MaplePrimes Questions

I have an equation to solve 

mu*f = (2*S1*f + S1*x)

where mu is scalar, f is vector, x is vector, S1 is a matrix. I need to solve this equation for f but S1 is matrix sow can I tell Maple that S1 is matrix? If we solve the equation with matrix we need to use matrices inverse. If we have to divide by matrix we use the product of the inverse of this matrix.

For example, if I have a function

f:=x->x^3-2x

I want to created csv file containing coordinates of points of the function

(1,...), (1.1,...),...

 

How to do it?

 

I want to convert the coordinates to csv file and use this file in originpro to plot a graph that is more beautiful than that of Maple.

Hi,

I have this code to calculate taylor method but I do not know how to write the part about derivative of a function f  inside the loop for ??

restart;
f:=(t,y)->y-t^2+1:
eqn:=diff(y(t),t)=y(t)-t^2+1:
ex:=dsolve({eqn,y(0)=0.5},y(t)):
t[0]:=0:w[0]:=0.5:h:=0.2:ex[0]:=0.5:e[0]:=0:
for n from 1 to 10 do
t[n]:=n*h;ex[n]:=t[n]^2 + 2*t[n] + 1 - exp(t[n])/2;
w[n]:=w[n-1]+h*f(t[n-1],w[n-1])+((h^2/factorial(2))*(f(t[n-1],w[n-1])-2*t[n-1]));
e[n]:=abs(ex[n]-w[n]);
od:

printf(" i | t[i] |(Taylor)w[i] |(exact)y[i] |Error | \n ");for i from 0 to n-1 do
printf("%2.2f| %5.2f  | %5.6f| %5.6f  |  %5.6f | \n", i, t[i], w[i] ,ex[i],e[i]) ;
od;

Hi i was trying to numerically integrate my freinds model with dsolve, and i am sure that I have put all the right components in the command as described in the help page, but it doesn't work. (Here is a worksheet with the model Lindas_signal_transduction_model.mw )

What is the problem with the way I have called the function?
Does anyone have a mental checklist that they use for dsolve commands? because I often struggle with making them work.

 

Can you help me

myproc := proc () local img1, img2, img3;

with(DocumentTools); with(DocumentTools:-Layout);

img1 := "c:\\1.jpg"; img2 := "c:\\2.jpg"; img3 := "c:\\3.jpg";

print("Title 1 row 1, picture 1"); print(img1); print("Title 2 row 2, picture 2");

print(img2); print("Title 3 row 3, picture 3"); print(img3);

print("The End");

end proc

``

myproc := proc () local img1, img2, img3; with(DocumentTools); with(DocumentTools:-Layout); img1 := "c:\\1.jpg"; img2 := "c:\\2.jpg"; img3 := "c:\\3.jpg"; print("Title 1 row 1, picture 1"); print(img1); print("Title 2 row 2, picture 2"); print(img2); print("Title 3 row 3, picture 3"); print(img3); print("The End") end proc:

``


 

Download insert_picture.mw

print monitor

 

 

Hello all
I'm working on calculating the conservation laws for a Gardner equation
During calculation interface problem using []

The problem is that this function only works for integer exponents

Is there another way to overcome this

 


 

``

restart; with(PDEtools); declare(u(t, x), A(t), B(t), F(t))

` u`(t, x)*`will now be displayed as`*u

 

` A`(t)*`will now be displayed as`*A

 

` B`(t)*`will now be displayed as`*B

 

` F`(t)*`will now be displayed as`*F

(1)

