MaplePrimes Questions

Hi -- I have used this valuable platform many times to ask technical questions, but I am facing a particularly annoying problem in Maple 24 that did not exist in Maple 23. When I work on a Maple sheet and press Shift + Enter to move the cursor to a new line, an unwanted space appears. The issue is that when I use this combination twice on existing Maple sheets to create whitespace, the variable name often gets split up. Additionally, when I try to move back to the previous line to add something, I simply cannot. This issue did not exist in Maple 23 or any version since Maple 15. I have checked Tools > Options under both Display and Interface, but I have not found a solution. Is there a way to eliminate this annoying space?

  I would like to print my help pages to pdf. Is there a way to install A3 paper size. That would help in maintaining the layout as seen on the screen. 

Maybe there is an alternative approach.

I have a PDE of the form

u_{tt}+2*a(t)*u_x^2+2*b(t)*u(t,x,y)*u_{xx}+u_{yy}=0

How can I find Lie symmetries of this equation using PDEtools?

Please help me out.

Please write the code for 2nd Order Gausian Smoothing of the curve with the following data:

X := Vector[row](781, [0, 0.000115771, 0.000231541, 0.000347312, 0.000463082, 0.000578853, 0.000694623, 0.000810394, 0.000926164, 0.001041935, 0.001157705, 0.001273476, 0.001389246, 0.001505017, 0.001620787, 0.001736558, 0.001852328, 0.001968099, 0.002083869, 0.00219964, 0.00231541, 0.002431181, 0.002546952, 0.002662722, 0.002778493, 0.002894263, 0.003010034, 0.003125804, 0.003241575, 0.003357345, 0.003473116, 0.003588886, 0.003704657, 0.003820427, 0.003936198, 0.004051968, 0.004167739, 0.004283509, 0.00439928, 0.00451505, 0.004630821, 0.004746591, 0.004862362, 0.004978132, 0.005093903, 0.005209674, 0.005325444, 0.005441215, 0.005556985, 0.005672756, 0.005788526, 0.005904297, 0.006020067, 0.006135838, 0.006251608, 0.006367379, 0.006483149, 0.013008131, 0.013123901, 0.013239672, 0.013355442, 0.013471213, 0.013586983, 0.013702754, 0.013818524, 0.013934295, 0.014050065, 0.014165836, 0.014281606, 0.014397377, 0.014513148, 0.014628918, 0.014744689, 0.014860459, 0.01497623, 0.015092, 0.015207771, 0.015323541, 0.015439312, 0.015555082, 0.015670853, 0.015786623, 0.015902394, 0.016018164, 0.016133935, 0.016249705, 0.016365476, 0.016481246, 0.016597017, 0.016712787, 0.016828558, 0.023353539, 0.02346931, 0.02358508, 0.023700851, 0.023816621, 0.023932392, 0.024048163, 0.024163933, 0.024279704, 0.024395474, 0.024511245, 0.024627015, 0.024742786, 0.024858556, 0.024974327, 0.025090097, 0.031615079, 0.031730849, 0.03184662, 0.03196239, 0.032078161, 0.032193931, 0.032309702, 0.032425472, 0.032541243, 0.032657013, 0.032772784, 0.032888554, 0.033004325, 0.033120095, 0.039645077, 0.039760847, 0.039876618, 0.039992388, 0.040108159, 0.040223929, 0.0403397, 0.040455471, 0.040571241, 0.047096222, 0.047211993, 0.047327764, 0.047443534, 0.047559305, 0.047675075, 0.047790846, 0.047906616, 0.054431598, 0.054547368, 0.054663139, 0.054778909, 0.05489468, 0.05501045, 0.055126221, 0.055241991, 0.055357762, 0.061882743, 0.061998514, 0.062114284, 0.062230055, 0.062345825, 0.062461596, 0.062577366, 0.062693137, 0.069218118, 0.069333889, 0.069449659, 0.06956543, 0.0696812, 0.069796971, 0.076321952, 0.076437723, 0.076553493, 0.076669264, 0.076785034, 0.076900805, 0.077016575, 0.077132346, 0.077248116, 0.083773098, 0.083888868, 0.084004639, 0.084120409, 0.08423618, 0.08435195, 0.090876932, 0.090992702, 0.091108473, 0.091224243, 0.091340014, 0.097864995, 0.097980766, 0.098096536, 0.098212307, 0.098328077, 0.098443848, 0.098559619, 0.1050846, 0.10520037, 0.105316141, 0.105431912, 0.105547682, 0.105663453, 0.105779223, 0.112304205, 0.112419975, 