005034), (166, 2) = HFloat(2.74985256749824769), (167, 1) =
HFloat(1.66825489668341720), (167, 2) = HFloat(2.78307440030819908), (168, 1) =
HFloat(1.67868630954773868), (168, 2) = HFloat(2.81798772586300617), (169, 1) =
HFloat(1.68829402160804021), (169, 2) = HFloat(2.85033670339744960), (170, 1) =
HFloat(1.69813363296482422), (170, 2) = HFloat(2.88365783540631249), (171, 1) =
HFloat(1.70899773306532654), (171, 2) = HFloat(2.92067325162242497), (172, 1) =
HFloat(1.71883428582914588), (172, 2) = HFloat(2.95439130214179002), (173, 1) =
HFloat(1.72889400351758793), (173, 2) = HFloat(2.98907447539907345), (174, 1) =
HFloat(1.73912447728643227), (174, 2) = HFloat(3.02455394749680639), (175, 1) =
HFloat(1.74852827346733686), (175, 2) = HFloat(3.05735112311466573), (176, 1) =
HFloat(1.75855241567839204), (176, 2) = HFloat(3.09250659868830802), (177, 1) =
HFloat(1.76850025346733686), (177, 2) = HFloat(3.12759314651403475), (178, 1) =
HFloat(1.77914134773869348), (178, 2) = HFloat(3.16534393523345470), (179, 1) =
HFloat(1.78853165246231161), (179, 2) = HFloat(3.19884547185956691), (180, 1) =
HFloat(1.79936611477386954), (180, 2) = HFloat(3.23771841499641022), (181, 1) =
HFloat(1.80914338170854272), (181, 2) = HFloat(3.27299977557982169), (182, 1) =
HFloat(1.81881747628140711), (182, 2) = HFloat(3.30809701202666684), (183, 1) =
HFloat(1.82922023577889470), (183, 2) = HFloat(3.34604667098299524), (184, 1) =
HFloat(1.83966507658291456), (184, 2) = HFloat(3.38436759399882092), (185, 1) =
HFloat(1.84916833517587942), (185, 2) = HFloat(3.41942353181713354), (186, 1) =
HFloat(1.85926037366834174), (186, 2) = HFloat(3.45684913709334163), (187, 1) =
HFloat(1.86910921688442211), (187, 2) = HFloat(3.49356926464229778), (188, 1) =
HFloat(1.87978546683417092), (188, 2) = HFloat(3.53359340132096200), (189, 1) =
HFloat(1.88902339135678377), (189, 2) = HFloat(3.56840937309308481), (190, 1) =
HFloat(1.89963348351758787), (190, 2) = HFloat(3.60860737170116597), (191, 1) =
HFloat(1.90960752793969868), (191, 2) = HFloat(3.64660091076396720), (192, 1) =
HFloat(1.91948523396984938), (192, 2) = HFloat(3.68442356342828736), (193, 1) =
HFloat(1.92937079778894471), (193, 2) = HFloat(3.72247167536074919), (194, 1) =
HFloat(1.93945344713567835), (194, 2) = HFloat(3.76147967360646573), (195, 1) =
HFloat(1.95014088653266326), (195, 2) = HFloat(3.80304947732640164), (196, 1) =
HFloat(1.95994022190954786), (196, 2) = HFloat(3.84136567345884794), (197, 1) =
HFloat(1.96961342422110564), (197, 2) = HFloat(3.87937704087198920), (198, 1) =
HFloat(1.97995391829145739), (198, 2) = HFloat(3.92021751855769507), (199, 1) =
HFloat(1.99027190201005011), (199, 2) = HFloat(3.96118224393070228), (200, 1) =
HFloat(2.), (200, 2) = HFloat(4.)},datatype = float[8],storage = rectangular,
order = Fortran_order,shape = []),COLOUR(RGB,.47058824,0.,.54901961e-1,
_ATTRIBUTE("source" = "mathdefault"))),AXESLABELS(x,""),VIEW(0. .. 2.,DEFAULT,
_ATTRIBUTE("source" = "mathdefault")))

I also opened an old worksheet with plots and pressed the "!!!" buttom, but maple didn't plotted anything, but 3 years ago, it worked with the old version of maple.  Does anybody knows what the problem is?

Hello,

I'm struggling with following simple problem which I however cannot seem to implement easily in Maple:

  • I have 2 different periodic functions: f1 and f2, each time in  variables x and t.
  • On the second function f2 a duty cycle with period T and fraction q should need to be applied so that:
    • during the DUTY (=ON or 1) part of this period, so from 0 -> q*T, f2__DC=f2
    • during the remainder (=OFF or 0) part of this period, so from q*T->T, f2__DC=0
    • each subsequent DUTY part starts at the same point where it ended at the previous cycle, so as if f2 was 'froozen' during the OFF part (see code for more details, but basically this means that the t parameter needs to be constantly translated depending on which duty cycle we are in).
  • In the end I want to calculate f1*f2 in a simple way using ranges for both variables x and t so that e.g. plotting can easily be done.

I've tried implicit functions and procedures but keep getting stuck whenever I introduce a second variable.  Somehow, Maple does not seem to work straightforward with non-univariate stuff.  Such an examples can also not be found in the programming guide so I'm hoping that one of you knows how to tackle this.