det_eqs := [2*(diff(diff(Lambda1(t, x, u, ux, uxx), uxx), uxx)) = 0, 2*(diff(diff(diff(Lambda1(t, x, u, ux, uxx), uxx), uxx), x))+2*uxx*(diff(diff(diff(Lambda1(t, x, u, ux, uxx), ux), uxx), uxx))+2*ux*(diff(diff(diff(Lambda1(t, x, u, ux, uxx), u), uxx), uxx)) = 0, 2*(diff(Lambda1(t, x, u, ux, uxx), uxx))*B(t)+(diff(diff(Lambda1(t, x, u, ux, uxx), uxx), uxx))*B(t)*uxx+(diff(diff(Lambda1(t, x, u, ux, uxx), uxx), uxx))*F(t)*u+(diff(diff(Lambda1(t, x, u, ux, uxx), uxx), uxx))*A(t)*u^n*ux = 0, 2*(diff(diff(Lambda1(t, x, u, ux, uxx), u), uxx))*ux+2*(diff(diff(Lambda1(t, x, u, ux, uxx), ux), uxx))*uxx-2*(diff(Lambda1(t, x, u, ux, uxx), ux))+2*(diff(diff(Lambda1(t, x, u, ux, uxx), uxx), x)) = 0, 3*(diff(diff(Lambda1(t, x, u, ux, uxx), uxx), uxx))*B(t)+(diff(diff(diff(Lambda1(t, x, u, ux, uxx), uxx), uxx), uxx))*B(t)*uxx+(diff(diff(diff(Lambda1(t, x, u, ux, uxx), uxx), uxx), uxx))*F(t)*u+(diff(diff(diff(Lambda1(t, x, u, ux, uxx), uxx), uxx), uxx))*A(t)*u^n*ux = 0, ux^2*(diff(diff(diff(Lambda1(t, x, u, ux, uxx), u), u), uxx))+2*ux*(diff(diff(diff(Lambda1(t, x, u, ux, uxx), u), uxx), x))-ux*(diff(diff(Lambda1(t, x, u, ux, uxx), u), ux))-uxx*(diff(diff(Lambda1(t, x, u, ux, uxx), ux), ux))+uxx^2*(diff(diff(diff(Lambda1(t, x, u, ux, uxx), ux), ux), uxx))+uxx*(diff(diff(Lambda1(t, x, u, ux, uxx), u), uxx))+2*uxx*(diff(diff(diff(Lambda1(t, x, u, ux, uxx), ux), uxx), x))+2*uxx*ux*(diff(diff(diff(Lambda1(t, x, u, ux, uxx), u), ux), uxx))-(diff(diff(Lambda1(t, x, u, ux, uxx), ux), x))+diff(diff(diff(Lambda1(t, x, u, ux, uxx), uxx), x), x) = 0, 2*uxx*(diff(diff(diff(Lambda1(t, x, u, ux, uxx), ux), uxx), uxx))*A(t)*u^n*ux+4*(diff(diff(Lambda1(t, x, u, ux, uxx), uxx), x))*B(t)+4*(diff(diff(Lambda1(t, x, u, ux, uxx), ux), uxx))*B(t)*uxx+2*(diff(diff(diff(Lambda1(t, x, u, ux, uxx), ux), uxx), uxx))*B(t)*uxx^2+4*ux*(diff(diff(Lambda1(t, x, u, ux, uxx), u), uxx))*B(t)+2*ux*(diff(diff(Lambda1(t, x, u, ux, uxx), uxx), uxx))*F(t)+2*(diff(diff(diff(Lambda1(t, x, u, ux, uxx), uxx), uxx), x))*B(t)*uxx+2*(diff(diff(diff(Lambda1(t, x, u, ux, uxx), uxx), uxx), x))*F(t)*u+2*(diff(diff(Lambda1(t, x, u, ux, uxx), uxx), uxx))*A(t)*u^n*n*ux^2/u+2*uxx*(diff(diff(Lambda1(t, x, u, ux, uxx), uxx), uxx))*A(t)*u^n+2*uxx*(diff(diff(diff(Lambda1(t, x, u, ux, uxx), ux), uxx), uxx))*F(t)*u+2*(diff(diff(diff(Lambda1(t, x, u, ux, uxx), u), uxx), uxx))*A(t)*u^n*ux^2+2*ux*(diff(diff(diff(Lambda1(t, x, u, ux, uxx), u), uxx), uxx))*B(t)*uxx+2*ux*(diff(diff(diff(Lambda1(t, x, u, ux, uxx), u), uxx), uxx))*F(t)*u+2*(diff(diff(diff(Lambda1(t, x, u, ux, uxx), uxx), uxx), x))*A(t)*u^n*ux = 0, 