MaplePrimes Questions

It been a while i try to figure out How they find dispersion parameter and phase shift i figure out how find dispersion in some of pde but some of them is not give me even dispresion parameter i don't know they wrong or i am , but for finding phase shift there is three cenarios, when we change pde to bilinear form we have linear term in bilinear form so after substitute in linear term f bilinear form we can get dispersion parameter which is a parameter beside (t) also we can generalized for all of solution by changing the number of parameter as mention in the paper, but for phase shift parameter i don't know how find it i must substitute our solution in linear term or whole  bilinear form of in first pde linear term i try all  but i don't know what is i did mistake the paper say put in pde but i think he mention the the bilinear form i did all part for one soliton is w[1] for 2soliton is w[2] file i just want find parameter a[12] in paper for 2-soliton eq(19)  then i will find for other just i need to find one of them, thanks for any help  in this topic .

 

Here's a problem that I think works well with Maple.
Three runners, A, B, and C, are running on parallel tracks (each running at a constant speed, but not necessarily at the same speed as the others). At the start, the area of ​​triangle ABC is  , and after 5 seconds it is  . What might this area be after another   seconds?

I am trying to show that the eigenvalues of a matrix are described by my proposed formula. I managed to show this numerically, but I would like to show this symbolically. There are two issues here - the orders of the two lists are different, and the forms are different (sums of complex exponentials vs RootOfs). Any suggestions?

restart;

with(LinearAlgebra): with(GraphTheory): with(plots):

L:=9;

9

Generate a matrix and its eigenvalues

C := AdjacencyMatrix(CycleGraph(L, directed)):
Id := IdentityMatrix(L):
A := KroneckerProduct(C, Id) + KroneckerProduct(Id, C) + KroneckerProduct(C, C):
evs := Eigenvalues(A, output = list):
plotevs := complexplot(evs, style = point, color = blue, scaling = constrained):

My guess as to their values

evstheory:=[seq(seq(exp((2*Pi)*I*k/L) + exp((2*Pi)*I*m/L) + exp((2*Pi)*I*(m + k)/L), k = 0 .. L - 1), m = 0 .. L - 1)]:
plotevstheory:=complexplot(evstheory, style = point, color = red, scaling = constrained):

They look to be the same

display(Array([plotevs,plotevstheory]));

 

 

 

 

 

Even showing they are the same numerically is nontrivial because the sorting is not consistent

fnormal(sort(evalf(evs))-sort(evalf(evstheory)));

[0., 0., 0., 0.*I, 0.*I, 0.*I, 0.*I, 0.+0.*I, 0.+0.*I, 0.-1.285575219*I, 0.-1.285575219*I, 0.-.9216049846*I, 0.-.9216049846*I, 0.-1.732050808*I, 0.-1.732050808*I, 0.+1.732050808*I, 0.+1.732050808*I, 0.+.9216049846*I, 0.+.9216049846*I, 0.+1.285575219*I, 0.+1.285575219*I, 0.+0.*I, 0.+0.*I, 0.-0.*I, 0.+0.*I, 0.+0.*I, 0.+0.*I, 0.+.6840402864*I, 0.+.6840402864*I, 0.-.6840402858*I, 0.-.6840402858*I, 0.+0.*I, 0.+0.*I, 0.-3.701666314*I, 0.-3.701666314*I, 0.-.6840402857*I, 0.-.6840402857*I, 0.-.6840402863*I, 0.-.6840402863*I, 0.+.6840402868*I, 0.+.6840402868*I, 0.+.6840402862*I, 0.+.6840402862*I, -0.+3.701666314*I, -0.+3.701666314*I, 0.-4.623271298*I, 0.-.6840402860*I, 0.-.6840402860*I, 0.+.6840402865*I, 0.+.6840402865*I, -0.+4.623271298*I, 0.-4.987241533*I, 0.-4.987241533*I, 0.-.6840402866*I, 0.-.6840402866*I, 0.-1.732050808*I, 0.-1.732050808*I, 0.+1.732050808*I, 0.+1.732050808*I, 0.+.6840402863*I, 0.+.6840402863*I, -0.+4.987241532*I, -0.+4.987241532*I, 0.+0.*I, 0.+0.*I, 0.+0.*I, 0.+0.*I, 0.+0.*I, 0.+0.*I, 0.-4.540765944*I, 0.-0.*I, 0.-0.*I, 0.-0.*I, 0.-0.*I, -0.+4.540765944*I, 0.-1.285575219*I, 0.-1.285575219*I, 0.-1.285575219*I, 0.-1.285575219*I, -0.+2.571150438*I, -0.+2.571150438*I]

This succeeds, so they are the same

fnormal(sort(evalf[20](evs),key=evalf)-sort(evalf[20](evstheory),key=evalf));

[0., 0., 0., 0.*I, 0.*I, 0.*I, 0.*I, 0.+0.*I, 0.+0.*I, 0.+0.*I, 0.+0.*I, 0.+0.*I, 0.+0.*I, 0.+0.*I, 0.+0.*I, 0.+0.*I, 0.+0.*I, 0.+0.*I, 0.+0.*I, 0.+0.*I, 0.+0.*I, 0.+0.*I, 0.+0.*I, 0.+0.*I, 0.+0.*I, 0.+0.*I, 0.+0.*I, 0.+0.*I, 0.+0.*I, 0.+0.*I, 0.+0.*I, 0.+0.*I, 0.+0.*I, 0.+0.*I, 0.+0.*I, 0.+0.*I, 0.+0.*I, 0.+0.*I, 0.+0.*I, 0.+0.*I, 0.+0.*I, 0.+0.*I, 0.+0.*I, 0.+0.*I, 0.+0.*I, 0.+0.*I, 0.+0.*I, 0.+0.*I, 0.+0.*I, 0.+0.*I, 0.+0.*I, 0.+0.*I, 0.+0.*I, 0.+0.*I, 0.+0.*I, 0.+0.*I, 0.+0.*I, 0.+0.*I, 0.+0.*I, 0.+0.*I, 0.+0.*I, 0.+0.*I, 0.+0.*I, 0.+0.*I, 0.+0.*I, 0.+0.*I, 0.+0.*I, 0.+0.*I, 0.+0.*I, 0.+0.*I, 0.+0.*I, 0.+0.*I, 0.+0.*I, 0.+0.*I, 0.+0.*I, 0.+0.*I, 0.+0.*I, 0.-0.*I, 0.-0.*I, 0.+0.*I, 0.+0.*I]

What about symbolically? [Edit - only part of output shown]

ans1:=simplify(sort(evs,key=evalf)-sort(evstheory,key=evalf));

NULL

Download verification.mw

A regular polygon with n sides of length 1 is drawn. Then, the n midpoints of the edges are used to create another regular polygon inside the first. What is the length of an edge of the new polygon? As n approaches infinity, what does this length approach?

Hopefully this task is suitable for Maple?

restart

with(PDEtools)

with(LinearAlgebra)

NULL

with(SolveTools)

undeclare(prime)

`There is no more prime differentiation variable; all derivatives will be displayed as indexed functions`

(1)

declare(u(x, y, z, t))

u(x, y, z, t)*`will now be displayed as`*u

(2)

pde := diff(u(x, y, z, t), `$`(t, 2))+diff(u(x, y, z, t), `$`(x, 2))-(diff(u(x, y, z, t)^2, `$`(x, 2)))-(diff(u(x, y, z, t), `$`(x, 4)))+diff(diff(u(x, y, z, t), y)+diff(u(x, y, z, t), z)+diff(u(x, y, z, t), t), x)+2*(diff(u(x, y, z, t), y, t))+diff(u(x, y, z, t), `$`(y, 2)) = 0

diff(diff(u(x, y, z, t), t), t)+diff(diff(u(x, y, z, t), x), x)-2*(diff(u(x, y, z, t), x))^2-2*u(x, y, z, t)*(diff(diff(u(x, y, z, t), x), x))-(diff(diff(diff(diff(u(x, y, z, t), x), x), x), x))+diff(diff(u(x, y, z, t), x), y)+diff(diff(u(x, y, z, t), x), z)+diff(diff(u(x, y, z, t), t), x)+2*(diff(diff(u(x, y, z, t), t), y))+diff(diff(u(x, y, z, t), y), y) = 0

(3)

declare(v(t))

v(t)*`will now be displayed as`*v

(4)

declare(f(x, y, z, t))

f(x, y, z, t)*`will now be displayed as`*f

(5)

Q := u(x, y, z, t) = 6*(diff(ln(f(x, y, z, t)), `$`(x, 2)))

LL := diff(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x), x)-(diff(diff(diff(f(x, y, z, t), x), x), x))-(diff(diff(diff(f(x, y, z, t), t), t), x))-(diff(diff(diff(f(x, y, z, t), t), x), x))-2*(diff(diff(diff(f(x, y, z, t), t), x), y))-(diff(diff(diff(f(x, y, z, t), x), x), y))-(diff(diff(diff(f(x, y, z, t), x), x), z))-(diff(diff(diff(f(x, y, z, t), x), y), y)) = 0

diff(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x), x)-(diff(diff(diff(f(x, y, z, t), x), x), x))-(diff(diff(diff(f(x, y, z, t), t), t), x))-(diff(diff(diff(f(x, y, z, t), t), x), x))-2*(diff(diff(diff(f(x, y, z, t), t), x), y))-(diff(diff(diff(f(x, y, z, t), x), x), y))-(diff(diff(diff(f(x, y, z, t), x), x), z))-(diff(diff(diff(f(x, y, z, t), x), y), y)) = 0

(6)