0.112535746, 0.112651516, 0.112767287, 0.112883057, 0.119408039, 0.119523809, 0.11963958, 0.11975535, 0.119871121, 0.119986891, 0.120102662, 0.126627643, 0.126743414, 0.126859184, 0.126974955, 0.127090725, 0.127206496, 0.133731477, 0.133847248, 0.133963018, 0.134078789, 0.134194559, 0.13431033, 0.1344261, 0.140951082, 0.141066852, 0.141182623, 0.141298393, 0.141414164, 0.141529934, 0.148054916, 0.148170686, 0.148286457, 0.148402227, 0.148517998, 0.148633768, 0.148749539, 0.15527452, 0.155390291, 0.155506061, 0.155621832, 0.155737602, 0.155853373, 0.162378354, 0.162494125, 0.162609895, 0.162725666, 0.162841436, 0.162957207, 0.163072977, 0.169597959, 0.169713729, 0.1698295, 0.16994527, 0.170061041, 0.170176811, 0.176701793, 0.176817563, 0.176933334, 0.177049104, 0.177164875, 0.177280646, 0.183805627, 0.183921397, 0.184037168, 0.184152938, 0.184268709, 0.18438448, 0.18450025, 0.191025231, 0.191141002, 0.191256773, 0.191372543, 0.191488314, 0.191604084, 0.198129066, 0.198244836, 0.198360607, 0.198476377, 0.198592148, 0.198707918, 0.2052329, 0.20534867, 0.205464441, 0.205580211, 0.205695982, 0.205811752, 0.212336734, 0.212452504, 0.212568275, 0.212684045, 0.212799816, 0.212915586, 0.219440568, 0.219556338, 0.219672109, 0.219787879, 0.21990365, 0.22001942, 0.220135191, 0.226660172, 0.226775943, 0.226891713, 0.227007484, 0.227123254, 0.227239025, 0.233764006, 0.233879777, 0.233995547, 0.234111318, 0.234227088, 0.234342859, 0.24086784, 0.240983611, 0.241099381, 0.241215152, 0.241330922, 0.247855904, 0.247971674, 0.248087445, 0.248203215, 0.248318986, 0.248434756, 0.254959738, 0.255075508, 0.255191279, 0.255307049, 0.25542282, 0.25553859, 0.262063572, 0.262179342, 0.262295113, 0.262410883, 0.262526654, 0.269051635, 0.269167406, 0.269283176, 0.269398947, 0.269514717, 0.276039699, 0.276155469, 0.27627124, 0.27638701, 0.276502781, 0.283027762, 0.283143533, 0.283259303, 0.283375074, 0.283490844, 0.290015826, 0.290131596, 0.290247367, 0.290363137, 0.290478908, 0.290594678, 0.29711966, 0.29723543, 0.297351201, 0.297466971, 0.297582742, 0.304107723, 0.304223494, 0.304339264, 0.304455035, 0.304570805, 0.304686576, 0.311211557, 0.311327328, 0.311443098, 0.311558869, 0.31167464, 0.31179041, 0.318315391, 0.318431162, 0.318546933, 0.318662703, 0.318778474, 0.318894244, 0.325419225, 0.325534996, 0.325650767, 0.325766537, 0.325882308, 0.325998078, 0.33252306, 0.33263883, 0.332754601, 0.332870371, 0.332986142, 0.339511123, 0.339626894, 0.339742664, 0.339858435, 0.339974205, 0.340089976, 0.346614957, 0.346730728, 0.346846498, 0.346962269, 0.347078039, 0.34719381, 0.353718791, 0.353834562, 0.353950332, 0.354066103, 0.354181873, 0.354297644, 0.360822625, 0.360938396, 0.361054166, 0.361169937, 0.361285707, 0.367810689, 0.367926459, 0.36804223, 0.368158, 0.368273771, 0.368389541, 0.374914523, 0.375030293, 0.375146064, 0.375261834, 0.375377605, 0.381902586, 0.382018357, 0.382134127, 0.382249898, 0.382365668, 0.38889065, 0.38900642, 0.389122191, 0.389237961, 0.389353732, 0.389469502, 0.395994484, 0.396110254, 0.396226025, 0.396341795, 0.402866777, 0.402982547, 0.403098318, 0.403214088, 0.403329859, 0.40985484, 0.409970611, 0.410086381, 0.410202152, 0.410317922, 0.416842904, 0.416958674, 0.417074445, 0.417190215, 0.423715197, 0.423830967, 0.423946738, 0.424062508, 0.43058749, 0.43070326, 0.430819031, 0.430934801, 0.431050572, 0.437575553, 0.437691324, 0.437807094, 0.437922865, 0.444447846, 0.444563617, 0.444679387, 0.444795158, 0.451320139, 0.45143591, 0.45155168, 0.451667451, 0.458192432, 0.458308203, 0.458423973, 0.458539744, 0.465064725, 0.465180496, 0.465296266, 0.465412037, 0.471937018, 0.472052789, 0.472168559, 0.47228433, 0.478809311, 0.478925082, 0.479040852, 0.479156623, 0.485681604, 0.485797375, 0.485913145, 0.486028916, 