2*ux*(diff(diff(diff(Lambda1(t, x, u, ux, uxx), u), uxx), x))*B(t)*uxx+2*ux*(diff(diff(diff(Lambda1(t, x, u, ux, uxx), u), uxx), x))*F(t)*u+(diff(diff(diff(Lambda1(t, x, u, ux, uxx), u), u), uxx))*A(t)*u^n*ux^3+ux^2*(diff(diff(diff(Lambda1(t, x, u, ux, uxx), u), u), uxx))*B(t)*uxx+ux^2*(diff(diff(diff(Lambda1(t, x, u, ux, uxx), u), u), uxx))*F(t)*u+2*(diff(diff(diff(Lambda1(t, x, u, ux, uxx), u), uxx), x))*A(t)*u^n*ux^2-(diff(diff(Lambda1(t, x, u, ux, uxx), u), ux))*A(t)*u^n*ux^2-ux*(diff(diff(Lambda1(t, x, u, ux, uxx), u), ux))*F(t)*u-2*uxx*(diff(Lambda1(t, x, u, ux, uxx), ux))*A(t)*u^n-(diff(Lambda1(t, x, u, ux, uxx), x))*A(t)*u^n+uxx*(diff(Lambda1(t, x, u, ux, uxx), uxx))*F(t)+(diff(diff(diff(Lambda1(t, x, u, ux, uxx), uxx), x), x))*F(t)*u+2*ux^2*(diff(diff(Lambda1(t, x, u, ux, uxx), u), uxx))*F(t)+2*(diff(diff(diff(Lambda1(t, x, u, ux, uxx), ux), uxx), x))*B(t)*uxx^2+2*ux*(diff(diff(Lambda1(t, x, u, ux, uxx), u), x))*B(t)+ux^2*(diff(diff(Lambda1(t, x, u, ux, uxx), u), u))*B(t)+2*ux*(diff(diff(Lambda1(t, x, u, ux, uxx), uxx), x))*F(t)+(diff(diff(diff(Lambda1(t, x, u, ux, uxx), ux), ux), uxx))*B(t)*uxx^3-ux*(diff(Lambda1(t, x, u, ux, uxx), ux))*F(t)+(diff(diff(Lambda1(t, x, u, ux, uxx), u), uxx))*B(t)*uxx^2-uxx*(diff(diff(Lambda1(t, x, u, ux, uxx), ux), ux))*F(t)*u+uxx*ux*(diff(diff(Lambda1(t, x, u, ux, uxx), u), ux))*B(t)+2*uxx*ux*(diff(diff(Lambda1(t, x, u, ux, uxx), ux), uxx))*F(t)+2*uxx*(diff(diff(Lambda1(t, x, u, ux, uxx), uxx), x))*A(t)*u^n+2*uxx*(diff(diff(diff(Lambda1(t, x, u, ux, uxx), ux), uxx), x))*F(t)*u+2*uxx*(diff(diff(Lambda1(t, x, u, ux, uxx), ux), uxx))*A(t)*u^n*n*ux^2/u+3*uxx*(diff(Lambda1(t, x, u, ux, uxx), uxx))*A(t)*u^n*n*ux/u+3*uxx*(diff(diff(Lambda1(t, x, u, ux, uxx), u), uxx))*A(t)*u^n*ux+2*uxx*(diff(diff(diff(Lambda1(t, x, u, ux, uxx), ux), uxx), x))*A(t)*u^n*ux+uxx^2*(diff(diff(diff(Lambda1(t, x, u, ux, uxx), ux), ux), uxx))*A(t)*u^n*ux-uxx*(diff(diff(Lambda1(t, x, u, ux, uxx), ux), ux))*A(t)*u^n*ux+2*uxx*(diff(diff(diff(Lambda1(t, x, u, ux, uxx), u), ux), uxx))*A(t)*u^n*ux^2+2*uxx*ux*(diff(diff(diff(Lambda1(t, x, u, ux, uxx), u), ux), uxx))*F(t)*u-(diff(diff(Lambda1(t, x, u, ux, uxx), ux), x))*F(t)*u-(diff(Lambda1(t, x, u, ux, uxx), t))+2*ux*(diff(diff(diff(Lambda1(t, x, u, ux, uxx), u), ux), uxx))*B(t)*uxx^2+2*uxx^2*(diff(diff(Lambda1(t, x, u, ux, uxx), ux), uxx))*A(t)*u^n+uxx^2*(diff(diff(diff(Lambda1(t, x, u, ux, uxx), ux), ux), uxx))*F(t)*u+2*(diff(Lambda1(t, x, u, ux, uxx), u))*B(t)*uxx+(diff(diff(Lambda1(t, x, u, ux, uxx), ux), x))*B(t)*uxx+(diff(diff(diff(Lambda1(t, x, u, ux, uxx), uxx), x), x))*B(t)*uxx+(diff(Lambda1(t, x, u, ux, uxx), u))*F(t)*u+(diff(diff(diff(Lambda1(t, x, u, ux, uxx), uxx), x), x))*A(t)*u^n*ux-(diff(diff(Lambda1(t, x, u, ux, uxx), ux), x))*A(t)*u^n*ux+Lambda1(t, x, u, ux, uxx)*F(t)+(diff(diff(Lambda1(t, x, u, ux, uxx), x), x))*B(t)+uxx*(diff(diff(Lambda1(t, x, u, ux, uxx), u), uxx))*F(t)*u+2*(diff(diff(Lambda1(t, x, u, ux, uxx), u), uxx))*A(t)*u^n*n*ux^3/u+(diff(Lambda1(t, x, u, ux, uxx), uxx))*A(t)*u^n*n^2*ux^3/u^2-(diff(Lambda1(t, x, u, ux, uxx), uxx))*A(t)*u^n*n*ux^3/u^2+2*(diff(diff(Lambda1(t, x, u, ux, uxx), uxx), x))*A(t)*u^n*n*ux^2/u-(diff(Lambda1(t, x, u, ux, uxx), ux))*A(t)*u^n*n*ux^2/u = 0, diff(diff(Lambda1(t, x, u, ux, uxx), uxx), uxx) = 0, diff(diff(diff(Lambda1(t, x, u, ux, uxx), uxx), uxx), uxx) = 0]