S22 := f(x, y, z, t) = 1+exp((-(1/2)*k[1]-l[1]+(1/2)*sqrt(4*k[1]^4-3*k[1]^2-4*k[1]*s[1]))*t+k[1]*x+l[1]*y+s[1]*z)+exp(k[2]*x+l[2]*y+s[2]*z+(-(1/2)*k[2]-l[2]+(1/2)*sqrt(4*k[2]^4-3*k[2]^2-4*k[2]*s[2]))*t)+B[1]*exp((-(1/2)*k[1]-l[1]+(1/2)*sqrt(4*k[1]^4-3*k[1]^2-4*k[1]*s[1]))*t+k[1]*x+l[1]*y+s[1]*z+k[2]*x+l[2]*y+s[2]*z+(-(1/2)*k[2]-l[2]+(1/2)*sqrt(4*k[2]^4-3*k[2]^2-4*k[2]*s[2]))*t)

f(x, y, z, t) = 1+exp((-(1/2)*k[1]-l[1]+(1/2)*(4*k[1]^4-3*k[1]^2-4*k[1]*s[1])^(1/2))*t+k[1]*x+l[1]*y+s[1]*z)+exp(k[2]*x+l[2]*y+s[2]*z+(-(1/2)*k[2]-l[2]+(1/2)*(4*k[2]^4-3*k[2]^2-4*k[2]*s[2])^(1/2))*t)+B[1]*exp((-(1/2)*k[1]-l[1]+(1/2)*(4*k[1]^4-3*k[1]^2-4*k[1]*s[1])^(1/2))*t+k[1]*x+l[1]*y+s[1]*z+k[2]*x+l[2]*y+s[2]*z+(-(1/2)*k[2]-l[2]+(1/2)*(4*k[2]^4-3*k[2]^2-4*k[2]*s[2])^(1/2))*t)

(7)

NULL

R11 := eval(LL, S22)

k[1]^5*exp((-(1/2)*k[1]-l[1]+(1/2)*(4*k[1]^4-3*k[1]^2-4*k[1]*s[1])^(1/2))*t+k[1]*x+l[1]*y+s[1]*z)+k[2]^5*exp(k[2]*x+l[2]*y+s[2]*z+(-(1/2)*k[2]-l[2]+(1/2)*(4*k[2]^4-3*k[2]^2-4*k[2]*s[2])^(1/2))*t)+B[1]*(k[1]+k[2])^5*exp((-(1/2)*k[1]-l[1]+(1/2)*(4*k[1]^4-3*k[1]^2-4*k[1]*s[1])^(1/2))*t+k[1]*x+l[1]*y+s[1]*z+k[2]*x+l[2]*y+s[2]*z+(-(1/2)*k[2]-l[2]+(1/2)*(4*k[2]^4-3*k[2]^2-4*k[2]*s[2])^(1/2))*t)-k[1]^3*exp((-(1/2)*k[1]-l[1]+(1/2)*(4*k[1]^4-3*k[1]^2-4*k[1]*s[1])^(1/2))*t+k[1]*x+l[1]*y+s[1]*z)-k[2]^3*exp(k[2]*x+l[2]*y+s[2]*z+(-(1/2)*k[2]-l[2]+(1/2)*(4*k[2]^4-3*k[2]^2-4*k[2]*s[2])^(1/2))*t)-B[1]*(k[1]+k[2])^3*exp((-(1/2)*k[1]-l[1]+(1/2)*(4*k[1]^4-3*k[1]^2-4*k[1]*s[1])^(1/2))*t+k[1]*x+l[1]*y+s[1]*z+k[2]*x+l[2]*y+s[2]*z+(-(1/2)*k[2]-l[2]+(1/2)*(4*k[2]^4-3*k[2]^2-4*k[2]*s[2])^(1/2))*t)-(-(1/2)*k[1]-l[1]+(1/2)*(4*k[1]^4-3*k[1]^2-4*k[1]*s[1])^(1/2))^2*k[1]*exp((-(1/2)*k[1]-l[1]+(1/2)*(4*k[1]^4-3*k[1]^2-4*k[1]*s[1])^(1/2))*t+k[1]*x+l[1]*y+s[1]*z)-(-(1/2)*k[2]-l[2]+(1/2)*(4*k[2]^4-3*k[2]^2-4*k[2]*s[2])^(1/2))^2*k[2]*exp(k[2]*x+l[2]*y+s[2]*z+(-(1/2)*k[2]-l[2]+(1/2)*(4*k[2]^4-3*k[2]^2-4*k[2]*s[2])^(1/2))*t)-B[1]*(-(1/2)*k[1]-l[1]+(1/2)*(4*k[1]^4-3*k[1]^2-4*k[1]*s[1])^(1/2)-(1/2)*k[2]-l[2]+(1/2)*(4*k[2]^4-3*k[2]^2-4*k[2]*s[2])^(1/2))^2*(k[1]+k[2])*exp((-(1/2)*k[1]-l[1]+(1/2)*(4*k[1]^4-3*k[1]^2-4*k[1]*s[1])^(1/2))*t+k[1]*x+l[1]*y+s[1]*z+k[2]*x+l[2]*y+s[2]*z+(-(1/2)*k[2]-l[2]+(1/2)*(4*k[2]^4-3*k[2]^2-4*k[2]*s[2])^(1/2))*t)-(-(1/2)*k[1]-l[1]+(1/2)*(4*k[1]^4-3*k[1]^2-4*k[1]*s[1])^(1/2))*k[1]^2*exp((-(1/2)*k[1]-l[1]+(1/2)*(4*k[1]^4-3*k[1]^2-4*k[1]*s[1])^(1/2))*t+k[1]*x+l[1]*y+s[1]*z)-(-(1/2)*k[2]-l[2]+(1/2)*(4*k[2]^4-3*k[2]^2-4*k[2]*s[2])^(1/2))*k[2]^2*exp(k[2]*x+l[2]*y+s[2]*z+(-(1/2)*k[2]-l[2]+(1/2)*(4*k[2]^4-3*k[2]^2-4*k[2]*s[2])^(1/2))*t)-B[1]*(-(1/2)*k[1]-l[1]+(1/2)*(4*k[1]^4-3*k[1]^2-4*k[1]*s[1])^(1/2)-(1/2)*k[2]-l[2]+(1/2)*(4*k[2]^4-3*k[2]^2-4*k[2]*s[2])^(1/2))*(k[1]+k[2])^2*exp((-(1/2)*k[1]-l[1]+(1/2)*(4*k[1]^4-3*k[1]^2-4*k[1]*s[1])^(1/2))*t+k[1]*x+l[1]*y+s[1]*z+k[2]*x+l[2]*y+s[2]*z+(-(1/2)*k[2]-l[2]+(1/2)*(4*k[2]^4-3*k[2]^2-4*k[2]*s[2])^(1/2))*t)-2*(-(1/2)*k[1]-l[1]+(1/2)*(4*k[1]^4-3*k[1]^2-4*k[1]*s[1])^(1/2))*k[1]*l[1]*exp((-(1/2)*k[1]-l[1]+(1/2)*(4*k[1]^4-3*k[1]^2-4*k[1]*s[1])^(1/2))*t+k[1]*x+l[1]*y+s[1]*z)-2*(-(1/2)*k[2]-l[2]+(1/2)*(4*k[2]^4-3*k[2]^2-4*k[2]*s[2])^(1/2))*k[2]*l[2]*exp(k[2]*x+l[2]*y+s[2]*z+(-(1/2)*k[2]-l[2]+(1/2)*(4*k[2]^4-3*k[2]^2-4*k[2]*s[2])^(1/2))*t)-2*B[1]*(-(1/2)*k[1]-l[1]+(1/2)*(4*k[1]^4-3*k[1]^2-4*k[1]*s[1])^(1/2)-(1/2)*k[2]-l[2]+(1/2)*(4*k[2]^4-3*k[2]^2-4*k[2]*s[2])^(1/2))*(k[1]+k[2])*(l[1]+l[2])*exp((-(1/2)*k[1]-l[1]+(1/2)*(4*k[1]^4-3*k[1]^2-4*k[1]*s[1])^(1/2))*t+k[1]*x+l[1]*y+s[1]*z+k[2]*x+l[2]*y+s[2]*z+(-(1/2)*k[2]-l[2]+(1/2)*(4*k[2]^4-3*k[2]^2-4*k[2]*s[2])^(1/2))*t)-k[1]^2*l[1]*exp((-(1/2)*k[1]-l[1]+(1/2)*(4*k[1]^4-3*k[1]^2-4*k[1]*s[1])^(1/2))*t+k[1]*x+l[1]*y+s[1]*z)-k[2]^2*l[2]*exp(k[2]*x+l[2]*y+s[2]*z+(-(1/2)*k[2]-l[2]+(1/2)*(4*k[2]^4-3*k[2]^2-4*k[2]*s[2])^(1/2))*t)-B[1]*(k[1]+k[2])^2*(l[1]+l[2])*exp((-(1/2)*k[1]-l[1]+(1/2)*(4*k[1]^4-3*k[1]^2-4*k[1]*s[1])^(1/2))*t+k[1]*x+l[1]*y+s[1]*z+k[2]*x+l[2]*y+s[2]*z+(-(1/2)*k[2]-l[2]+(1/2)*(4*k[2]^4-3*k[2]^2-4*k[2]*s[2])^(1/2))*t)-k[1]^2*s[1]*exp((-(1/2)*k[1]-l[1]+(1/2)*(4*k[1]^4-3*k[1]^2-4*k[1]*s[1])^(1/2))*t+k[1]*x+l[1]*y+s[1]*z)-k[2]^2*s[2]*exp(k[2]*x+l[2]*y+s[2]*z+(-(1/2)*k[2]-l[2]+(1/2)*(4*k[2]^4-3*k[2]^2-4*k[2]*s[2])^(1/2))*t)-B[1]*(k[1]+k[2])^2*(s[1]+s[2])*exp((-(1/2)*k[1]-l[1]+(1/2)*(4*k[1]^4-3*k[1]^2-4*k[1]*s[1])^(1/2))*t+k[1]*x+l[1]*y+s[1]*z+k[2]*x+l[2]*y+s[2]*z+(-(1/2)*k[2]-l[2]+(1/2)*(4*k[2]^4-3*k[2]^2-4*k[2]*s[2])^(1/2))*t)-k[1]*l[1]^2*exp((-(1/2)*k[1]-l[1]+(1/2)*(4*k[1]^4-3*k[1]^2-4*k[1]*s[1])^(1/2))*t+k[1]*x+l[1]*y+s[1]*z)-k[2]*l[2]^2*exp(k[2]*x+l[2]*y+s[2]*z+(-(1/2)*k[2]-l[2]+(1/2)*(4*k[2]^4-3*k[2]^2-4*k[2]*s[2])^(1/2))*t)-B[1]*(k[1]+k[2])*(l[1]+l[2])^2*exp((-(1/2)*k[1]-l[1]+(1/2)*(4*k[1]^4-3*k[1]^2-4*k[1]*s[1])^(1/2))*t+k[1]*x+l[1]*y+s[1]*z+k[2]*x+l[2]*y+s[2]*z+(-(1/2)*k[2]-l[2]+(1/2)*(4*k[2]^4-3*k[2]^2-4*k[2]*s[2])^(1/2))*t) = 0