0.492553897, 0.492669668, 0.492785438, 0.492901209, 0.49942619, 0.499541961, 0.499657731, 0.506182713, 0.506298483, 0.506414254, 0.506530024, 0.513055006, 0.513170776, 0.513286547, 0.513402317, 0.519927299, 0.520043069, 0.52015884, 0.526683821, 0.526799592, 0.526915362, 0.533440343, 0.533556114, 0.533671885, 0.533787655, 0.540312636, 0.540428407, 0.540544178, 0.547069159, 0.547184929, 0.5473007, 0.553825681, 0.553941452, 0.554057222, 0.560582204, 0.560697974, 0.560813745, 0.567338726, 0.567454497, 0.567570267, 0.574095249, 0.574211019, 0.57432679, 0.580851771, 0.580967542, 0.581083312, 0.587608294, 0.587724064, 0.587839835, 0.594364816, 0.594480587, 0.594596357, 0.601121339, 0.601237109, 0.60135288, 0.607877861, 0.607993632, 0.608109402, 0.614634384, 0.614750154, 0.614865925, 0.621390906, 0.621506677, 0.628031658, 0.628147428, 0.628263199, 0.63478818, 0.634903951, 0.635019721, 0.641544703, 0.641660473, 0.648185455, 0.648301225, 0.648416996, 0.654941977, 0.655057748, 0.655173518, 0.6616985, 0.66181427, 0.668339252, 0.668455022, 0.668570793, 0.675095774, 0.675211545, 0.681736526, 0.681852297, 0.681968067, 0.688493049, 0.688608819, 0.695133801, 0.695249571, 0.695365342, 0.701890323, 0.702006094, 0.708531075, 0.708646845, 0.715171827, 0.715287597, 0.715403368, 0.721928349, 0.72204412, 0.728569101, 0.728684872, 0.735209853, 0.735325624, 0.741966376, 0.748607128, 0.75524788, 0.761888631, 0.768529383, 0.775170135, 0.781695117, 0.788335869, 0.794976621, 0.801501602, 0.808142354, 0.814783106, 0.821423858, 0.827948839, 0.834589591, 0.841230343, 0.847871095, 0.854511847, 0.861152599, 0.867793351, 0.874318332, 0.880959084, 0.887599836, 0.894240588, 0.90076557, 0.907406322, 0.913931303, 0.920572055, 0.927097036, 0.933622018, 0.94026277, 0.946787751, 0.953312733, 0.959953484, 0.966478466, 0.973119218, 0.97975997, 0.986284951, 0.992925703, 0.999450685, 1.006091437, 1.012732188, 1.019488711, 1.026129463, 1.032885985, 1.039526737, 1.046051719, 1.0525767, 1.059101682, 1.065626663, 1.072151644, 1.078676626, 1.091610818, 1.085201607, 1.0981358, 1.111069992, 1.104660781, 1.117594973, 1.124119955, 1.137054147, 1.130644936, 1.143579128, 1.15010411, 1.163038302, 1.156629091, 1.169563284, 1.176088265, 1.182613246, 1.195547439, 1.189138228, 1.20207242, 1.208597402, 1.221531594, 1.215122383, 1.228056575, 1.240990768, 1.234581557, 1.25392496, 1.247515749, 1.266859152, 1.260449941, 1.279793345, 1.273384134, 1.292727537, 1.286318326, 1.31207094, 1.305661729, 1.299252518, 1.331414343, 1.325005132, 1.318595921, 1.350757746, 1.344348536, 1.337939325, 1.37010115, 1.363691939, 1.357282728, 1.389444553, 1.383035342, 1.376626131, 1.415197167, 1.408787956, 1.402378745, 1.395969534, 1.43454057, 1.428131359, 1.421722148, 1.453883973, 1.447474762, 1.441065552, 1.466818166, 1.460408955, 1.486161569, 1.479752358, 1.473343147, 1.499095761, 1.49268655, 1.518439164, 1.512029954, 1.505620743, 1.537782568, 1.531373357, 1.524964146, 1.563535182, 1.557125971, 1.55071676, 1.544307549, 1.595697007, 1.948319377, 1.589287796, 1.941910166, 1.582878585, 1.935500955, 1.576469374, 1.929091744, 1.570060163, 1.922682533, 1.916273322, 1.909864111, 1.9034549, 1.897045689, 1.890636478, 1.884227268, 1.659904886, 1.653495675, 1.647086464, 1.640677254, 1.634268043, 1.627858832, 1.621449621, 1.61504041, 1.608631199, 1.602221988, 1.877933827, 1.871524616, 1.865115405, 1.858706194, 1.852296984, 1.845887773, 1.839478562, 1.833069351, 1.82666014, 1.820250929, 1.813841718, 1.807432507, 1.801023296, 1.794614086, 1.788204875, 1.781795664, 1.775386453, 1.768977242, 1.762568031, 1.75615882, 1.749749609, 1.743340398, 1.736931187, 1.730521977, 1.724112766, 1.717703555, 1.711294344, 1.704885133, 1.698475922, 1.692066711, 1.6856575, 1.679248289, 1.672839079, 1.666429868])