[2*(diff(diff(Lambda1(t, x, u, ux, uxx), uxx), uxx)) = 0, 2*(diff(diff(diff(Lambda1(t, x, u, ux, uxx), uxx), uxx), x))+2*uxx*(diff(diff(diff(Lambda1(t, x, u, ux, uxx), ux), uxx), uxx))+2*ux*(diff(diff(diff(Lambda1(t, x, u, ux, uxx), u), uxx), uxx)) = 0, 2*(diff(Lambda1(t, x, u, ux, uxx), uxx))*B(t)+(diff(diff(Lambda1(t, x, u, ux, uxx), uxx), uxx))*B(t)*uxx+(diff(diff(Lambda1(t, x, u, ux, uxx), uxx), uxx))*F(t)*u+(diff(diff(Lambda1(t, x, u, ux, uxx), uxx), uxx))*A(t)*u^n*ux = 0, 2*(diff(diff(Lambda1(t, x, u, ux, uxx), u), uxx))*ux+2*(diff(diff(Lambda1(t, x, u, ux, uxx), ux), uxx))*uxx-2*(diff(Lambda1(t, x, u, ux, uxx), ux))+2*(diff(diff(Lambda1(t, x, u, ux, uxx), uxx), x)) = 0, 3*(diff(diff(Lambda1(t, x, u, ux, uxx), uxx), uxx))*B(t)+(diff(diff(diff(Lambda1(t, x, u, ux, uxx), uxx), uxx), uxx))*B(t)*uxx+(diff(diff(diff(Lambda1(t, x, u, ux, uxx), uxx), uxx), uxx))*F(t)*u+(diff(diff(diff(Lambda1(t, x, u, ux, uxx), uxx), uxx), uxx))*A(t)*u^n*ux = 0, ux^2*(diff(diff(diff(Lambda1(t, x, u, ux, uxx), u), u), uxx))+2*ux*(diff(diff(diff(Lambda1(t, x, u, ux, uxx), u), uxx), x))-ux*(diff(diff(Lambda1(t, x, u, ux, uxx), u), ux))-uxx*(diff(diff(Lambda1(t, x, u, ux, uxx), ux), ux))+uxx^2*(diff(diff(diff(Lambda1(t, x, u, ux, uxx), ux), ux), uxx))+uxx*(diff(diff(Lambda1(t, x, u, ux, uxx), u), uxx))+2*uxx*(diff(diff(diff(Lambda1(t, x, u, ux, uxx), ux), uxx), x))+2*uxx*ux*(diff(diff(diff(Lambda1(t, x, u, ux, uxx), u), ux), uxx))-(diff(diff(Lambda1(t, x, u, ux, uxx), ux), x))+diff(diff(diff(Lambda1(t, x, u, ux, uxx), uxx), x), x) = 0, 2*uxx*(diff(diff(diff(Lambda1(t, x, u, ux, uxx), ux), uxx), uxx))*A(t)*u^n*ux+4*(diff(diff(Lambda1(t, x, u, ux, uxx), uxx), x))*B(t)+4*(diff(diff(Lambda1(t, x, u, ux, uxx), ux), uxx))*B(t)*uxx+2*(diff(diff(diff(Lambda1(t, x, u, ux, uxx), ux), uxx), uxx))*B(t)*uxx^2+4*ux*(diff(diff(Lambda1(t, x, u, ux, uxx), u), uxx))*B(t)+2*ux*(diff(diff(Lambda1(t, x, u, ux, uxx), uxx), uxx))*F(t)+2*(diff(diff(diff(Lambda1(t, x, u, ux, uxx), uxx), uxx), x))*B(t)*uxx+2*(diff(diff(diff(Lambda1(t, x, u, ux, uxx