(8)

L4 := collect(%, [x, y, t], 'distributed')

k[1]^5*exp((-(1/2)*k[1]-l[1]+(1/2)*(4*k[1]^4-3*k[1]^2-4*k[1]*s[1])^(1/2))*t+k[1]*x+l[1]*y+s[1]*z)+k[2]^5*exp(k[2]*x+l[2]*y+s[2]*z+(-(1/2)*k[2]-l[2]+(1/2)*(4*k[2]^4-3*k[2]^2-4*k[2]*s[2])^(1/2))*t)+B[1]*(k[1]+k[2])^5*exp((-(1/2)*k[1]-l[1]+(1/2)*(4*k[1]^4-3*k[1]^2-4*k[1]*s[1])^(1/2))*t+k[1]*x+l[1]*y+s[1]*z+k[2]*x+l[2]*y+s[2]*z+(-(1/2)*k[2]-l[2]+(1/2)*(4*k[2]^4-3*k[2]^2-4*k[2]*s[2])^(1/2))*t)-k[1]^3*exp((-(1/2)*k[1]-l[1]+(1/2)*(4*k[1]^4-3*k[1]^2-4*k[1]*s[1])^(1/2))*t+k[1]*x+l[1]*y+s[1]*z)-k[2]^3*exp(k[2]*x+l[2]*y+s[2]*z+(-(1/2)*k[2]-l[2]+(1/2)*(4*k[2]^4-3*k[2]^2-4*k[2]*s[2])^(1/2))*t)-B[1]*(k[1]+k[2])^3*exp((-(1/2)*k[1]-l[1]+(1/2)*(4*k[1]^4-3*k[1]^2-4*k[1]*s[1])^(1/2))*t+k[1]*x+l[1]*y+s[1]*z+k[2]*x+l[2]*y+s[2]*z+(-(1/2)*k[2]-l[2]+(1/2)*(4*k[2]^4-3*k[2]^2-4*k[2]*s[2])^(1/2))*t)-(-(1/2)*k[1]-l[1]+(1/2)*(4*k[1]^4-3*k[1]^2-4*k[1]*s[1])^(1/2))^2*k[1]*exp((-(1/2)*k[1]-l[1]+(1/2)*(4*k[1]^4-3*k[1]^2-4*k[1]*s[1])^(1/2))*t+k[1]*x+l[1]*y+s[1]*z)-(-(1/2)*k[2]-l[2]+(1/2)*(4*k[2]^4-3*k[2]^2-4*k[2]*s[2])^(1/2))^2*k[2]*exp(k[2]*x+l[2]*y+s[2]*z+(-(1/2)*k[2]-l[2]+(1/2)*(4*k[2]^4-3*k[2]^2-4*k[2]*s[2])^(1/2))*t)-B[1]*(-(1/2)*k[1]-l[1]+(1/2)*(4*k[1]^4-3*k[1]^2-4*k[1]*s[1])^(1/2)-(1/2)*k[2]-l[2]+(1/2)*(4*k[2]^4-3*k[2]^2-4*k[2]*s[2])^(1/2))^2*(k[1]+k[2])*exp((-(1/2)*k[1]-l[1]+(1/2)*(4*k[1]^4-3*k[1]^2-4*k[1]*s[1])^(1/2))*t+k[1]*x+l[1]*y+s[1]*z+k[2]*x+l[2]*y+s[2]*z+(-(1/2)*k[2]-l[2]+(1/2)*(4*k[2]^4-3*k[2]^2-4*k[2]*s[2])^(1/2))*t)-(-(1/2)*k[1]-l[1]+(1/2)*(4*k[1]^4-3*k[1]^2-4*k[1]*s[1])^(1/2))*k[1]^2*exp((-(1/2)*k[1]-l[1]+(1/2)*(4*k[1]^4-3*k[1]^2-4*k[1]*s[1])^(1/2))*t+k[1]*x+l[1]*y+s[1]*z)-(-(1/2)*k[2]-l[2]+(1/2)*(4*k[2]^4-3*k[2]^2-4*k[2]*s[2])^(1/2))*k[2]^2*exp(k[2]*x+l[2]*y+s[2]*z+(-(1/2)*k[2]-l[2]+(1/2)*(4*k[2]^4-3*k[2]^2-4*k[2]*s[2])^(1/2))*t)-B[1]*(-(1/2)*k[1]-l[1]+(1/2)*(4*k[1]^4-3*k[1]^2-4*k[1]*s[1])^(1/2)-(1/2)*k[2]-l[2]+(1/2)*(4*k[2]^4-3*k[2]^2-4*k[2]*s[2])^(1/2))*(k[1]+k[2])^2*exp((-(1/2)*k[1]-l[1]+(1/2)*(4*k[1]^4-3*k[1]^2-4*k[1]*s[1])^(1/2))*t+k[1]*x+l[1]*y+s[1]*z+k[2]*x+l[2]*y+s[2]*z+(-(1/2)*k[2]-l[2]+(1/2)*(4*k[2]^4-3*k[2]^2-4*k[2]*s[2])^(1/2))*t)-2*(-(1/2)*k[1]-l[1]+(1/2)*(4*k[1]^4-3*k[1]^2-4*k[1]*s[1])^(1/2))*k[1]*l[1]*exp((-(1/2)*k[1]-l[1]+(1/2)*(4*k[1]^4-3*k[1]^2-4*k[1]*s[1])^(1/2))*t+k[1]*x+l[1]*y+s[1]*z)-2*(-(1/2)*k[2]-l[2]+(1/2)*(4*k[2]^4-3*k[2]^2-4*k[2]*s[2])^(1/2))*k[2]*l[2]*exp(k[2]*x+l[2]*y+s[2]*z+(-(1/2)*k[2]-l[2]+(1/2)*(4*k[2]^4-3*k[2]^2-4*k[2]*s[2])^(1/2))*t)-2*B[1]*(-(1/2)*k[1]-l[1]+(1/2)*(4*k[1]^4-3*k[1]^2-4*k[1]*s[1])^(1/2)-(1/2)*k[2]-l[2]+(1/2)*(4*k[2]^4-3*k[2]^2-4*k[2]*s[2])^(1/2))*(k[1]+k[2])*(l[1]+l[2])*exp((-(1/2)*k[1]-l[1]+(1/2)*(4*k[1]^4-3*k[1]^2-4*k[1]*s[1])^(1/2))*t+k[1]*x+l[1]*y+s[1]*z+k[2]*x+l[2]*y+s[2]*z+(-(1/2)*k[2]-l[2]+(1/2)*(4*k[2]^4-3*k[2]^2-4*k[2]*s[2])^(1/2))*t)-k[1]^2*l[1]*exp((-(1/2)*k[1]-l[1]+(1/2)*(4*k[1]^4-3*k[1]^2-4*k[1]*s[1])^(1/2))*t+k[1]*x+l[1]*y+s[1]*z)-k[2]^2*l[2]*exp(k[2]*x+l[2]*y+s[2]*z+(-(1/2)*k[2]-l[2]+(1/2)*(4*k[2]^4-3*k[2]^2-4*k[2]*s[2])^(1/2))*t)-B[1]*(k[1]+k[2])^2*(l[1]+l[2])*exp((-(1/2)*k[1]-l[1]+(1/2)*(4*k[1]^4-3*k[1]^2-4*k[1]*s[1])^(1/2))*t+k[1]*x+l[1]*y+s[1]*z+k[2]*x+l[2]*y+s[2]*z+(-(1/2)*k[2]-l[2]+(1/2)*(4*k[2]^4-3*k[2]^2-4*k[2]*s[2])^(1/2))*t)-k[1]^2*s[1]*exp((-(1/2)*k[1]-l[1]+(1/2)*(4*k[1]^4-3*k[1]^2-4*k[1]*s[1])^(1/2))*t+k[1]*x+l[1]*y+s[1]*z)-k[2]^2*s[2]*exp(k[2]*x+l[2]*y+s[2]*z+(-(1/2)*k[2]-l[2]+(1/2)*(4*k[2]^4-3*k[2]^2-4*k[2]*s[2])^(1/2))*t)-B[1]*(k[1]+k[2])^2*(s[1]+s[2])*exp((-(1/2)*k[1]-l[1]+(1/2)*(4*k[1]^4-3*k[1]^2-4*k[1]*s[1])^(1/2))*t+k[1]*x+l[1]*y+s[1]*z+k[2]*x+l[2]*y+s[2]*z+(-(1/2)*k[2]-l[2]+(1/2)*(4*k[2]^4-3*k[2]^2-4*k[2]*s[2])^(1/2))*t)-k[1]*l[1]^2*exp((-(1/2)*k[1]-l[1]+(1/2)*(4*k[1]^4-3*k[1]^2-4*k[1]*s[1])^(1/2))*t+k[1]*x+l[1]*y+s[1]*z)-k[2]*l[2]^2*exp(k[2]*x+l[2]*y+s[2]*z+(-(1/2)*k[2]-l[2]+(1/2)*(4*k[2]^4-3*k[2]^2-4*k[2]*s[2])^(1/2))*t)-B[1]*(k[1]+k[2])*(l[1]+l[2])^2*exp((-(1/2)*k[1]-l[1]+(1/2)*(4*k[1]^4-3*k[1]^2-4*k[1]*s[1])^(1/2))*t+k[1]*x+l[1]*y+s[1]*z+k[2]*x+l[2]*y+s[2]*z+(-(1/2)*k[2]-l[2]+(1/2)*(4*k[2]^4-3*k[2]^2-4*k[2]*s[2])^(1/2))*t) = 0

(9)

indets(%)