Any help will be much appreciated!
 

restart;
with(plots):

f1 := (x, t) -> A * (1 + B * sin(a*x-b*t));

proc (x, t) options operator, arrow; A*(1+B*sin(a*x-b*t)) end proc

(1)

f2 := (x, t) -> C * (1 + E * sin(c*x-d*t));

proc (x, t) options operator, arrow; C*(1+E*sin(c*x-d*t)) end proc

(2)

A:=1: B:=0.5: a:=100: b:=1:
C:=1: E:=0.5: c:=10: d:=10:

densityplot(f1(x,t) * f2(x,t), x = 0..1, t = 0..10, style=patchnogrid);

 

#Duty cycle (DC) applied to f2
# ON state:      n*T <= t <(n+q)*T  : f2__DC(x,t)=f2(x,t-n*(1-q)*T)
# OFF state: (n+q)*T <= t < (n+1)*T : f2__DC(x,t)=0 (so all other cases)
# (n is a positive integer, zero included, and n=floor(t/T))

T:=1:
q:=0.3; #fraction of T where DC is 1=ON

#How to apply the above DC to f2(x,t) so that f2__DC is obtained and following command works:
densityplot(f1(x,t) * f2__DC(x,t), x = 0..1, t = 0..10, style=patchnogrid);

 


 

Download dutycycle_.mw

Could anyone please tell me how to solve the following system of equations and inequalities numerically in Maple:

{x + y = 2 and y = 1 and x > 0} or {x^2 = 4 and x < 0 and y = 0}?

By now I have been using solve() function in similar cases, but did not manage to adopt it for the or logical connector. 

Solving the two cases separately obviously works here, but does not help in the example, for which I need this, 

Thank you in advance!

Hi! I'm trying to draw the basins of attraction for Newton's method with f(z) = z^3 - 1 in three colors, just like the pictures on the links below:

https://i.stack.imgur.com/0wHfa.jpg

or

http://dept.cs.williams.edu/~heeringa/classes/cs135/s15/labs/lab3/

Can this be done? Thanks in advance,

RM

The Abel integral equation of the form

g(x) =  Int( f(y) / (x-y)^alpha, y = 0 .. x ) assuming alpha>0, alpha<1;

is linear and has a well known explicit solution for f(x).  

It is a particular form of Volterra equation of the first kind. 

It occurs in many problems of physics with alpha = 1/2.

However intsolve gives an error message:

> eq := g(x) =  Int(f(y)/(x-y)^alpha, y = 0 .. x) assuming alpha>0, alpha<1

> intsolve(eq, f(x));
Error, (in intsolve) numeric exception: division by zero

Replacing (x-y)^alpha by sqrt(x-y) gives the same error message.

restart

with(Physics)

Setup(spacetime)

[spacetimeindices = greek]

(1)

Physics:-Version()

`The "Physics Updates" version in the MapleCloud is 1142 and is the same as the version installed in this computer, created 2022, February 12, 11:16 hours Pacific Time.`

(2)

Define(t[mu])

{Physics:-Dgamma[mu], Physics:-Psigma[mu], Physics:-d_[mu], Physics:-g_[mu, nu], t[mu], Physics:-LeviCivita[alpha, beta, mu, nu]}

(3)

NULL

SumOverRepeatedIndices(t[mu]*t[`~mu`])

t[1]*t[`~1`]+t[2]*t[`~2`]+t[3]*t[`~3`]+t[4]*t[`~4`]

(4)

NULL

SumOverRepeatedIndices(t[mu]*t[`~mu`])

t[1]*t[`~1`]+t[2]*t[`~2`]+t[3]*t[`~3`]+t[4]*t[`~4`]

(5)

NULL

SumOverRepeatedIndices(t[mu]*t[`~&mu;`])

t[mu]*t[`~&mu;`]

(6)

NULL

Download greek-index.mw

Dear all

I have a set of three element, I want to apply each step of the definition of monotone class generated by a set to obtain the element of the monotone class generated by a given set. 

The definition and condition of monotone class is added in maple worksheet. 

I hope find some steps ( using maple) that will be applied later to other problem.

Monotone_class.mw

thanks

windows 11 maple 2020 I can load other packages but cannot load the student packages

How to find the axis and focus of a parabola whose equation we know ? Thank you.

Session Save doesnt work:

DeepLearning:-Save("model.ckpt");  
Error, (in DeepLearning:-Save) format not supported

DeepLearning:-Save("model.h5");
Error, (in DeepLearning:-Save) format not supported

DeepLearning:-Save("model.keras");
Error, (in DeepLearning:-Save) format not supported
 

Which format is supported?

With two vectors a and b, we know that
Norm(CrossProduct(a, b)) = Norm(a)* Norm(b) * sin(a,b).
I tried with a := <1, 2, -2>; b := <2, 10, 11>; 

Note that a perpendicular to b and 

Norm(CrossProduct(a, b)) = Norm(a)* Norm(b)

I tried

restart;
with(VectorCalculus);
SetCoordinates(cartesian[x, y, z]);
a := <1, 2, -2>;
b := <2, 10, 11>;
Norm(a);
Norm(b);
v := CrossProduct(a, b);
Norm(v);


Are there two vectors a and b with integer coordinates and  not perpendicular,  so that Norm(a), Norm(b), Norm(CrossProduct(a, b)) are interger numbers satisfying
Norm(CrossProduct(a, b)) = Norm(a)* Norm(b) * sin(a,b).

Hello!

I am trying to isolate each variable in this equation.I get a weird answer when I solve for n in this equation. I do know it is possible to isolate n in this equation. You might have to use/apply the Lambert Series identies to isolate it. Any help/insight would be appreciated.

Attached is a picture of the equation.

First 337 338 339 340 341 342 343 Last Page 339 of 2427