Y := Vector[row](782, [0, 0.006409211, 0.012818422, 0.019227633, 0.025636844, 0.032046054, 0.038455265, 0.044864476, 0.051273687, 0.057682898, 0.064092109, 0.07050132, 0.076910531, 0.083319742, 0.089728953, 0.096138163, 0.102547374, 0.108956585, 0.115365796, 0.121775007, 0.128184218, 0.134593429, 0.14100264, 0.147411851, 0.153821061, 0.160230272, 0.166639483, 0.173048694, 0.179457905, 0.185867116, 0.192276327, 0.198685538, 0.205094749, 0.21150396, 0.21791317, 0.224322381, 0.230731592, 0.237140803, 0.243550014, 0.249959225, 0.256368436, 0.262777647, 0.269186858, 0.275596068, 0.282005279, 0.28841449, 0.294823701, 0.301232912, 0.307642123, 0.314051334, 0.320460545, 0.326869756, 0.333278967, 0.339688177, 0.346097388, 0.352506599, 0.35891581, 0.365209251, 0.371618461, 0.378027672, 0.384436883, 0.390846094, 0.397255305, 0.403664516, 0.410073727, 0.416482938, 0.422892149, 0.429301359, 0.43571057, 0.442119781, 0.448528992, 0.454938203, 0.461347414, 0.467756625, 0.474165836, 0.480575047, 0.486984258, 0.493393468, 0.499802679, 0.50621189, 0.512621101, 0.519030312, 0.525439523, 0.531848734, 0.538257945, 0.544667156, 0.551076366, 0.557485577, 0.563894788, 0.570303999, 0.57671321, 0.58300665, 0.589415861, 0.595825072, 0.602234283, 0.608643494, 0.615052705, 0.621461916, 0.627871127, 0.634280338, 0.640689548, 0.647098759, 0.65350797, 0.659917181, 0.666326392, 0.672735603, 0.679144814, 0.685438254, 0.691847465, 0.698256676, 0.704665887, 0.711075098, 0.717484309, 0.72389352, 0.73030273, 0.736711941, 0.743121152, 0.749530363, 0.755939574, 0.762348785, 0.768757996, 0.775051436, 0.781460647, 0.787869858, 0.794279069, 0.80068828, 0.807097491, 0.813506702, 0.819915912, 0.826325123, 0.832618564, 0.839027775, 0.845436986, 0.851846196, 0.858255407, 0.864664618, 0.871073829, 0.87748304, 0.88377648, 0.890185691, 0.896594902, 0.903004113, 0.909413324, 0.915822535, 0.922231746, 0.928640957, 0.935050168, 0.941343608, 0.947752819, 0.95416203, 0.960571241, 0.966980452, 0.973389662, 0.979798873, 0.986208084, 0.992501525, 0.998910735, 1.005319946, 1.011729157, 1.018138368, 1.024547579, 1.030841019, 1.03725023, 1.043659441, 1.050068652, 1.056477863, 1.062887074, 1.069296285, 1.075705496, 1.082114707, 1.088408147, 1.094817358, 1.101226569, 1.10763578, 1.114044991, 1.120454201, 1.126747642, 1.133156853, 1.139566064, 1.145975274, 1.152384485, 1.158677926, 1.165087137, 1.171496348, 1.177905558, 1.184314769, 1.19072398, 1.197133191, 1.203426632, 1.209835842, 1.216245053, 1.222654264, 1.229063475, 1.235472686, 1.241881897, 1.248175337, 1.254584548, 1.260993759, 1.26740297, 1.273812181, 1.280221392, 1.286514832, 1.292924043, 1.299333254, 1.305742465, 1.312151676, 1.318560887, 1.324970097, 1.331263538, 1.337672749, 1.34408196, 1.350491171, 1.356900381, 1.363309592, 1.369603033, 1.376012244, 1.382421454, 1.388830665, 1.395239876, 1.401649087, 1.408058298, 1.414351738, 1.420760949, 1.42717016, 1.433579371, 1.439988582, 1.446397793, 1.452691233, 1.459100444, 1.465509655, 1.471918866, 1.478328077, 1.484737288, 1.491146499, 1.497439939, 1.50384915, 1.510258361, 1.516667572, 1.523076783, 1.529485994, 1.535779434, 1.542188645, 1.548597856, 1.555007067, 1.561416277, 1.567825488, 1.574234699, 1.58052814, 1.586937351, 1.593346561, 1.599755772, 1.606164983, 1.612574194, 1.618867634, 1.625276845, 1.631686056, 1.638095267, 1.644504478, 1.650913689, 1.657207129, 