{t, x, y, z, B[1], k[1], k[2], l[1], l[2], s[1], s[2], (4*k[1]^4-3*k[1]^2-4*k[1]*s[1])^(1/2), (4*k[2]^4-3*k[2]^2-4*k[2]*s[2])^(1/2), exp(k[2]*x+l[2]*y+s[2]*z+(-(1/2)*k[2]-l[2]+(1/2)*(4*k[2]^4-3*k[2]^2-4*k[2]*s[2])^(1/2))*t), exp((-(1/2)*k[1]-l[1]+(1/2)*(4*k[1]^4-3*k[1]^2-4*k[1]*s[1])^(1/2))*t+k[1]*x+l[1]*y+s[1]*z), exp((-(1/2)*k[1]-l[1]+(1/2)*(4*k[1]^4-3*k[1]^2-4*k[1]*s[1])^(1/2))*t+k[1]*x+l[1]*y+s[1]*z+k[2]*x+l[2]*y+s[2]*z+(-(1/2)*k[2]-l[2]+(1/2)*(4*k[2]^4-3*k[2]^2-4*k[2]*s[2])^(1/2))*t)}

(10)

eq2 := algsubs(exp((-(1/2)*k[1]-l[1]+(1/2)*sqrt(4*k[1]^4-3*k[1]^2-4*k[1]*s[1]))*t+k[1]*x+l[1]*y+s[1]*z) = X, L4)

-(1/4)*B[1]*exp((-(1/2)*k[1]-l[1]+(1/2)*(4*k[1]^4-3*k[1]^2-4*k[1]*s[1])^(1/2))*t+k[1]*x+l[1]*y+s[1]*z+k[2]*x+l[2]*y+s[2]*z+(-(1/2)*k[2]-l[2]+(1/2)*(4*k[2]^4-3*k[2]^2-4*k[2]*s[2])^(1/2))*t)*(4*k[2]^4-3*k[2]^2-4*k[2]*s[2])*k[2]-exp((-(1/2)*k[1]-l[1]+(1/2)*(4*k[1]^4-3*k[1]^2-4*k[1]*s[1])^(1/2))*t+k[1]*x+l[1]*y+s[1]*z+k[2]*x+l[2]*y+s[2]*z+(-(1/2)*k[2]-l[2]+(1/2)*(4*k[2]^4-3*k[2]^2-4*k[2]*s[2])^(1/2))*t)*B[1]*k[2]^2*s[1]-exp((-(1/2)*k[1]-l[1]+(1/2)*(4*k[1]^4-3*k[1]^2-4*k[1]*s[1])^(1/2))*t+k[1]*x+l[1]*y+s[1]*z+k[2]*x+l[2]*y+s[2]*z+(-(1/2)*k[2]-l[2]+(1/2)*(4*k[2]^4-3*k[2]^2-4*k[2]*s[2])^(1/2))*t)*B[1]*k[2]^2*s[2]+5*exp((-(1/2)*k[1]-l[1]+(1/2)*(4*k[1]^4-3*k[1]^2-4*k[1]*s[1])^(1/2))*t+k[1]*x+l[1]*y+s[1]*z+k[2]*x+l[2]*y+s[2]*z+(-(1/2)*k[2]-l[2]+(1/2)*(4*k[2]^4-3*k[2]^2-4*k[2]*s[2])^(1/2))*t)*B[1]*k[1]^4*k[2]+10*exp((-(1/2)*k[1]-l[1]+(1/2)*(4*k[1]^4-3*k[1]^2-4*k[1]*s[1])^(1/2))*t+k[1]*x+l[1]*y+s[1]*z+k[2]*x+l[2]*y+s[2]*z+(-(1/2)*k[2]-l[2]+(1/2)*(4*k[2]^4-3*k[2]^2-4*k[2]*s[2])^(1/2))*t)*B[1]*k[1]^3*k[2]^2+10*exp((-(1/2)*k[1]-l[1]+(1/2)*(4*k[1]^4-3*k[1]^2-4*k[1]*s[1])^(1/2))*t+k[1]*x+l[1]*y+s[1]*z+k[2]*x+l[2]*y+s[2]*z+(-(1/2)*k[2]-l[2]+(1/2)*(4*k[2]^4-3*k[2]^2-4*k[2]*s[2])^(1/2))*t)*B[1]*k[1]^2*k[2]^3+5*exp((-(1/2)*k[1]-l[1]+(1/2)*(4*k[1]^4-3*k[1]^2-4*k[1]*s[1])^(1/2))*t+k[1]*x+l[1]*y+s[1]*z+k[2]*x+l[2]*y+s[2]*z+(-(1/2)*k[2]-l[2]+(1/2)*(4*k[2]^4-3*k[2]^2-4*k[2]*s[2])^(1/2))*t)*B[1]*k[1]*k[2]^4-exp((-(1/2)*k[1]-l[1]+(1/2)*(4*k[1]^4-3*k[1]^2-4*k[1]*s[1])^(1/2))*t+k[1]*x+l[1]*y+s[1]*z+k[2]*x+l[2]*y+s[2]*z+(-(1/2)*k[2]-l[2]+(1/2)*(4*k[2]^4-3*k[2]^2-4*k[2]*s[2])^(1/2))*t)*B[1]*k[1]^2*s[1]-exp((-(1/2)*k[1]-l[1]+(1/2)*(4*k[1]^4-3*k[1]^2-4*k[1]*s[1])^(1/2))*t+k[1]*x+l[1]*y+s[1]*z+k[2]*x+l[2]*y+s[2]*z+(-(1/2)*k[2]-l[2]+(1/2)*(4*k[2]^4-3*k[2]^2-4*k[2]*s[2])^(1/2))*t)*B[1]*k[1]^2*s[2]-(9/4)*B[1]*exp((-(1/2)*k[1]-l[1]+(1/2)*(4*k[1]^4-3*k[1]^2-4*k[1]*s[1])^(1/2))*t+k[1]*x+l[1]*y+s[1]*z+k[2]*x+l[2]*y+s[2]*z+(-(1/2)*k[2]-l[2]+(1/2)*(4*k[2]^4-3*k[2]^2-4*k[2]*s[2])^(1/2))*t)*k[2]^2*k[1]-(9/4)*B[1]*exp((-(1/2)*k[1]-l[1]+(1/2)*(4*k[1]^4-3*k[1]^2-4*k[1]*s[1])^(1/2))*t+k[1]*x+l[1]*y+s[1]*z+k[2]*x+l[2]*y+s[2]*z+(-(1/2)*k[2]-l[2]+(1/2)*(4*k[2]^4-3*k[2]^2-4*k[2]*s[2])^(1/2))*t)*k[1]^2*k[2]-(1/4)*B[1]*exp((-(1/2)*k[1]-l[1]+(1/2)*(4*k[1]^4-3*k[1]^2-4*k[1]*s[1])^(1/2))*t+k[1]*x+l[1]*y+s[1]*z+k[2]*x+l[2]*y+s[2]*z+(-(1/2)*k[2]-l[2]+(1/2)*(4*k[2]^4-3*k[2]^2-4*k[2]*s[2])^(1/2))*t)*(4*k[1]^4-3*k[1]^2-4*k[1]*s[1])*k[1]-(1/4)*B[1]*exp((-(1/2)*k[1]-l[1]+(1/2)*(4*k[1]^4-3*k[1]^2-4*k[1]*s[1])^(1/2))*t+k[1]*x+l[1]*y+s[1]*z+k[2]*x+l[2]*y+s[2]*z+(-(1/2)*k[2]-l[2]+(1/2)*(4*k[2]^4-3*k[2]^2-4*k[2]*s[2])^(1/2))*t)*(4*k[1]^4-3*k[1]^2-4*k[1]*s[1])*k[2]-(1/4)*B[1]*exp((-(1/2)*k[1]-l[1]+(1/2)*(4*k[1]^4-3*k[1]^2-4*k[1]*s[1])^(1/2))*t+k[1]*x+l[1]*y+s[1]*z+k[2]*x+l[2]*y+s[2]*z+(-(1/2)*k[2]-l[2]+(1/2)*(4*k[2]^4-3*k[2]^2-4*k[2]*s[2])^(1/2))*t)*(4*k[2]^4-3*k[2]^2-4*k[2]*s[2])*k[1]+exp((-(1/2)*k[1]-l[1]+(1/2)*(4*k[1]^4-3*k[1]^2-4*k[1]*s[1])^(1/2))*t+k[1]*x+l[1]*y+s[1]*z+k[2]*x+l[2]*y+s[2]*z+(-(1/2)*k[2]-l[2]+(1/2)*(4*k[2]^4-3*k[2]^2-4*k[2]*s[2])^(1/2))*t)*B[1]*k[1]^5+exp((-(1/2)*k[1]-l[1]+(1/2)*(4*k[1]^4-3*k[1]^2-4*k[1]*s[1])^(1/2))*t+k[1]*x+l[1]*y+s[1]*z+k[2]*x+l[2]*y+s[2]*z+(-(1/2)*k[2]-l[2]+(1/2)*(4*k[2]^4-3*k[2]^2-4*k[2]*s[2])^(1/2))*t)*B[1]*k[2]^5-(3/4)*B[1]*exp((-(1/2)*k[1]-l[1]+(1/2)*(4*k[1]^4-3*k[1]^2-4*k[1]*s[1])^(1/2))*t+k[1]*x+l[1]*y+s[1]*z+k[2]*x+l[2]*y+s[2]*z+(-(1/2)*k[2]-l[2]+(1/2)*(4*k[2]^4-3*k[2]^2-4*k[2]*s[2])^(1/2))*t)*k[1]^3-(3/4)*B[1]*exp((-(1/2)*k[1]-l[1]+(1/2)*(4*k[1]^4-3*k[1]^2-4*k[1]*s[1])^(1/2))*t+k[1]*x+l[1]*y+s[1]*z+k[2]*x+l[2]*y+s[2]*z+(-(1/2)*k[2]-l[2]+(1/2)*(4*k[2]^4-3*k[2]^2-4*k[2]*s[2])^(1/2))*t)*k[2]^3-(1/4)*k[1]*X*(4*k[1]^4-3*k[1]^2-4*k[1]*s[1])-(1/4)*k[2]*exp(k[2]*x+l[2]*y+s[2]*z+(-(1/2)*k[2]-l[2]+(1/2)*(4*k[2]^4-3*k[2]^2-4*k[2]*s[2])^(1/2))*t)*(4*k[2]^4-3*k[2]^2-4*k[2]*s[2])-k[1]^2*s[1]*X-(3/4)*k[2]^3*exp(k[2]*x+l[2]*y+s[2]*z+(-(1/2)*k[2]-l[2]+(1/2)*(4*k[2]^4-3*k[2]^2-4*k[2]*s[2])^(1/2))*t)+k[2]^5*exp(k[2]*x+l[2]*y+s[2]*z+(-(1/2)*k[2]-l[2]+(1/2)*(4*k[2]^4-3*k[2]^2-4*k[2]*s[2])^(1/2))*t)-k[2]^2*s[2]*exp(k[2]*x+l[2]*y+s[2]*z+(-(1/2)*k[2]-l[2]+(1/2)*(4*k[2]^4-3*k[2]^2-4*k[2]*s[2])^(1/2))*t)+k[1]^5*X-(3/4)*k[1]^3*X-2*exp((-(1/2)*k[1]-l[1]+(1/2)*(4*k[1]^4-3*k[1]^2-4*k[1]*s[1])^(1/2))*t+k[1]*x+l[1]*y+s[1]*z+k[2]*x+l[2]*y+s[2]*z+(-(1/2)*k[2]-l[2]+(1/2)*(4*k[2]^4-3*k[2]^2-4*k[2]*s[2])^(1/2))*t)*B[1]*k[1]*k[2]*s[1]-2*exp((-(1/2)*k[1]-l[1]+(1/2)*(4*k[1]^4-3*k[1]^2-4*k[1]*s[1])^(1/2))*t+k[1]*x+l[1]*y+s[1]*z+k[2]*x+l[2]*y+s[2]*z+(-(1/2)*k[2]-l[2]+(1/2)*(4*k[2]^4-3*k[2]^2-4*k[2]*s[2])^(1/2))*t)*B[1]*k[1]*k[2]*s[2]-(1/2)*B[1]*exp((-(1/2)*k[1]-l[1]+(1/2)*(4*k[1]^4-3*k[1]^2-4*k[1]*s[1])^(1/2))*t+k[1]*x+l[1]*y+s[1]*z+k[2]*x+l[2]*y+s[2]*z+(-(1/2)*k[2]-l[2]+(1/2)*(4*k[2]^4-3*k[2]^2-4*k[2]*s[2])^(1/2))*t)*(4*k[1]^4-3*k[1]^2-4*k[1]*s[1])^(1/2)*(4*k[2]^4-3*k[2]^2-4*k[2]*s[2])^(1/2)*k[1]-(1/2)*B[1]*exp((-(1/2)*k[1]-l[1]+(1/2)*(4*k[1]^4-3*k[1]^2-4*k[1]*s[1])^(1/2))*t+k[1]*x+l[1]*y+s[1]*z+k[2]*x+l[2]*y+s[2]*z+(-(1/2)*k[2]-l[2]+(1/2)*(4*k[2]^4-3*k[2]^2-4*k[2]*s[2])^(1/2))*t)*(4*k[1]^4-3*k[1]^2-4*k[1]*s[1])^(1/2)*(4*k[2]^4-3*k[2]^2-4*k[2]*s[2])^(1/2)*k[2] = 0

