MaplePrimes Questions

I'm receiving a very interesting error when attempting to solve a system of differntial equations:

{sqrt(2)*sqrt(F1(t))*diff(F2(t),t) = 0}:
% union {F3(t) = 0}:
pdsolve(%, {F1(t),F2(t),F3(t)});

When attempting to run this code, I get the following error:

Error, (in pdsolve/sys) invalid input: DifferentialAlgebra:-DifferentialRing expects value for keyword parameter blocks to be of type {undefined, Or(list({name, unknown, list({name,unknown})}),name,unknown)}, but received [F3, F2, _F1 = (NULL), F1 = [_F1, F1], _F2] 

Interestingly, removing the second line, or even the sqrt(2), allows the calculation to proceed correctly. It this a bug, or am I doing something wrong?

Thank you very much!

(I'm aware this would technically be a system of ODEs, not PDEs; my actual code includes additional partial derivatives. Additionally, dsolve appears to only generate a trivial solution in this case).

 

Hey folks.

I need to do a kind of loop calc. in maple and im not shure how to. 

lets say i guess a temperature T.

i then put it through all soughts of eqations where the variabel T is necessary for the outcome of my result, which i then use again as T. the loop should finish when T as a result is the same as my guess in the beginning. like:

T:=45 

bla bla calculation

T_new:= 35

again 

T:=35

bla bla calculation

T_new= 35 

Finish!!

 

Any ideas?

Dear sir I want to plot the graph for different values of F=0.1, F=0.2,F=0.5 . My codes are given and i am attaching the sample graph. For F=0.1, Nb=0.1,0.2,0.3 three curves

Similarly For F=0.2,Nb=0.1,0.2,0.3 three curves and for F=0.5, Nb=0.1,0.2,0.3 three curves. Total nine curves 

restart:
h:=z->1-(delta2/2)*(1 + cos(2*(Pi/L1)*(z - d1 - L1))):
K1:=((4/h(z)^4)-(sin(alpha)/F)-h(z)^2+Nb*h(z)^4):
lambda:=Int(K1,z=0..1):

L1:=0.2:
d1:=0.2:
alpha:=Pi/6:
plot( [seq(eval(lambda, Nb=j), j in [0.1,0.2,0.3])], delta2=0.02..0.1);

please how can I simplify the results of assigned K cum each of the coefficients further in the following code? the results are too large.

restart:
#k=2:
omega:=u/h:
psi:=v/h:
t:=(sum(a[j]*x^j,j=0..2)+a[3]*sin(omega*x)+a[4]*cos(omega*x)+a[5]*sin(psi*x)+a[6]*cos(psi*x)):
F:=diff(t,x):
G:=diff(t,x,x):
p1:=simplify(eval(t,x=q+h))=y[n+1]:
p2:=simplify(eval(F,x=q))=f[n]:
p3:=simplify(eval(F,x=q+h))=f[n+1]:
p4:=simplify(eval(F,x=q+2*h))=f[n+2]:
p5:=simplify(eval(G,x=q))=g[n]:
p6:=simplify(eval(G,x=q+h))=g[n+1]:
p7:=simplify(eval(G,x=q+2*h))=g[n+2]:
vars:= seq(a[i],i=0..6):
Cc:=eval(<vars>, solve({p||(1..7)}, {vars})):
for i from 1 to 7 do
	a[i-1]:=Cc[i]:
end do:
Cf:=t:

K:= collect(combine(simplify(eval(Cf,x=q+2*h),size),trig),{y[n+1],f[n],f[n+1],f[n+2],g[n],g[n+1],g[n+2]},factor):


alpha[1]=simplify(coeff(K,y[n+1]));
beta[0]=simplify(coeff(K,f[n]),size);
beta[1]=simplify(coeff(K,f[n+1]),size):
beta[2]=simplify(coeff(K,f[n+2]),size):
gamma[0]=simplify(coeff(K,g[n]),size):
gamma[1]=simplify(coeff(K,g[n+1]),size):
gamma[2]=simplify(coeff(K,g[n+2]),size):

 

I need to plot a trajectory where the horizontal equation is x(t) = 4t and the vertical is y(t)=4t-0.5t^2

How would I plot the two equations at once to make a trajectory?

If someone could please explain how to do it (also doing it would be nice) because I'm sure I'll have to do it again.

How do I apply select to a set element-wise?