1.66361634, 1.670025551, 1.676434762, 1.682843973, 1.689253184, 1.695662395, 1.701955835, 1.708365046, 1.714774257, 1.721183468, 1.727592679, 1.73400189, 1.74029533, 1.746704541, 1.753113752, 1.759522963, 1.765932173, 1.772341384, 1.778634825, 1.785044036, 1.791453247, 1.797862457, 1.804271668, 1.810680879, 1.81697432, 1.823383531, 1.829792741, 1.836201952, 1.842611163, 1.849020374, 1.855313814, 1.861723025, 1.868132236, 1.874541447, 1.880950658, 1.887359869, 1.89376908, 1.90006252, 1.906471731, 1.912880942, 1.919290153, 1.925699364, 1.932108575, 1.938402015, 1.944811226, 1.951220437, 1.957629648, 1.964038859, 1.97044807, 1.97674151, 1.983150721, 1.989559932, 1.995969143, 2.002378353, 2.008671794, 2.015081005, 2.021490216, 2.027899427, 2.034308637, 2.040717848, 2.047011289, 2.0534205, 2.05982971, 2.066238921, 2.072648132, 2.079057343, 2.085350784, 2.091759994, 2.098169205, 2.104578416, 2.110987627, 2.117281068, 2.123690278, 2.130099489, 2.1365087, 2.142917911, 2.149211351, 2.155620562, 2.162029773, 2.168438984, 2.174848195, 2.181141635, 2.187550846, 2.193960057, 2.200369268, 2.206778479, 2.213071919, 2.21948113, 2.225890341, 2.232299552, 2.238708763, 2.245117974, 2.251411414, 2.257820625, 2.264229836, 2.270639047, 2.277048258, 2.283341698, 2.289750909, 2.29616012, 2.302569331, 2.308978542, 2.315387753, 2.321681193, 2.328090404, 2.334499615, 2.340908826, 2.347318037, 2.353727247, 2.360020688, 2.366429899, 2.37283911, 2.379248321, 2.385657531, 2.392066742, 2.398360183, 2.404769394, 2.411178604, 2.417587815, 2.423997026, 2.430406237, 2.436699678, 2.443108888, 2.449518099, 2.45592731, 2.462336521, 2.468629962, 2.475039172, 2.481448383, 2.487857594, 2.494266805, 2.500676016, 2.506969456, 2.513378667, 2.519787878, 2.526197089, 2.5326063, 2.539015511, 2.545308951, 2.551718162, 2.558127373, 2.564536584, 2.570945795, 2.577355006, 2.583648446, 2.590057657, 2.596466868, 2.602876079, 2.60928529, 2.61557873, 2.621987941, 2.628397152, 2.634806363, 2.641215574, 2.647624784, 2.653918225, 2.660327436, 2.666736647, 2.673145858, 2.679555068, 2.685848509, 2.69225772, 2.698666931, 2.705076141, 2.711485352, 2.717778793, 2.724188004, 2.730597215, 2.737006425, 2.743415636, 2.749824847, 2.756118288, 2.762527499, 2.768936709, 2.77534592, 2.781639361, 2.788048572, 2.794457782, 2.800866993, 2.807276204, 2.813569645, 2.819978856, 2.826388066, 2.832797277, 2.839206488, 2.845499929, 2.851909139, 2.85831835, 2.864727561, 2.871021002, 2.877430213, 2.883839423, 2.890248634, 2.896542075, 2.902951286, 2.909360496, 2.915769707, 2.922178918, 2.928472359, 2.93488157, 2.94129078, 2.947699991, 2.953993432, 2.960402643, 2.966811853, 2.973221064, 2.979514505, 2.985923716, 2.992332927, 2.998742137, 3.005035578, 3.011444789, 3.017854, 3.024263211, 3.030556651, 3.036965862, 3.043375073, 3.049784284, 3.056077724, 3.062486935, 3.068896146, 3.075305357, 3.081598797, 3.088008008, 3.094417219, 3.10082643, 3.10711987, 3.113529081, 3.119938292, 3.126347503, 3.132640943, 3.139050154, 3.145459365, 3.151868576, 3.158162016, 3.164571227, 3.170980438, 3.177273878, 3.183683089, 3.1900923, 3.196501511, 3.202794951, 3.209204162, 3.215613373, 3.222022584, 3.228316024, 3.234725235, 3.241134446, 3.247427887, 3.253837098, 3.260246308, 3.266539749, 3.27294896, 3.279358171, 3.285767381, 3.292060822, 3.298470033, 3.304879244, 3.311172684, 3.317581895, 3.323991106, 