(11)

eq3 := simplify(eq2)

-(1/2)*(k[1]+k[2])*B[1]*((k[1]*(4*k[1]^3-3*k[1]-4*s[1]))^(1/2)*(k[2]*(4*k[2]^3-3*k[2]-4*s[2]))^(1/2)-8*k[1]*k[2]^3-12*k[2]^2*k[1]^2+(-8*k[1]^3+3*k[1]+2*s[1])*k[2]+2*s[2]*k[1])*exp((1/2)*t*(k[1]*(4*k[1]^3-3*k[1]-4*s[1]))^(1/2)+(1/2)*t*(k[2]*(4*k[2]^3-3*k[2]-4*s[2]))^(1/2)+(1/2)*(-k[1]-k[2]-2*l[1]-2*l[2])*t+k[1]*x+k[2]*x+l[1]*y+l[2]*y+z*(s[1]+s[2])) = 0

(12)

indets(eq3)

{t, x, y, z, B[1], k[1], k[2], l[1], l[2], s[1], s[2], (k[1]*(4*k[1]^3-3*k[1]-4*s[1]))^(1/2), (k[2]*(4*k[2]^3-3*k[2]-4*s[2]))^(1/2), exp((1/2)*t*(k[1]*(4*k[1]^3-3*k[1]-4*s[1]))^(1/2)+(1/2)*t*(k[2]*(4*k[2]^3-3*k[2]-4*s[2]))^(1/2)+(1/2)*(-k[1]-k[2]-2*l[1]-2*l[2])*t+k[1]*x+k[2]*x+l[1]*y+l[2]*y+z*(s[1]+s[2]))}

(13)

eq4 := algsubs(exp((1/2)*t*sqrt(k[1]*(4*k[1]^3-3*k[1]-4*s[1]))+(1/2)*t*sqrt(k[2]*(4*k[2]^3-3*k[2]-4*s[2]))+(1/2)*(-k[1]-k[2]-2*l[1]-2*l[2])*t+k[1]*x+k[2]*x+l[1]*y+l[2]*y+z*(s[1]+s[2])) = V, eq3)

-(1/2)*(k[1]+k[2])*B[1]*(-8*k[2]*k[1]^3-12*k[2]^2*k[1]^2-8*k[1]*k[2]^3+(k[1]*(4*k[1]^3-3*k[1]-4*s[1]))^(1/2)*(k[2]*(4*k[2]^3-3*k[2]-4*s[2]))^(1/2)+3*k[1]*k[2]+2*s[2]*k[1]+2*s[1]*k[2])*V = 0

(14)

indets(eq4)

{V, B[1], k[1], k[2], s[1], s[2], (k[1]*(4*k[1]^3-3*k[1]-4*s[1]))^(1/2), (k[2]*(4*k[2]^3-3*k[2]-4*s[2]))^(1/2)}

(15)

eqs := {coeffs(collect(numer(normal(lhs(eq4))), {V}, 'distributed'), {V})}; nops(%); indets(eqs)

{-(k[1]+k[2])*B[1]*(-8*k[2]*k[1]^3-12*k[2]^2*k[1]^2-8*k[1]*k[2]^3+(k[1]*(4*k[1]^3-3*k[1]-4*s[1]))^(1/2)*(k[2]*(4*k[2]^3-3*k[2]-4*s[2]))^(1/2)+3*k[1]*k[2]+2*s[2]*k[1]+2*s[1]*k[2])}

 

1

 

{B[1], k[1], k[2], s[1], s[2], (k[1]*(4*k[1]^3-3*k[1]-4*s[1]))^(1/2), (k[2]*(4*k[2]^3-3*k[2]-4*s[2]))^(1/2)}

(16)

vars := indets(eqs); ans := solve(eqs, vars)

{B[1], k[1], k[2], s[1], s[2], (k[1]*(4*k[1]^3-3*k[1]-4*s[1]))^(1/2), (k[2]*(4*k[2]^3-3*k[2]-4*s[2]))^(1/2)}

 

Warning, solving for expressions other than names or functions is not recommended.

 

{B[1] = B[1], k[1] = -k[2], k[2] = k[2], s[1] = s[1], s[2] = s[2], (k[1]*(4*k[1]^3-3*k[1]-4*s[1]))^(1/2) = (k[1]*(4*k[1]^3-3*k[1]-4*s[1]))^(1/2), (k[2]*(4*k[2]^3-3*k[2]-4*s[2]))^(1/2) = (k[2]*(4*k[2]^3-3*k[2]-4*s[2]))^(1/2)}, {B[1] = 0, k[1] = k[1], k[2] = k[2], s[1] = s[1], s[2] = s[2], (k[1]*(4*k[1]^3-3*k[1]-4*s[1]))^(1/2) = (k[1]*(4*k[1]^3-3*k[1]-4*s[1]))^(1/2), (k[2]*(4*k[2]^3-3*k[2]-4*s[2]))^(1/2) = (k[2]*(4*k[2]^3-3*k[2]-4*s[2]))^(1/2)}, {B[1] = B[1], k[1] = k[1], k[2] = k[2], s[1] = (1/2)*(8*k[2]*k[1]^3+12*k[2]^2*k[1]^2+8*k[1]*k[2]^3-3*k[1]*k[2]-2*s[2]*k[1]-(k[1]*(4*k[1]^3-3*k[1]-4*s[1]))^(1/2)*(k[2]*(4*k[2]^3-3*k[2]-4*s[2]))^(1/2))/k[2], s[2] = s[2], (k[1]*(4*k[1]^3-3*k[1]-4*s[1]))^(1/2) = (k[1]*(4*k[1]^3-3*k[1]-4*s[1]))^(1/2), (k[2]*(4*k[2]^3-3*k[2]-4*s[2]))^(1/2) = (k[2]*(4*k[2]^3-3*k[2]-4*s[2]))^(1/2)}

(17)

case2 := ans[1]

{B[1] = B[1], k[1] = -k[2], k[2] = k[2], s[1] = s[1], s[2] = s[2], (k[1]*(4*k[1]^3-3*k[1]-4*s[1]))^(1/2) = (k[1]*(4*k[1]^3-3*k[1]-4*s[1]))^(1/2), (k[2]*(4*k[2]^3-3*k[2]-4*s[2]))^(1/2) = (k[2]*(4*k[2]^3-3*k[2]-4*s[2]))^(1/2)}

(18)

FF := subs(case2, S22)

NULL

F11 := eval(Q, FF)

pdetest(F11, pde)