I have defined a procedure which computes the order of an element g mod p.

findOrderOf:=proc(g,p)
  local i:=1;
  local gpwr:=1;
  for i from 1 to p-1 do
    gpwr:=gpwr*g mod p;
    if(gpwr = 1) then:
      return i;
    end if:
  end do:
end proc:

I then want to select the primes which are generated by 2 and 3.

primes:=select(isprime,[`$`(2000 .. 3000)]);
select(findOrderOf(2,x=p)=p-1 and findOrderOf(3,x=p)=p-1,primes);

I am stuck with how to make the last line work.

 

 

hi

please help me for simplify (factor) this equations.

thanks

vel.mw
 

simplify(-(1/226609908940800)*(106722*Br*NT*ln(h)*NB-106722*Br*NT*ln(R0)*NB-106722*Br*NT^2*ln(h)+106722*Br*NT^2*ln(R0)-106722*NB^2*Gr*ln(h)+106722*NB^2*Gr*ln(R0)+106722*Gr*NT*ln(h)*NB-106722*Gr*NT*ln(R0)*NB)*r^12/(L^6*NB*(ln(h)-ln(R0)))-(1/226609908940800)*(-524288*Br*NT*ln(h)*R0*NB-524288*Br*NT*ln(h)*h*NB+524288*Br*NT*ln(R0)*R0*NB+524288*Br*NT*ln(R0)*h*NB+524288*Br*NT^2*ln(h)*R0+524288*Br*NT^2*ln(h)*h-524288*Br*NT^2*ln(R0)*R0-524288*Br*NT^2*ln(R0)*h+524288*NB^2*Gr*ln(h)*R0+524288*NB^2*Gr*ln(h)*h-524288*NB^2*Gr*ln(R0)*R0-524288*NB^2*Gr*ln(R0)*h-524288*Gr*NT*ln(h)*R0*NB-524288*Gr*NT*ln(h)*h*NB+524288*Gr*NT*ln(R0)*R0*NB+524288*Gr*NT*ln(R0)*h*NB)*r^11/(L^6*NB*(ln(h)-ln(R0)))-(1/226609908940800)*(1920996*Br*NT*ln(h)*R0*h*NB-15367968*L^2*Br*NT^2*ln(h)+15367968*L^2*Br*NT^2*ln(R0)-15367968*L^2*Gr*NB^2*ln(h)+15367968*L^2*Gr*NB^2*ln(R0)-960498*NB^2*Gr*ln(h)*R0^2-960498*NB^2*Gr*ln(h)*h^2+960498*NB^2*Gr*ln(R0)*R0^2-1920996*Br*NT*ln(R0)*R0*h*NB+1920996*Gr*NT*ln(h)*R0*h*NB-1920996*Gr*NT*ln(R0)*R0*h*NB+960498*NB^2*Gr*ln(R0)*h^2-960498*Br*NT^2*ln(h)*h^2+960498*Br*NT^2*ln(R0)*R0^2-960498*Br*NT^2*ln(h)*R0^2+960498*Br*NT^2*ln(R0)*h^2+1920996*Br*NT^2*ln(R0)*R0*h-960498*Gr*NT*ln(R0)*h^2*NB+960498*Gr*NT*ln(h)*h^2*NB-960498*Gr*NT*ln(R0)*R0^2*NB+960498*Gr*NT*ln(h)*R0^2*NB-1920996*NB^2*Gr*ln(h)*R0*h+1920996*NB^2*Gr*ln(R0)*R0*h-15367968*L^2*Gr*NB*NT*ln(R0)-960498*Br*NT*ln(R0)*h^2*NB+15367968*L^2*Gr*NB*NT*ln(h)+960498*Br*NT*ln(h)*h^2*NB-960498*Br*NT*ln(R0)*R0^2*NB-15367968*L^2*Br*NB*NT*ln(R0)+960498*Br*NT*ln(h)*R0^2*NB-1920996*Br*NT^2*ln(h)*R0*h+15367968*L^2*Br*NB*NT*ln(h))*r^10/(L^6*NB*(ln(h)-ln(R0)))-(1/226609908940800)*(-63438848*L^2*Br*NB*NT*ln(h)*R0-63438848*L^2*Br*NB*NT*ln(h)*h+63438848*L^2*Br*NB*NT*ln(R0)*R0+63438848*L^2*Br*NB*NT*ln(R0)*h+63438848*L^2*Br*NT^2*ln(h)*R0+63438848*L^2*Br*NT^2*ln(h)*h-63438848*L^2*Br*NT^2*ln(R0)*R0-63438