3.330284546, 3.336693757, 3.343102968, 3.349396408, 3.355805619, 3.36221483, 3.36850827, 3.374917481, 3.381326692, 3.387620133, 3.394029344, 3.400438554, 3.406731995, 3.413141206, 3.419550417, 3.425843857, 3.432253068, 3.438662279, 3.444955719, 3.45136493, 3.457774141, 3.464067581, 3.470476792, 3.476886003, 3.483179443, 3.489588654, 3.495997865, 3.502291306, 3.508700517, 3.515109727, 3.521403168, 3.527812379, 3.534105819, 3.54051503, 3.546924241, 3.553217681, 3.559626892, 3.566036103, 3.572329543, 3.578738754, 3.585032195, 3.591441406, 3.597850616, 3.604144057, 3.610553268, 3.616962479, 3.623255919, 3.62966513, 3.63595857, 3.642367781, 3.648776992, 3.655070432, 3.661479643, 3.667773084, 3.674182295, 3.680591505, 3.686884946, 3.693294157, 3.699587597, 3.705996808, 3.712406019, 3.718699459, 3.72510867, 3.731402111, 3.737811321, 3.744104762, 3.750513973, 3.756923184, 3.763216624, 3.769625835, 3.775919275, 3.782328486, 3.788621926, 3.795031137, 3.807733789, 3.82043644, 3.833139091, 3.845841742, 3.858544394, 3.871247045, 3.877540485, 3.890243137, 3.902945788, 3.909239228, 3.92194188, 3.934644531, 3.947347182, 3.953640622, 3.966343274, 3.979045925, 3.991748576, 4.004451228, 4.017153879, 4.02985653, 4.03614997, 4.048852622, 4.061555273, 4.074257924, 4.080551365, 4.093254016, 4.099547456, 4.112250108, 4.118543548, 4.124836988, 4.13753964, 4.14383308, 4.15012652, 4.162829172, 4.169122612, 4.181825263, 4.194527914, 4.200821355, 4.213524006, 4.219817446, 4.232520098, 4.245222749, 4.264334611, 4.277037262, 4.296149125, 4.308851776, 4.315145216, 4.321438657, 4.327732097, 4.334025537, 4.340318978, 4.346612418, 4.352790088, 4.352905858, 4.359083528, 4.365261198, 4.365376969, 4.371554639, 4.377848079, 4.384025749, 4.384141519, 4.390319189, 4.396612629, 4.402790299, 4.40290607, 4.40908374, 4.41537718, 4.42167062, 4.42784829, 4.427964061, 4.434141731, 4.440435171, 4.446612841, 4.446728611, 4.452906281, 4.459083951, 4.459199722, 4.465261621, 4.465377391, 4.471439291, 4.471555061, 4.477616961, 4.477732731, 4.483794631, 4.483910401, 4.48985653, 4.4899723, 4.490088071, 4.495918429, 4.4960342, 4.49614997, 4.501980329, 4.502096099, 4.50221187, 4.508042228, 4.508157998, 4.508273769, 4.514104127, 4.514219898, 4.514335668, 4.520050256, 4.520166026, 4.520281797, 4.520397568, 4.526112155, 4.526227926, 4.526343696, 4.532174055, 4.532289825, 4.532405596, 4.538351724, 4.538467495, 4.544413624, 4.544529394, 4.544645165, 4.550591294, 4.550707064, 4.556653193, 4.556768963, 4.556884734, 4.562715092, 4.562830863, 4.562946633, 4.568661221, 4.568776992, 4.568892762, 4.569008533, 4.574491579, 4.574533412, 4.57460735, 4.574649182, 4.57472312, 4.574764953, 4.574838891, 4.574880723, 4.574954661, 4.574996494, 4.575112264, 4.575228035, 4.575343805, 4.575459576, 4.575575346, 4.575691117, 4.579743085, 4.579858856, 4.579974626, 4.580090397, 4.580206167, 4.580321938, 4.580437708, 4.580553479, 4.580669249, 4.58078502, 4.582216098, 4.582331869, 4.582447639, 4.58256341, 4.58267918, 4.582794951, 4.582910721, 4.583026492, 4.583142262, 4.583258033, 4.583373803, 4.583489574, 4.583605344, 4.583721115, 4.583836885, 4.583952656, 4.584068427, 4.584184197, 4.584299968, 4.584415738, 4.584531509, 4.584647279, 4.58476305, 4.58487882, 4.584994591, 4.585110361, 4.585226132, 4.585341902, 4.585457673, 4.585573443, 4.585689214, 4.585804984, 4.585920755, 4.586036525])