-6*k[2]^2*exp(t*l[1]+t*l[2]+2*k[2]*x+l[1]*y+l[2]*y+s[1]*z+s[2]*z+(1/2)*t*(k[2]*(4*k[2]^3-3*k[2]+4*s[1]))^(1/2)+(1/2)*t*(k[2]*(4*k[2]^3-3*k[2]-4*s[2]))^(1/2))*(B[1]*exp(-(1/2)*t*k[2]+2*t*l[1]+t*l[2]+3*k[2]*x+l[2]*y+s[2]*z+(1/2)*t*(k[2]*(4*k[2]^3-3*k[2]-4*s[2]))^(1/2))*(k[2]*(4*k[2]^3-3*k[2]+4*s[1]))^(1/2)*(k[2]*(4*k[2]^3-3*k[2]-4*s[2]))^(1/2)+56*k[2]^4*exp(-t*k[2]+2*t*l[1]+4*k[2]*x+2*l[2]*y+2*s[2]*z+t*(k[2]*(4*k[2]^3-3*k[2]-4*s[2]))^(1/2))-6*k[2]^2*exp(-t*k[2]+2*t*l[1]+4*k[2]*x+2*l[2]*y+2*s[2]*z+t*(k[2]*(4*k[2]^3-3*k[2]-4*s[2]))^(1/2))-exp(-(1/2)*t*k[2]+2*t*l[1]+t*l[2]+3*k[2]*x+l[2]*y+s[2]*z+(1/2)*t*(k[2]*(4*k[2]^3-3*k[2]-4*s[2]))^(1/2))*(k[2]*(4*k[2]^3-3*k[2]+4*s[1]))^(1/2)*(k[2]*(4*k[2]^3-3*k[2]-4*s[2]))^(1/2)+B[1]*exp((1/2)*t*k[2]+t*l[1]+2*t*l[2]+k[2]*x+l[1]*y+s[1]*z+(1/2)*t*(k[2]*(4*k[2]^3-3*k[2]+4*s[1]))^(1/2))*(k[2]*(4*k[2]^3-3*k[2]+4*s[1]))^(1/2)*(k[2]*(4*k[2]^3-3*k[2]-4*s[2]))^(1/2)-exp((1/2)*t*k[2]+t*l[1]+2*t*l[2]+k[2]*x+l[1]*y+s[1]*z+(1/2)*t*(k[2]*(4*k[2]^3-3*k[2]+4*s[1]))^(1/2))*(k[2]*(4*k[2]^3-3*k[2]+4*s[1]))^(1/2)*(k[2]*(4*k[2]^3-3*k[2]-4*s[2]))^(1/2)-24*B[1]*k[2]^2*exp(t*l[1]+t*l[2]+2*k[2]*x+l[1]*y+l[2]*y+s[1]*z+s[2]*z+(1/2)*t*(k[2]*(4*k[2]^3-3*k[2]+4*s[1]))^(1/2)+(1/2)*t*(k[2]*(4*k[2]^3-3*k[2]-4*s[2]))^(1/2))+2*exp(-t*k[2]+2*t*l[1]+4*k[2]*x+2*l[2]*y+2*s[2]*z+t*(k[2]*(4*k[2]^3-3*k[2]-4*s[2]))^(1/2))*(k[2]*(4*k[2]^3-3*k[2]+4*s[1]))^(1/2)*(k[2]*(4*k[2]^3-3*k[2]-4*s[2]))^(1/2)+4*k[2]*s[1]*exp(-t*k[2]+2*t*l[1]+4*k[2]*x+2*l[2]*y+2*s[2]*z+t*(k[2]*(4*k[2]^3-3*k[2]-4*s[2]))^(1/2))-4*k[2]*s[2]*exp(-t*k[2]+2*t*l[1]+4*k[2]*x+2*l[2]*y+2*s[2]*z+t*(k[2]*(4*k[2]^3-3*k[2]-4*s[2]))^(1/2))+2*k[2]*s[2]*exp(-(1/2)*t*k[2]+2*t*l[1]+t*l[2]+3*k[2]*x+l[2]*y+s[2]*z+(1/2)*t*(k[2]*(4*k[2]^3-3*k[2]-4*s[2]))^(1/2))-2*k[2]*s[1]*exp(-(1/2)*t*k[2]+2*t*l[1]+t*l[2]+3*k[2]*x+l[2]*y+s[2]*z+(1/2)*t*(k[2]*(4*k[2]^3-3*k[2]-4*s[2]))^(1/2))-224*k[2]^4*exp(t*l[1]+t*l[2]+2*k[2]*x+l[1]*y+l[2]*y+s[1]*z+s[2]*z+(1/2)*t*(k[2]*(4*k[2]^3-3*k[2]+4*s[1]))^(1/2)+(1/2)*t*(k[2]*(4*k[2]^3-3*k[2]-4*s[2]))^(1/2))-4*k[2]*s[2]*exp(t*k[2]+2*t*l[2]+2*l[1]*y+2*s[1]*z+t*(k[2]*(4*k[2]^3-3*k[2]+4*s[1]))^(1/2))+4*k[2]*s[1]*exp(t*k[2]+2*t*l[2]+2*l[1]*y+2*s[1]*z+t*(k[2]*(4*k[2]^3-3*k[2]+4*s[1]))^(1/2))+2*exp(t*k[2]+2*t*l[2]+2*l[1]*y+2*s[1]*z+t*(k[2]*(4*k[2]^3-3*k[2]+4*s[1]))^(1/2))*(k[2]*(4*k[2]^3-3*k[2]+4*s[1]))^(1/2)*(k[2]*(4*k[2]^3-3*k[2]-4*s[2]))^(1/2)+6*B[1]*k[2]^2*exp(-t*k[2]+2*t*l[1]+4*k[2]*x+2*l[2]*y+2*s[2]*z+t*(k[2]*(4*k[2]^3-3*k[2]-4*s[2]))^(1/2))-8*B[1]*k[2]^4*exp(-t*k[2]+2*t*l[1]+4*k[2]*x+2*l[2]*y+2*s[2]*z+t*(k[2]*(4*k[2]^3-3*k[2]-4*s[2]))^(1/2))+3*B[1]*k[2]^2*exp(t*l[1]+3*k[2]*x+l[1]*y+2*l[2]*y+s[1]*z+2*s[2]*z-(1/2)*t*k[2]+t*(k[2]*(4*k[2]^3-3*k[2]-4*s[2]))^(1/2)+(1/2)*t*(k[2]*(4*k[2]^3-3*k[2]+4*s[1]))^(1/2))-28*B[1]*k[2]^4*exp(t*l[2]+k[2]*x+2*l[1]*y+l[2]*y+2*s[1]*z+s[2]*z+(1/2)*t*k[2]+t*(k[2]*(4*k[2]^3-3*k[2]+4*s[1]))^(1/2)+(1/2)*t*(k[2]*(4*k[2]^3-3*k[2]-4*s[2]))^(1/2))-28*B[1]*k[2]^4*exp(t*l[1]+3*k[2]*x+l[1]*y+2*l[2]*y+s[1]*z+2*s[2]*z-(1/2)*t*k[2]+t*(k[2]*(4*k[2]^3-3*k[2]-4*s[2]))^(1/2)+(1/2)*t*(k[2]*(4*k[2]^3-3*k[2]+4*s[1]))^(1/2))+24*k[2]^2*exp(t*l[1]+t*l[2]+2*k[2]*x+l[1]*y+l[2]*y+s[1]*z+s[2]*z+(1/2)*t*(k[2]*(4*k[2]^3-3*k[2]+4*s[1]))^(1/2)+(1/2)*t*(k[2]*(4*k[2]^3-3*k[2]-4*s[2]))^(1/2))+16*B[1]*k[2]*s[1]*exp(t*l[1]+t*l[2]+2*k[2]*x+l[1]*y+l[2]*y+s[1]*z+s[2]*z+(1/2)*t*(k[2]*(4*k[2]^3-3*k[2]+4*s[1]))^(1/2)+(1/2)*t*(k[2]*(4*k[2]^3-3*k[2]-4*s[2]))^(1/2))-16*B[1]*k[2]*s[2]*exp(t*l[1]+t*l[2]+2*k[2]*x+l[1]*y+l[2]*y+s[1]*z+s[2]*z+(1/2)*t*(k[2]*(4*k[2]^3-3*k[2]+4*s[1]))^(1/2)+(1/2)*t*(k[2]*(4*k[2]^3-3*k[2]-4*s[2]))^(1/2))+8*B[1]*exp(t*l[1]+t*l[2]+2*k[2]*x+l[1]*y+l[2]*y+s[1]*z+s[2]*z+(1/2)*t*(k[2]*(4*k[2]^3-3*k[2]+4*s[1]))^(1/2)+(1/2)*t*(k[2]*(4*k[2]^3-3*k[2]-4*s[2]))^(1/2))*(k[2]*(4*k[2]^3-3*k[2]+4*s[1]))^(1/2)*(k[2]*(4*k[2]^3-3*k[2]-4*s[2]))^(1/2)-4*B[1]*k[2]*s[1]*exp(-t*k[2]+2*t*l[1]+4*k[2]*x+2*l[2]*y+2*s[2]*z+t*(k[2]*(4*k[2]^3-3*k[2]-4*s[2]))^(1/2))+4*B[1]*k[2]*s[2]*exp(-t*k[2]+2*t*l[1]+4*k[2]*x+2*l[2]*y+2*s[2]*z+t*(k[2]*(4*k[2]^3-3*k[2]-4*s[2]))^(1/2))-2*B[1]*exp(-t*k[2]+2*t*l[1]+4*k[2]*x+2*l[2]*y+2*s[2]*z+t*(k[2]*(4*k[2]^3-3*k[2]-4*s[2]))^(1/2))*(k[2]*(4*k[2]^3-3*k[2]+4*s[1]))^(1/2)*(k[2]*(4*k[2]^3-3*k[2]-4*s[2]))^(1/2)-2*B[1]*k[2]*s[1]*exp(t*l[2]+k[2]*x+2*l[1]*y+l[2]*y+2*s[1]*z+s[2]*z+(1/2)*t*k[2]+t*(k[2]*(4*k[2]^3-3*k[2]+4*s[1]))^(1/2)+(1/2)*t*(k[2]*(4*k[2]^3-3*k[2]-4*s[2]))^(1/2))+2*B[1]*k[2]*s[2]*exp(t*l[2]+k[2]*x+2*l[1]*y+l[2]*y+2*s[1]*z+s[2]*z+(1/2)*t*k[2]+t*(k[2]*(4*k[2]^3-3*k[2]+4*s[1]))^(1/2)+(1/2)*t*(k[2]*(4*k[2]^3-3*k[2]-4*s[2]))^(1/2))-2*B[1]*k[2]*s[1]*exp(t*l[1]+3*k[2]*x+l[1]*y+2*l[2]*y+s[1]*z+2*s[2]*z-(1/2)*t*k[2]+t*(k[2]*(4*k[2]^3-3*k[2]-4*s[2]))^(1/2)+(1/2)*t*(k[2]*(4*k[2]^3-3*k[2]+4*s[1]))^(1/2))+2*B[1]*k[2]*s[2]*exp(t*l[1]+3*k[2]*x+l[1]*y+2*l[2]*y+s[1]*z+2*s[2]*z-(1/2)*t*k[2]+t*(k[2]*(4*k[2]^3-3*k[2]-4*s[2]))^(1/2)+(1/2)*t*(k[2]*(4*k[2]^3-3*k[2]+4*s[1]))^(1/2))+2*k[2]*s[1]*B[1]^2*exp(t*l[2]+k[2]*x+2*l[1]*y+l[2]*y+2*s[1]*z+s[2]*z+(1/2)*t*k[2]+t*(k[2]*(4*k[2]^3-3*k[2]+4*s[1]))^(1/2)+(1/2)*t*(k[2]*(4*k[2]^3-3*k[2]-4*s[2]))^(1/2))-2*k[2]*s[2]*B[1]^2*exp(t*l[2]+k[2]*x+2*l[1]*y+l[2]*y+2*s[1]*z+s[2]*z+(1/2)*t*k[2]+t*(k[2]*(4*k[2]^3-3*k[2]+4*s[1]))^(1/2)+(1/2)*t*(k[2]*(4*k[2]^3-3*k[2]-4*s[2]))^(1/2))-2*k[2]*s[2]*B[1]^2*exp(t*l[1]+3*k[2]*x+l[1]*y+2*l[2]*y+s[1]*z+2*s[2]*z-(1/2)*t*k[2]+t*(k[2]*(4*k[2]^3-3*k[2]-4*s[2]))^(1/2)+(1/2)*t*(k[2]*(4*k[2]^3-3*k[2]+4*s[1]))^(1/2))