848*L^2*Br*NT^2*ln(R0)*h+63438848*L^2*Gr*NB^2*ln(h)*R0+63438848*L^2*Gr*NB^2*ln(h)*h-63438848*L^2*Gr*NB^2*ln(R0)*R0-63438848*L^2*Gr*NB^2*ln(R0)*h-63438848*L^2*Gr*NB*NT*ln(h)*R0-63438848*L^2*Gr*NB*NT*ln(h)*h+63438848*L^2*Gr*NB*NT*ln(R0)*R0+63438848*L^2*Gr*NB*NT*ln(R0)*h)*r^9/(L^6*NB*(ln(h)-ln(R0)))-(1/226609908940800)*(11116875*Br*NT^2*R0^4-11116875*Br*NT^2*h^4-11116875*NB^2*Gr*h^4+1536796800*p*ln(h)*NB+11116875*NB^2*Gr*R0^4-1536796800*p*ln(R0)*NB+11116875*Gr*NT*h^4*NB-11116875*Br*NT*R0^4*NB-11116875*Gr*NT*R0^4*NB-192099600*L^2*Gr*NB*NT*ln(R0)*R0*h+192099600*L^2*Gr*NB*NT*ln(h)*R0*h-192099600*L^2*Br*NB*NT*ln(R0)*R0*h+192099600*L^2*Br*NB*NT*ln(h)*R0*h-5336100*Br*NT^2*ln(R0)*R0*h^3-11116875*Gr*NT*R0^3*h*NB-11116875*Br*NT*R0^3*h*NB+11116875*Br*NT*R0*h^3*NB+11116875*Gr*NT*R0*h^3*NB+5336100*Gr*NT*ln(R0)*R0*h^3*NB+24012450*Gr*NT*ln(R0)*R0^2*h^2*NB-24012450*Gr*NT*ln(h)*R0^2*h^2*NB-5336100*Gr*NT*ln(h)*R0^3*h*NB-5336100*Gr*NT*R0*h^3*ln(r)*NB+5336100*Gr*NT*R0^3*h*ln(r)*NB-96049800*L^2*Gr*NB*NT*ln(R0)*h^2-96049800*L^2*Gr*NB*NT*ln(R0)*R0^2+96049800*L^2*Gr*NB*NT*ln(h)*h^2+96049800*L^2*Gr*NB*NT*ln(h)*R0^2+192099600*L^2*Gr*NB^2*ln(R0)*R0*h-192099600*L^2*Gr*NB^2*ln(h)*R0*h+5336100*Br*NT*ln(R0)*R0*h^3*NB+24012450*Br*NT*ln(R0)*R0^2*h^2*NB-24012450*Br*NT*ln(h)*R0^2*h^2*NB-5336100*Br*NT*ln(h)*R0^3*h*NB-5336100*Br*NT*R0*h^3*ln(r)*NB+5336100*Gr*NT*ln(R0)*h^4*NB-5336100*Gr*NT*ln(h)*R0^4*NB-5336100*Gr*NT*h^4*ln(r)*NB+5336100*Br*NT*R0^3*h*ln(r)*NB+192099600*L^2*Br*NT^2*ln(R0)*R0*h-192099600*L^2*Br*NT^2*ln(h)*R0*h-96049800*L^2*Br*NB*NT*ln(R0)*h^2-96049800*L^2*Br*NB*NT*ln(R0)*R0^2+96049800*L^2*Br*NB*NT*ln(h)*h^2+96049800*L^2*Br*NB*NT*ln(h)*R0^2+5336100*Gr*NT*R0^4*ln(r)*NB-5336100*NB^2*Gr*ln(R0)*R0*h^3-24012450*NB^2*Gr*ln(R0)*R0^2*h^2+24012450*NB^2*Gr*ln(h)*R0^2*h^2+5336100*NB^2*Gr*ln(h)*R0^3*h+5336100*NB^2*Gr*R0*h^3*ln(r)-5336100*NB^2*Gr*R0^3*h*ln(r)+96049800*L^2*Gr*NB^2*ln(R0)*h^2+96049800*L^2*Gr*NB^2*ln(R0)*R0^2-96049800*L^2*Gr*NB^2*ln(h)*h^2-96049800*L^2*Gr*NB^2*ln(h)*R0^2-1536796800*L^4*Gr*NB*NT*ln(R0)+5336100*Br*NT^2*R0*h^3*ln(r)+1536796800*L^4*Gr*NB*NT*ln(h)-5336100*Br*NT^2*R0^3*h*ln(r)-5336100*Br*NT*ln(h)*R0^4*NB+5336100*Br*NT*ln(R0)*h^4*NB-5336100*Br*NT*h^4*ln(r)*NB+5336100*NB^2*Gr*ln(h)*R0^4-5336100*NB^2*Gr*ln(R0)*h^4-5336100*NB^2*Gr*R0^4*ln(r)+5336100*NB^2*Gr*h^4*ln(r)-1536796800*L^4*Gr*NB^2*ln(h)+1536796800*L^4*Gr*NB^2*ln(R0)+1536796800*L^4*Br*NT^2*ln(R0)-5336100*Br*NT^2*R0^4*