 

(1) for i from 1 to 10 do;

(2) for j from 1 to 10 do:

(3) PSLQ([f(i]), f(j)]);

(4) od: od:

What I want is that if there is an error in line (3) then the program ignores it and goes to next do. How can I got that?

Hello, I have the problem where my Maple worksheet involves very high-precision calculations which result in graphs with a large number of data points. This can result in the file being hundreds of MB large. However, I do not need to necessarily save all these data points inside the worksheet itself since they can easily be recreated. To save disk space, I would prefer to only save the generating commands and not any plots or array data, etc. Is there a way to do this?

simp.mw

please see simp.mw file

How did Student:-ODEs:-ODESteps([ode,ic]); managed to get this zero solution to this ode? I can't follow the logic it did.

Any ideas what it is doing in the 4th step there?
 

13496

interface(version);

`Standard Worksheet Interface, Maple 2024.0, Windows 10, March 01 2024 Build ID 1794891`

ode := diff(y(x), x) = y(x)*(2*y(x) - x)/(x*(-2*x + 3*y(x)));
ic:=y(1)=-1;
dsolve([ode,ic]);

diff(y(x), x) = y(x)*(2*y(x)-x)/(x*(-2*x+3*y(x)))

y(1) = -1

y(x) = (1/6)*(I*((-27*x^2+x^3+3*3^(1/2)*(-2*x^5+27*x^4)^(1/2))^(2/3)-x^2)*3^(1/2)-((-27*x^2+x^3+3*3^(1/2)*(-2*x^5+27*x^4)^(1/2))^(1/3)-x)^2)/(-27*x^2+x^3+3*3^(1/2)*(-2*x^5+27*x^4)^(1/2))^(1/3)

#now try ODEsteps
Student:-ODEs:-ODESteps([ode,ic]);
 

"[[,,"Let's solve"],[,,[(ⅆ)/(ⅆx) y(x)=(y(x) (2 y(x)-x))/(x (-2 x+3 y(x))),y(1)=-1]],["•",,"Highest derivative means the order of the ODE is" 1],[,,(ⅆ)/(ⅆx) y(x)],["•",,"Solve for the highest derivative"],[,,(ⅆ)/(ⅆx) y(x)=(y(x) (2 y(x)-x))/(x (-2 x+3 y(x)))],["•",,"Use initial condition" y(1)=-1],[,,0],["•",,"Solve for" 0],[,,0=0],["•",,"Substitute" 0=0 "into general solution and simplify"],[,,0],["•",,"Solution to the IVP"],[,,0]]"

odetest(y(x)=0,[ode,ic])

[0, -1]

 


 

Download strange_ode_steps_solution_june_20_2024.mw

(Tested on Maple 2021.1 and 2024.0, on Mac)

I want to write a Maple procedure that takes advantages of the latest features but doesn't break on older versions of Maple.