+2*k[2]*s[1]*B[1]^2*exp(t*l[1]+3*k[2]*x+l[1]*y+2*l[2]*y+s[1]*z+2*s[2]*z-(1/2)*t*k[2]+t*(k[2]*(4*k[2]^3-3*k[2]-4*s[2]))^(1/2)+(1/2)*t*(k[2]*(4*k[2]^3-3*k[2]+4*s[1]))^(1/2))-4*B[1]*k[2]*s[1]*exp(t*k[2]+2*t*l[2]+2*l[1]*y+2*s[1]*z+t*(k[2]*(4*k[2]^3-3*k[2]+4*s[1]))^(1/2))+4*B[1]*k[2]*s[2]*exp(t*k[2]+2*t*l[2]+2*l[1]*y+2*s[1]*z+t*(k[2]*(4*k[2]^3-3*k[2]+4*s[1]))^(1/2))-2*B[1]*exp(t*k[2]+2*t*l[2]+2*l[1]*y+2*s[1]*z+t*(k[2]*(4*k[2]^3-3*k[2]+4*s[1]))^(1/2))*(k[2]*(4*k[2]^3-3*k[2]+4*s[1]))^(1/2)*(k[2]*(4*k[2]^3-3*k[2]-4*s[2]))^(1/2)-2*B[1]*k[2]*s[2]*exp((1/2)*t*k[2]+t*l[1]+2*t*l[2]+k[2]*x+l[1]*y+s[1]*z+(1/2)*t*(k[2]*(4*k[2]^3-3*k[2]+4*s[1]))^(1/2))+32*B[1]*k[2]^4*exp(t*l[1]+t*l[2]+2*k[2]*x+l[1]*y+l[2]*y+s[1]*z+s[2]*z+(1/2)*t*(k[2]*(4*k[2]^3-3*k[2]+4*s[1]))^(1/2)+(1/2)*t*(k[2]*(4*k[2]^3-3*k[2]-4*s[2]))^(1/2))+2*k[2]*s[2]*exp((1/2)*t*k[2]+t*l[1]+2*t*l[2]+k[2]*x+l[1]*y+s[1]*z+(1/2)*t*(k[2]*(4*k[2]^3-3*k[2]+4*s[1]))^(1/2))-2*k[2]*s[1]*exp((1/2)*t*k[2]+t*l[1]+2*t*l[2]+k[2]*x+l[1]*y+s[1]*z+(1/2)*t*(k[2]*(4*k[2]^3-3*k[2]+4*s[1]))^(1/2))+2*B[1]*k[2]*s[1]*exp((1/2)*t*k[2]+t*l[1]+2*t*l[2]+k[2]*x+l[1]*y+s[1]*z+(1/2)*t*(k[2]*(4*k[2]^3-3*k[2]+4*s[1]))^(1/2))+3*k[2]^2*exp((1/2)*t*k[2]+t*l[1]+2*t*l[2]+k[2]*x+l[1]*y+s[1]*z+(1/2)*t*(k[2]*(4*k[2]^3-3*k[2]+4*s[1]))^(1/2))+3*k[2]^2*exp(-(1/2)*t*k[2]+2*t*l[1]+t*l[2]+3*k[2]*x+l[2]*y+s[2]*z+(1/2)*t*(k[2]*(4*k[2]^3-3*k[2]-4*s[2]))^(1/2))-28*k[2]^4*exp((1/2)*t*k[2]+t*l[1]+2*t*l[2]+k[2]*x+l[1]*y+s[1]*z+(1/2)*t*(k[2]*(4*k[2]^3-3*k[2]+4*s[1]))^(1/2))-28*k[2]^4*exp(-(1/2)*t*k[2]+2*t*l[1]+t*l[2]+3*k[2]*x+l[2]*y+s[2]*z+(1/2)*t*(k[2]*(4*k[2]^3-3*k[2]-4*s[2]))^(1/2))+3*B[1]*k[2]^2*exp(t*l[2]+k[2]*x+2*l[1]*y+l[2]*y+2*s[1]*z+s[2]*z+(1/2)*t*k[2]+t*(k[2]*(4*k[2]^3-3*k[2]+4*s[1]))^(1/2)+(1/2)*t*(k[2]*(4*k[2]^3-3*k[2]-4*s[2]))^(1/2))-3*B[1]*k[2]^2*exp(-(1/2)*t*k[2]+2*t*l[1]+t*l[2]+3*k[2]*x+l[2]*y+s[2]*z+(1/2)*t*(k[2]*(4*k[2]^3-3*k[2]-4*s[2]))^(1/2))+4*B[1]*k[2]^4*exp((1/2)*t*k[2]+t*l[1]+2*t*l[2]+k[2]*x+l[1]*y+s[1]*z+(1/2)*t*(k[2]*(4*k[2]^3-3*k[2]+4*s[1]))^(1/2))+2*B[1]*k[2]*s[1]*exp(-(1/2)*t*k[2]+2*t*l[1]+t*l[2]+3*k[2]*x+l[2]*y+s[2]*z+(1/2)*t*(k[2]*(4*k[2]^3-3*k[2]-4*s[2]))^(1/2))-2*B[1]*k[2]*s[2]*exp(-(1/2)*t*k[2]+2*t*l[1]+t*l[2]+3*k[2]*x+l[2]*y+s[2]*z+(1/2)*t*(k[2]*(4*k[2]^3-3*k[2]-4*s[2]))^(1/2))+B[1]^2*exp(t*l[1]+3*k[2]*x+l[1]*y+2*l[2]*y+s[1]*z+2*s[2]*z-(1/2)*t*k[2]+t*(k[2]*(4*k[2]^3-3*k[2]-4*s[2]))^(1/2)+(1/2)*t*(k[2]*(4*k[2]^3-3*k[2]+4*s[1]))^(1/2))*(k[2]*(4*k[2]^3-3*k[2]+4*s[1]))^(1/2)*(k[2]*(4*k[2]^3-3*k[2]-4*s[2]))^(1/2)+B[1]^2*exp(t*l[2]+k[2]*x+2*l[1]*y+l[2]*y+2*s[1]*z+s[2]*z+(1/2)*t*k[2]+t*(k[2]*(4*k[2]^3-3*k[2]+4*s[1]))^(1/2)+(1/2)*t*(k[2]*(4*k[2]^3-3*k[2]-4*s[2]))^(1/2))*(k[2]*(4*k[2]^3-3*k[2]+4*s[1]))^(1/2)*(k[2]*(4*k[2]^3-3*k[2]-4*s[2]))^(1/2)-B[1]*exp(t*l[1]+3*k[2]*x+l[1]*y+2*l[2]*y+s[1]*z+2*s[2]*z-(1/2)*t*k[2]+t*(k[2]*(4*k[2]^3-3*k[2]-4*s[2]))^(1/2)+(1/2)*t*(k[2]*(4*k[2]^3-3*k[2]+4*s[1]))^(1/2))*(k[2]*(4*k[2]^3-3*k[2]+4*s[1]))^(1/2)*(k[2]*(4*k[2]^3-3*k[2]-4*s[2]))^(1/2)-B[1]*exp(t*l[2]+k[2]*x+2*l[1]*y+l[2]*y+2*s[1]*z+s[2]*z+(1/2)*t*k[2]+t*(k[2]*(4*k[2]^3-3*k[2]+4*s[1]))^(1/2)+(1/2)*t*(k[2]*(4*k[2]^3-3*k[2]-4*s[2]))^(1/2))*(k[2]*(4*k[2]^3-3*k[2]+4*s[1]))^(1/2)*(k[2]*(4*k[2]^3-3*k[2]-4*s[2]))^(1/2)+4*B[1]*k[2]^4*exp(-(1/2)*t*k[2]+2*t*l[1]+t*l[2]+3*k[2]*x+l[2]*y+s[2]*z+(1/2)*t*(k[2]*(4*k[2]^3-3*k[2]-4*s[2]))^(1/2))+4*B[1]^2*k[2]^4*exp(t*l[1]+3*k[2]*x+l[1]*y+2*l[2]*y+s[1]*z+2*s[2]*z-(1/2)*t*k[2]+t*(k[2]*(4*k[2]^3-3*k[2]-4*s[2]))^(1/2)+(1/2)*t*(k[2]*(4*k[2]^3-3*k[2]+4*s[1]))^(1/2))+16*k[2]*s[2]*exp(t*l[1]+t*l[2]+2*k[2]*x+l[1]*y+l[2]*y+s[1]*z+s[2]*z+(1/2)*t*(k[2]*(4*k[2]^3-3*k[2]+4*s[1]))^(1/2)+(1/2)*t*(k[2]*(4*k[2]^3-3*k[2]-4*s[2]))^(1/2))-16*k[2]*s[1]*exp(t*l[1]+t*l[2]+2*k[2]*x+l[1]*y+l[2]*y+s[1]*z+s[2]*z+(1/2)*t*(k[2]*(4*k[2]^3-3*k[2]+4*s[1]))^(1/2)+(1/2)*t*(k[2]*(4*k[2]^3-3*k[2]-4*s[2]))^(1/2))-8*exp(t*l[1]+t*l[2]+2*k[2]*x+l[1]*y+l[2]*y+s[1]*z+s[2]*z+(1/2)*t*(k[2]*(4*k[2]^3-3*k[2]+4*s[1]))^(1/2)+(1/2)*t*(k[2]*(4*k[2]^3-3*k[2]-4*s[2]))^(1/2))*(k[2]*(4*k[2]^3-3*k[2]+4*s[1]))^(1/2)*(k[2]*(4*k[2]^3-3*k[2]-4*s[2]))^(1/2)-6*k[2]^2*exp(t*k[2]+2*t*l[2]+2*l[1]*y+2*s[1]*z+t*(k[2]*(4*k[2]^3-3*k[2]+4*s[1]))^(1/2))+56*k[2]^4*exp(t*k[2]+2*t*l[2]+2*l[1]*y+2*s[1]*z+t*(k[2]*(4*k[2]^3-3*k[2]+4*s[1]))^(1/2))+6*B[1]*k[2]^2*exp(t*k[2]+2*t*l[2]+2*l[1]*y+2*s[1]*z+t*(k[2]*(4*k[2]^3-3*k[2]+4*s[1]))^(1/2))-8*B[1]*k[2]^4*exp(t*k[2]+2*t*l[2]+2*l[1]*y+2*s[1]*z+t*(k[2]*(4*k[2]^3-3*k[2]+4*s[1]))^(1/2))-3*B[1]*k[2]^2*exp((1/2)*t*k[2]+t*l[1]+2*t*l[2]+k[2]*x+l[1]*y+s[1]*z+(1/2)*t*(k[2]*(4*k[2]^3-3*k[2]+4*s[1]))^(1/2))-3*B[1]^2*k[2]^2*exp(t*l[2]+k[2]*x+2*l[1]*y+l[2]*y+2*s[1]*z+s[2]*z+(1/2)*t*k[2]+t*(k[2]*(4*k[2]^3-3*k[2]+4*s[1]))^(1/2)+(1/2)*t*(k[2]*(4*k[2]^3-3*k[2]-4*s[2]))^(1/2))-3*B[1]^2*k[2]^2*exp(t*l[1]+3*k[2]*x+l[1]*y+2*l[2]*y+s[1]*z+2*s[2]*z-(1/2)*t*k[2]+t*(k[2]*(4*k[2]^3-3*k[2]-4*s[2]))^(1/2)+(1/2)*t*(k[2]*(4*k[2]^3-3*k[2]+4*s[1]))^(1/2))+4*B[1]^2*k[2]^4*exp(t*l[2]+k[2]*x+2*l[1]*y+l[2]*y+2*s[1]*z+s[2]*z+(1/2)*t*k[2]+t*(k[2]*(4*k[2]^3-3*k[2]+4*s[1]))^(1/2)+(1/2)*t*(k[2]*(4*k[2]^3-3*k[2]-4*s[2]))^(1/2)))/(B[1]*exp(k[2]*x+l[1]*y+l[2]*y+s[1]*z+s[2]*z+(1/2)*t*(k[2]*(4*k[2]^3-3*k[2]+4*s[1]))^(1/2)+(1/2)*t*(k[2]*(4*k[2]^3-3*k[2]-4*s[2]))^(1/2))+exp(t*l[1]+2*k[2]*x+l[2]*y+s[2]*z-(1/2)*t*k[2]+(1/2)*t*(k[2]*(4*k[2]^3-3*k[2]-4*s[2]))^(1/2))+exp(t*l[2]+l[1]*y+s[1]*z+(1/2)*t*k[2]+(1/2)*t*(k[2]*(4*k[2]^3-3*k[2]+4*s[1]))^(1/2))+exp(t*l[1]+t*l[2]+x*k[2]))^4