ln(r)+5336100*Br*NT^2*h^4*ln(r)-1536796800*L^4*Br*NT^2*ln(h)+11116875*Br*NB*NT*h^4+11116875*NB^2*Gr*R0^3*h-11116875*NB^2*Gr*R0*h^3+11116875*Br*NT^2*R0^3*h-11116875*Br*NT^2*R0*h^3+5336100*Br*NT^2*ln(h)*R0^4-5336100*Br*NT^2*ln(R0)*h^4+96049800*L^2*Br*NT^2*ln(R0)*h^2+5336100*Br*NT*R0^4*ln(r)*NB-96049800*L^2*Br*NT^2*ln(h)*h^2+96049800*L^2*Br*NT^2*ln(R0)*R0^2-1536796800*L^4*Br*NB*NT*ln(R0)-96049800*L^2*Br*NT^2*ln(h)*R0^2+24012450*Br*NT^2*ln(h)*R0^2*h^2+1536796800*L^4*Br*NB*NT*ln(h)+5336100*Br*NT^2*ln(h)*R0^3*h-24012450*Br*NT^2*ln(R0)*R0^2*h^2)*r^8/(L^6*NB*(ln(h)-ln(R0)))-(1/226609908940800)*(-5138546688*L^4*Br*NB*NT*ln(h)*R0-5138546688*L^4*Br*NB*NT*ln(h)*h+5138546688*L^4*Br*NB*NT*ln(R0)*R0+5138546688*L^4*Br*NB*NT*ln(R0)*h+5138546688*L^4*Br*NT^2*ln(h)*R0+5138546688*L^4*Br*NT^2*ln(h)*h-5138546688*L^4*Br*NT^2*ln(R0)*R0-5138546688*L^4*Br*NT^2*ln(R0)*h+5138546688*L^4*Gr*NB^2*ln(h)*R0+5138546688*L^4*Gr*NB^2*ln(h)*h-5138546688*L^4*Gr*NB^2*ln(R0)*R0-5138546688*L^4*Gr*NB^2*ln(R0)*h-5138546688*L^4*Gr*NB*NT*ln(h)*R0-5138546688*L^4*Gr*NB*NT*ln(h)*h+5138546688*L^4*Gr*NB*NT*ln(R0)*R0+5138546688*L^4*Gr*NB*NT*ln(R0)*h)*r^7/(L^6*NB*(ln(h)-ln(R0)))-(1/226609908940800)*(341510400*L^2*Gr*NB*NT*ln(R0)*R0*h^3+1536796800*L^2*Gr*NB*NT*ln(R0)*R0^2*h^2-1536796800*L^2*Gr*NB*NT*ln(h)*R0^2*h^2-341510400*L^2*Gr*NB*NT*ln(h)*R0^3*h-341510400*L^2*Gr*NB*NT*ln(r)*R0*h^3+341510400*L^2*Gr*NB*NT*ln(r)*R0^3*h-12294374400*L^4*Gr*NB*NT*ln(R0)*R0*h+12294374400*L^4*Gr*NB*NT*ln(h)*R0*h+341510400*L^2*Br*NB*NT*ln(R0)*R0*h^3+1536796800*L^2*Br*NB*NT*ln(R0)*R0^2*h^2-1536796800*L^2*Br*NB*NT*ln(h)*R0^2*h^2-341510400*L^2*Br*NB*NT*ln(h)*R0^3*h-341510400*L^2*Br*NB*NT*ln(r)*R0*h^3+341510400*L^2*Br*NB*NT*ln(r)*R0^3*h+341510400*L^2*Gr*NB*NT*ln(R0)*h^4-341510400*L^2*Gr*NB*NT*ln(h)*R0^4-341510400*L^2*Gr*NB*NT*ln(r)*h^4+341510400*L^2*Gr*NB*NT*ln(r)*R0^4-341510400*L^2*Gr*NB^2*ln(R0)*R0*h^3-12294374400*L^4*Br*NB*NT*ln(R0)*R0*h+12294374400*L^4*Br*NB*NT*ln(h)*R0*h-1536796800*L^2*Gr*NB^2*ln(R0)*R0^2*h^2+1536796800*L^2*Gr*NB^2*ln(h)*R0^2*h^2+341510400*L^2*Gr*NB^2*ln(h)*R0^3*h+341510400*L^2*Gr*NB^2*ln(r)*R0*h^3-341510400*L^2*Gr*NB^2*ln(r)*R0^3*h-6147187200*L^4*Gr*NB*NT*ln(R0)*h^2-6147187200*L^4*Gr*NB*NT*ln(R0)*R0^2+6147187200*L^4*Gr*NB*NT*ln(h)*h^2+6147187200*L^4*Gr*NB*NT*ln(h)*R0^2+12294374400*L^4*Gr*NB^2*ln(R0)*R0*h-12294374400*L^4*Gr*NB^2*ln(h)*R0*h-341510400*L^2*Br*NT^2*ln(R0)*R0*h^3-1536796800*L^2*Br*NT^2*ln(R0)*R0^2*h^2+1536796