So I can write something like this:

   if version() >= VERSION then new_method else old_method end if

This works, but it has the problem that the version( ) command not only returns a version number but also writes three lines to the screen, like this:

 User Interface: 1794891
         Kernel: 1794891
        Library: 1794891

I don't want those lines to appear every time the procedure is used but I don't know how to make them go away.  Is there a way, or is there a better approach to achieving what I want?

Thanks, Brendan.

When I began posting replies or answers in Mapleprimes I remember Carl Love explaining me the difference between them.
I was a newbie by then but I think I've grown up and now I know the difference between a reply and a comment.
For reasons of my own, which I will perhaps explain in a post one day, I have decided to sent only comments and no more answers.

Unfortuntely administrators, or maybe a robot, keep turning my comments into answers.
Which in turn forces me to convert these answers into comments, which are then converted back into answers... which may never end and is a complite waste of time.

Is there a way to declare that I want my choices to be respected?

(For the record I've even written in the header of my comment that I didn't want it to be converted into an answer, but the comment was removed and the conversion done !)

Hello everyone

I need help solving a system of equations as below. I'm looking for a way to do it, but I don't understand the general concept of how such an equation is calculated. So far I've been using a package in LabVIEW that worked similarly to Simulink and that was clear to me, whereas here I'm overwhelmed by the multitude of options and that's why I'm asking for help.

I need to solve these equations analogously to Matlab-Simulink, i.e., a time interval and integration step, and a numerical procedure in symbolic versions.

Help_me.mw

Hi MaplePrimes,

I have decided to look for an odd perfect number.  
I want Maple code to determine if there is a perfect number beween bounds on a factor.
For definitions of deficient and perfect and abundant numbers, see
https://mathworld.wolfram.com/DeficientNumber.html
https://mathworld.wolfram.com/PerfectNumber.html
https://mathworld.wolfram.com/AbundantNumber.html

I need some sort of loop that closes in on the edge of abundant/deficient numbers.

Specifically, an IF() statement is needed about wheather the function

sigma(a)-2*a is positive or negative.

Regards,

Matt

abundant_edge_30.mw

I see this question https://mathematica.stackexchange.com/questions/304317/how-to-draw-a-number-of-circles-inscribed-in-a-square-so-that-the-sum-of-the-rad

I have a square with length of side is $a$. How to draw a number of circles inscribed in a square so that the sum of the radii of the circle is greatest? In the below picture is twenty circles inscribed in a square. We can consider number of circles are 5, 6, ... We consider number of the circles is fixed.

How can I tell Maple to do that.

Have a list of four projective points. I need to check that they are colinear projectively. If one point is at infinity i.e. 0 in z position I can chech if combination of cross product and dot product is 0.
a)  What is a good way to find if one ot the four has zero in z position?

b) Having found that is there a neat way of piching the next two/three points by making the count wrap automatically. e.g 3  then 4,5,6 i.e. 3,4,1,2

restart

with(LinearAlgebra)

pt := [`<,>`(1, 1, 1), `<,>`(2, 1, 1), `<,>`(3, 1, 0), `<,>`(4, 1, 1)]

pt := [Vector(3, {(1) = 1, (2) = 1, (3) = 1}), Vector(3, {(1) = 2, (2) = 1, (3) = 1}), Vector(3, {(1) = 3, (2) = 1, (3) = 0}), Vector(3, {(1) = 4, (2) = 1, (3) = 1})]

(1)

ListTools(Occurences([anything, anything, 0], pt))

ListTools(Occurences([anything, anything, 0], [Vector(3, {(1) = 1, (2) = 1, (3) = 1}), Vector(3, {(1) = 2, (2) = 1, (3) = 1}), Vector(3, {(1) = 3, (2) = 1, (3) = 0}), Vector(3, {(1) = 4, (2) = 1, (3) = 1})]))

(2)

``

`&x`(pt[1]-pt[3], pt[1]-pt[3]).(pt[4]-pt[3])

0

(3)

NULL

Download 2024-06-18_Q_4_points_projective_colinear.mw

I was wondering if Maple could be setup in a way that no parallel processing is performed (as on a single core)?

I know, it's a poor way to test an algorithim/method for thread safety (i.e. deterministic behaviour). But it is better than nothing.

Are there other ways to test for thread safety?

First 95 96 97 98 99 100 101 Last Page 97 of 2426