(19)
 

NULL

Download hard_parameters.mw

Inspired by the task "With two cuts into 4 equal areas" I remember the following old task:

How can you divide a cube into 6 pyramids so that their volumes are 1 : 2 : 3 : 4 : 5 : 6?

I've been evaluating Grid but I found some problems with SQLite DB when not using numnodes.

So I am now using numnodes option to setup explicitly number of nodes to use with Grid.

But the problem is now print() do not show on the screen from node code. So hard to debug. So I changed code to send debug messages to print files.

But now I find that the files do even get created when using numnodes. 

When removing numnodes option, the text file gets created. 

I am using FileTools:-Text:-WriteString() and FileTools:-Text:-Close() in the node code.
I also tried using fopen(). Both do not work. 

Same code works OK if I do not use numnodes. 

Any idea why the file do not get created when using numnodes? Worksheet to produce this is below.

I use C:\\tmp folder for testing. Feel free to change this. When I run the code and look in the folder, I do not see the text file there when using numnodes. 

It is possible the file is created but saved somewhere else on the system even though the full file name is given?

It seems to me now that when using numnodes option, there are some things that work and some things that do not work. I do not know if this is by design or a bug. Any one knows?

restart;

interface(version);

`Standard Worksheet Interface, Maple 2024.2, Windows 10, October 29 2024 Build ID 1872373`

Physics:-Version();

`The "Physics Updates" version in the MapleCloud is 1843 and is the same as the version installed in this computer, created 2025, January 25, 22:5 hours Pacific Time.`

Why task running on node do not create text file?

 

restart;

currentdir("C:\\TMP"): #change as needed

foo:=proc(n::integer)   
   local file_name::string;
   currentdir("C:\\TMP"): #change as needed
   file_name:=cat(currentdir(),"\\",n,"_file.txt");
   FileTools:-Text:-WriteString(file_name,cat("processing at node =",n));
   FileTools:-Text:-Close(file_name);
end proc:

Grid:-Set(foo):
Grid:-Setup("local",numnodes=1);
Grid:-Run(0,foo,[0]):
Grid:-Wait();

#No file "0_file.txt" is created in my C:\\TMP\ folder

 

 

 

Another version using fopen instead of FileTools. This also do not work

 

restart;

currentdir("C:\\TMP"): #change as needed

foo:=proc(n::integer)   
   local file_name::string, fileID;
   currentdir("C:\\TMP"): #change as needed
   file_name:=cat(currentdir(),"\\",n,"_file.txt");
   try
        fileID := fopen(file_name,WRITE);
    catch:
        error StringTools:-FormatMessage(lastexception[2..-1]);
    end try;   

   fprintf(fileID,"%s",cat("processing at node =",n));
   fclose(fileID);        
end proc:

Grid:-Set(foo):
Grid:-Setup("local",numnodes=1);
Grid:-Run(0,foo,[0]):
Grid:-Wait();


Download grid_question_jan_29_2025.mw

To see the file 0_file.txt get created in the folder, simply remove the numnodes option.

We are looking for all triangles (with the exception of similarity) in which the tangent values ​​of the interior angles are all integers.

Hello
I am a bit further with my initial vector question. I managed to decompose the vectors and set them as equations for each dimension (x, y, z) and solve a system of equations with the variables of the parametric surface and the parametric line (black). The goal is to calculate P (intersection with the surface) and, from there, the vector V1. The problem is that I always get zero as the solution for all the variables. 
Any help would be greatly appreciated! Thanks.question_surface_.mw
 

Dear all,

I'm a new maple user trying to solve a single PDE in maple using finite volume.

For simplicity I'm using three volumes. When I'm trying to apply a simple flux limiter, up-wind scheme, (relation between the wall and the node values u[j+0.5](t)=u[j](t)), I'm solver works well and produces accurate results.

However, when I try to a more complicated flux limiter, the solver doesn't initialize and I'm getting an error:
"Error, (in dsolve/numeric/DAE/make_proc) specified dependent variables [u[0](t), u[.5](t), u[1](t), u[1.5](t), u[2](t), u[2.5](t), u[3](t), u[3.5](t), u[4](t)] do not agree with input system {u[0], u[1], u[2], u[3], u[4], u[1/2], u[1.5], u[2.5], u[3.5]}, differences: {u[1/2]}, {u[.5]}".

I would greatly appreciate it if somebody helps me on in this issue.

error.mw

in a lot of my equation i have such problem and really i don't know how fix this also i try to put : in end and sometime is work and i keep contionues  but sometime not there is any way for solve this problem?

limit.mw

i don't know how generate this series and when i have a lot series which i can't make them automatically i don't know how write and replacing some structure like mu is zero or 1 as shown in picture can any one give me a hand?

both of them are same with little different

 

Let us suppose I open Maple, write a worksheet, save it in a folder A and then quit Maple.

Now I run a new session by double clicking on some mw file located in folder B, let us say //B/test_1.mw.
Once opened I do some modifications and decide to save this worksheet into a new file, let us say test_2.mw in the same folder B test_1.mw belongs to (which means I use Save As from the menu bar)

I'm regularly fooled by the fact that the default folder is not B, but the folder A I used in the previous session.

I find this very unpleasant.
Is this a Maple (2015) issue or something related to my operating system (Mac OSX Catalina)?
In case it is a Maple issue which is still present in more recent Maple versions, Would it be possible to set the default backup folder to be the folder to which the active worksheet belongs?

Thanks in advance

i need find parameter in explicite way without Rootof() so i need use code of explicite but i get error but when i use all parameter without explicite all parameter come out so why i get this error?

 
 

 

  (13)

vars := indets(eqs); ans := solve(eqs, {p, q, a[1], a[2], a[3], a[4], a[5], a[6], a[7], a[8], a[9], k[1], k[2], k[3], m[1], m[2], m[3]}, explicit)

{p, q, a[1], a[2], a[3], a[4], a[5], a[6], a[7], a[8], a[9], k[1], k[2], k[3], m[1], m[2], m[3]}

 

Error, (in Utilities:-RecognizeCyclotomic) numeric exception: division by zero

 
 

``

zero.mw

It's 2024 and this is still something that doesn't exist? I'd just like to swap the Enter/Shfit+Enter behaviors since I find myself writing a lot of multi-line and custom procs and boy howdy it'd be nice if I could make Maple behave at least the littllest bit like, I dunno, every other product I own and use.

First 35 36 37 38 39 40 41 Last Page 37 of 2425