800*L^2*Br*NT^2*ln(h)*R0^2*h^2+341510400*L^2*Br*NT^2*ln(h)*R0^3*h+341510400*L^2*Br*NT^2*ln(r)*R0*h^3-341510400*L^2*Br*NT^2*ln(r)*R0^3*h+341510400*L^2*Br*NB*NT*ln(R0)*h^4-341510400*L^2*Br*NB*NT*ln(h)*R0^4-341510400*L^2*Br*NB*NT*ln(r)*h^4+341510400*L^2*Br*NB*NT*ln(r)*R0^4+12294374400*L^4*Br*NT^2*ln(R0)*R0*h-12294374400*L^4*Br*NT^2*ln(h)*R0*h-6147187200*L^4*Br*NB*NT*ln(R0)*h^2-6147187200*L^4*Br*NB*NT*ln(R0)*R0^2+6147187200*L^4*Br*NB*NT*ln(h)*h^2+6147187200*L^4*Br*NB*NT*ln(h)*R0^2+626102400*L^2*Br*NT^2*R0^3*h-626102400*L^2*Br*NT^2*R0*h^3-626102400*L^2*Br*NB*NT*R0^4+626102400*L^2*Br*NB*NT*h^4+626102400*L^2*Gr*NB*NT*h^4-626102400*L^2*Gr*NB^2*R0*h^3+626102400*L^2*Gr*NB^2*R0^3*h-626102400*L^2*Gr*NB*NT*R0^4-6147187200*L^4*Gr*NB^2*ln(h)*h^2+6147187200*L^4*Gr*NB^2*ln(R0)*R0^2-6147187200*L^4*Gr*NB^2*ln(h)*R0^2-341510400*L^2*Br*NT^2*ln(R0)*h^4+341510400*L^2*Br*NT^2*ln(r)*h^4+341510400*L^2*Br*NT^2*ln(h)*R0^4-626102400*L^2*Gr*NB*NT*R0^3*h+626102400*L^2*Gr*NB*NT*R0*h^3-626102400*L^2*Br*NB*NT*R0^3*h+626102400*L^2*Br*NB*NT*R0*h^3+6147187200*L^4*Br*NT^2*ln(R0)*h^2-341510400*L^2*Br*NT^2*ln(r)*R0^4+6147187200*L^4*Br*NT^2*ln(R0)*R0^2-6147187200*L^4*Br*NT^2*ln(h)*R0^2-6147187200*L^4*Br*NT^2*ln(h)*h^2-341510400*L^2*Gr*NB^2*ln(R0)*h^4-393419980800*c2*ln(h)*ln(r)*L^2*NB+393419980800*c2*ln(R0)*ln(r)*L^2*NB-341510400*L^2*Gr*NB^2*ln(r)*R0^4+341510400*L^2*Gr*NB^2*ln(r)*h^4+341510400*L^2*Gr*NB^2*ln(h)*R0^4+6147187200*L^4*Gr*NB^2*ln(R0)*h^2-626102400*L^2*Gr*NB^2*h^4+626102400*L^2*Br*NT^2*R0^4-626102400*L^2*Br*NT^2*h^4-393419980800*c1*ln(h)*L^2*NB+327849984000*c2*ln(h)*L^2*NB+98354995200*L^2*p*NB*ln(h)+393419980800*c1*ln(R0)*L^2*NB-327849984000*c2*ln(R0)*L^2*NB-98354995200*L^2*p*NB*ln(R0)+626102400*L^2*Gr*NB^2*R0^4)*r^6/(L^6*NB*(ln(h)-ln(R0)))-(1/226609908940800)*(-3540779827200*c3*L^2*NB*ln(h)+3540779827200*c3*L^2*NB*ln(R0)+12294374400*L^4*Br*NT^2*ln(h)*R0^3*h+55324684800*L^4*Br*NT^2*ln(h)*R0^2*h^2-55324684800*L^4*Br*NT^2*ln(R0)*R0^2*h^2-12294374400*L^4*Br*NT^2*ln(R0)*R0*h^3-12294374400*L^4*Gr*NB^2*ln(r)*R0^3*h+12294374400*L^4*Gr*NB^2*ln(r)*R0*h^3+12294374400*L^4*Gr*NB^2*ln(h)*R0^3*h+55324684800*L^4*Gr*NB^2*ln(h)*R0^2*h^2-55324684800*L^4*Gr*NB^2*ln(R0)*R0^2*h^2-12294374400*L^4*Gr*NB^2*ln(R0)*R0*h^3+12294374400*L^4*Gr*NB*NT*ln(r)*R0^4-12294374400*L^4*Gr*NB*NT*ln(r)*h^4-12294374400*L^4*Gr*NB*NT*ln(h)*R0^4+12294374400*L^4*Gr*NB*NT*ln(R0)*h^4+12294374400*L^4*Br*NB*NT*ln(r)*R0^4-12294374400*L^4*Br*NB*NT*ln(r)*h^4-12294374400*L^4*Br*NB*NT*ln(h)*R0^4+12294374400*L^4*Br*NB*NT*ln(R0)*h^4-12294374400*L^4*Br*NT^2*ln(r)*R0^3*h+12294374400*L^4*Br*NT^2*ln(r)*R0*h^3-18441561600*L^4*Gr*NB*NT*R0^3*h+18441561600*L^4*Gr*NB*NT*R0*h^3-18441561600*L^4*Br*NB*NT*R0^3*h+18441561600*L^4*Br*NB*NT*R0*h^3+12294374400*L^4*Br*NB*NT*ln(R0)*R0*h^3+12294374400*L^4*Gr*NB*NT*ln(r)*R0^3*h-12294374400*L^4*Gr*NB*NT*ln(r)*R0*h^3-12294374400*L^4*Gr*NB*NT*ln(h)*R0^3*h-55324684800*L^4*Gr*NB*NT*ln(h)*R0^2*h^2+55324684800*L^4*Gr*NB*NT*ln(R0)*R0^2*h^2+12294374400*L^4*Gr*NB*NT*ln(R0)*R0*h^3-18441561600*L^4*Gr*NB^2*R0*h^3+18441561600*L^4*Gr*NB*NT*h^4+18441561600*L^4*Br*NB*NT*h^4-18441561600*L^4*Br*NB*NT*R0^4-18441561600*L^4*Br*NT^2*R0*h^3+18441561600*L^4*Br*NT^2*R0^3*h-12294374400*L^4*Gr*NB^2*ln(R0)*h^4-14163119308800*L^4*c2*ln(r)*NB*ln(h)+14163119308800*L^4*c2*ln(r)*NB*ln(R0)-3540779827200*c4*ln(r)*L^2*NB*ln(h)+3540779827200*c4*ln(r)*L^2*NB*ln(R0)-18441561600*L^4*Gr*NB*NT*R0^4+18441561600*L^4*Gr*NB^2*R0^3*h-12294374400*L^4*Br*NT^2*ln(r)*R0^4+12294374400*L^4*Br*NT^2*ln(r)*h^4+12294374400*L^4*Br*NT^2*ln(h)*R0^4-12294374400*L^4*Br*NT^2*ln(R0)*h^4-12294374400*L^4*Gr*NB^2*ln(r)*R0^4+12294374400*L^4*Gr*NB^2*ln(r)*h^4+12294374400*L^4*Gr*NB^2*ln(h)*R0^4+55324684800*L^4*Br*NB*NT*ln(R0)*R0^2*h^2-55324684800*L^4*Br*NB*NT*ln(h)*R0^2*h^2-12294374400*L^4*Br*NB*NT*ln(h)*R0^3*h-12294374400*L^4*Br*NB*NT*ln(r)*R0*h^3+12294374400*L^4*Br*NB*NT*ln(r)*R0^3*h+18441561600*L^4*Gr*NB^2*R0^4-18441561600*L^4*Gr*NB^2*h^4+18441561600*L^4*Br*NT^2*R0^4-3540779827200*L^4*p*NB*ln(R0)+5311169740800*c4*ln(h)*L^2*NB-5311169740800*c4*ln(R0)*L^2*NB-18441561600*L^4*Br*NT^2*h^4-14163119308800*L^4*c1*NB*ln(h)+7081559654400*L^4*c2*ln(h)*NB+3540779827200*L^4*p*NB*ln(h)+14163119308800*L^4*c1*NB*ln(R0)-7081559654400*L^4*c2*ln(R0)*NB)*r^4/(L^6*NB*(ln(h)-ln(R0)))-(1/226609908940800)*(-226609908940800*L^6*c2*ln(r)*NB*ln(h)+226609908940800*L^6*c2*ln(r)*NB*ln(R0)-226609908940800*L^6*c1*NB*ln(h)+226609908940800*L^6*c1*NB*ln(R0)-56652477235200*L^4*c4*ln(r)*NB*ln(h)+56652477235200*L^4*c4*ln(r)*NB*ln(R0)-56652477235200*L^4*c3*NB*ln(h)+56652477235200*L^4*c4*ln(h)*NB+56652477235200*L^4*c3*NB*ln(R0)-56652477235200*L^4*c4*ln(R0)*NB)*r^2/(L^6*NB*(ln(h)-ln(R0)))-(1/226609908940800)*(-226609908940800*L^6*c4*ln(r)*NB*ln(h)+226609908940800*L^6*c4*ln(r)*NB*ln(R0)-226609908940800*L^6*c3*NB*ln(h)+226609908940800*L^6*c3*NB*ln(R0))/(L^6*NB*(ln(h)-ln(R0)))):

NULL


 

Download vel.mw

 

can maple code saved into database for self modifying easily?

self modifying , metaprogramming , database, snapshot, blockchain for code integrity etc

LetterA_Axes_query.mws

  The attached shows animation of the letter A. The animation works fine, and in the plot diagram of the large letter A, the axes are shown.  However, in the second plot (animated), the axes are not being shown, despite clicking on Axes in the animation.  The choices here are Boxed, Framed, Normal or None.

  In the Maple 7 documentation on Axes it states "From the Axes menu choose Ranges...."   ...but I can't see Ranges. 

Any reasons for this?

Hi all, since I cannot use Latex over here I try to formulate as good as possible. Suppose we have the standard integral from a to b of a function f(x), which is equal to:

h * sum (k=1 to N) [ck f(a+kh)] +O(hp), where h=(b-a)/N+1, an p(N)>= N+1;

Would it be possible to write a procedure to evaluate the coefficients ck , k=1,2,3..N and P(N)

Perhaps a stupid question, because I don't know if it is possible.

Best wishes, Math

Hey, 

I run into the same issue quite often. Let's say I have some polynomial over variable like this

H = (s-z0)/((s-p0)*(s-p1))

I do a substitution on s and get something quite messy as a result. Example:

H = ((z-1)/(T*z)-z0)/(((z-1)/(T*z)-p0)*((z-1)/(T*z)-p1))



Now I would like to get the polynomial in the same pole / zero form. I'm sure maple is capable of doing this but I have no clue where to click. Is there an easy way to bring a polynomial over some variable in a standarized form?

Cheers!


 

``

restart

``

f := proc (x, z) options operator, arrow; ln(x^z) end proc;

proc (x, z) options operator, arrow; ln(x^z) end proc

(1)

``

``

``

simplify(f(x, 2), ln);

ln(x^2)

(2)

simplify(f(x, 1/2+I*y), ln);

ln(x^(-((1/2)*I)*(I-2*y)))

(3)

``


 

Download simplln.mw

 

with(CodeGeneration)

ua=[ 1 2 3 4];

Matlab(ua);

 

%How can i write the Output of "Matlab(ua)"  on file so I can use the Matlab "load" command
later on to get the result in Matlab?  

 

 

For my own use, I am attempting to port Joe Riel’s glyph package for geometric algebra into a module more compatible with recent versions of Maple. To this end, I have been testing individual procedures extracted from the package into Maple 2016, both to understand the algorithms and to check for glitches caused by the code running in more current Maple 2016. The procedure for carrying out the exterior multiplication of blades does not seem to work reliably, and I haven’t the necessary knowledge of Maple language to determine whether this is due to an error on my part or a feature of Maple V that no longer works.  I have attached a worksheet,tablemultiplyexample.mw,  that includes the procedures necessary for the multiplication routine to work, but I can’t get any consistency in the results.  Can anyone advise me what is the problem?  

As I understand the routine, setup defines a anti-symmetric root blade table with an indexing function that precludes assignment to the table. Clifford blades are then represented as indexed variables using the root table. The process is as follows see worksheet for actual code):

initialize := proc ()
 global _e, tableroot;
tableroot := table(antisymmetric, blade);
tableroot[] := 1;
_e := tableroot;
end proc:
#The index function `blade` is as follows:

`index/blade` := proc (Indices, tableau)
 if nargs = 2 then if Indices = [] then 1
          else tableau[op(checkindices(Indices))] end if
elif Indices = [] then tableau[Indices[]] := 1
 else ERROR("cannot assign to a blade", Indices) end if
end proc;

#Exterior multiplication is performed by the following routine.
b_exteriorp := proc (u, v)
option remember;
 if  u = 1 or v = 1 then u*v
else _e[op(u), op(v)] end if
end proc:

As near as I understand, the procedure joins the lists representing the two input blade into a single list that is processed by the antisymmetric indexing function and outputs the indexes as the product blade. I don’t understand how the case of duplicate indexes (which should return 0) is supposed to be handled by the procedure.  What the procedure usually returns is simply the appended list of the two blades without modification by the indexing function.

Can anyone give me a hint about how to fix this procedure?

tablemultiplyexample.mw

I am trying to input data via a data table. Have several problems here.

I used an array because I want the row and column numbers to start at 0.

1st When the table appers after that the document runs hediously slow as in a second or two to enter a digit or letters appear after typing.  Like something is absorbing the computer resources. But I have a fast machine.

2nd Any data I  enter to the table vanishes but does get stored.

3rd I tried to turn it all into a procedure but cant get that to work.
 

restart

with(DocumentTools:-Components)

[Button, CheckBox, CodeEditRegion, ComboBox, DataTable, Dial, Label, ListBox, MathContainer, Meter, Microphone, Plot, RadioButton, RotaryGauge, Shortcut, Slider, Speaker, State, TextArea, ToggleButton, VideoPlayer, VolumeGauge]

(1)

with(DocumentTools:-Layout)

[Cell, Column, DocumentBlock, Equation, Font, Group, Image, InlinePlot, Input, Output, Row, Section, Table, Textfield, Title, Worksheet]

(2)

with(DocumentTools)

[AddIcon, AddPalette, AddPaletteEntry, Components, ContentToString, CreateTask, Do, GetDocumentProperty, GetProperty, InsertContent, InsertTask, Layout, RemovePalette, RemovePaletteEntry, RemoveTask, Retrieve, RunWorksheet, SetDocumentProperty, SetProperty, Tabulate]

(3)

ary := Array(0 .. 3, 0 .. 3)

Array(%id = 18446746457454449478)

(4)

``

 

 

``

DT := DataTable(identity = "DataTable0", variable = 'ary', rowheader, columnheader, columnnames = [beta^0, beta, beta^2, beta^3], rownames = [alpha^0, alpha, alpha^2, alpha^3])

xml := Worksheet(Group(Input(Textfield(DT))))

DocumentTools:-InsertContent(xml)

PN1 := copy(ary, 0 .. (), 0 .. ())

Array(%id = 18446746457454471998)

(5)

Matrix(PN1)

Matrix(%id = 18446746457454477550)

(6)

PN1[0, 0]

6

(7)

BiPolyNum := proc (a := 4, b := 4) local ary, DT; description "Creates Bi Polynumbers"; ary := Array(0 .. a, 0 .. b); DT := DataTable(identity = "DataTable0", variable = 'ary', rowheader, columnheader, columnnames = [1, beta, beta^2, beta^3], rownames = [1, alpha, alpha^2, alpha^3]); DocumentTools:-InsertContent(xml); return copy(ary) end proc

proc (a := 4, b := 4) local ary, DT; description "Creates Bi Polynumbers"; ary := Array(0 .. a, 0 .. b); DT := DocumentTools:-Components:-DataTable(identity = "DataTable0", variable = 'ary', rowheader, columnheader, columnnames = [1, beta, beta^2, beta^3], rownames = [1, alpha, alpha^2, alpha^3]); DocumentTools:-InsertContent(xml); return copy(ary) end proc

(8)

``

``

f := BiPolyNum()

Array(%id = 18446746457454464046)

(9)

f

Array(%id = 18446746457454464046)

(10)

Matrix(f)

Matrix(%id = 18446746457454466582)

(11)

``


 

Download DataTable_Experiment.mw

First 863 864 865 866 867 868 869 Last Page 865 of 2427