), uxx), uxx), x))*F(t)*u+2*(diff(diff(Lambda1(t, x, u, ux, uxx), uxx), uxx))*A(t)*u^n*n*ux^2/u+2*uxx*(diff(diff(Lambda1(t, x, u, ux, uxx), uxx), uxx))*A(t)*u^n+2*uxx*(diff(diff(diff(Lambda1(t, x, u, ux, uxx), ux), uxx), uxx))*F(t)*u+2*(diff(diff(diff(Lambda1(t, x, u, ux, uxx), u), uxx), uxx))*A(t)*u^n*ux^2+2*ux*(diff(diff(diff(Lambda1(t, x, u, ux, uxx), u), uxx), uxx))*B(t)*uxx+2*ux*(diff(diff(diff(Lambda1(t, x, u, ux, uxx), u), uxx), uxx))*F(t)*u+2*(diff(diff(diff(Lambda1(t, x, u, ux, uxx), uxx), uxx), x))*A(t)*u^n*ux = 0, (diff(Lambda1(t, x, u, ux, uxx), u))*F(t)*u-ux*(diff(Lambda1(t, x, u, ux, uxx), ux))*F(t)+uxx^2*(diff(diff(diff(Lambda1(t, x, u, ux, uxx), ux), ux), uxx))*F(t)*u+(diff(diff(diff(Lambda1(t, x, u, ux, uxx), uxx), x), x))*A(t)*u^n*ux-(diff(Lambda1(t, x, u, ux, uxx), x))*A(t)*u^n+2*ux*(diff(diff(Lambda1(t, x, u, ux, uxx), u), x))*B(t)+ux^2*(diff(diff(Lambda1(t, x, u, ux, uxx), u), u))*B(t)+(diff(diff(Lambda1(t, x, u, ux, uxx), u), uxx))*B(t)*uxx^2+(diff(diff(diff(Lambda1(t, x, u, ux, uxx), uxx), x), x))*F(t)*u+2*(diff(Lambda1(t, x, u, ux, uxx), u))*B(t)*uxx-(diff(diff(Lambda1(t, x, u, ux, uxx), ux), x))*F(t)*u+2*ux*(diff(diff(Lambda1(t, x, u, ux, uxx), uxx), x))*F(t)+uxx*(diff(Lambda1(t, x, u, ux, uxx), uxx))*F(t)+2*uxx*(diff(diff(Lambda1(t, x, u, ux, uxx), ux), uxx))*A(t)*u^n*n*ux^2/u+3*uxx*(diff(Lambda1(t, x, u, ux, uxx), uxx))*A(t)*u^n*n*ux/u-(diff(Lambda1(t, x, u, ux, uxx), t))+2*(diff(diff(Lambda1(t, x, u, ux, uxx), u), uxx))*A(t)*u^n*n*ux^3/u+(diff(Lambda1(t, x, u, ux, uxx), uxx))*A(t)*u^n*n^2*ux^3/u^2-(diff(Lambda1(t, x, u, ux, uxx), uxx))*A(t)*u^n*n*ux^3/u^2+2*(diff(diff(Lambda1(t, x, u, ux, uxx), uxx), x))*A(t)*u^n*n*ux^2/u-(diff(Lambda1(t, x, u, ux, uxx), ux))*A(t)*u^n*n*ux^2/u+2*uxx^2*(diff(diff(Lambda1(t, x, u, ux, uxx), ux), uxx))*A(t)*u^n+2*uxx*(diff(diff(diff(Lambda1(t, x, u, ux, uxx), ux), uxx), x))*F(t)*u+uxx*(diff(diff(Lambda1(t, x, u, ux, uxx), u), uxx))*F(t)*u+2*ux*(diff(diff(diff(Lambda1(t, x, u, ux, uxx), u), ux), uxx))*B(t)*uxx^2+(diff(diff(diff(Lambda1(t, x, u, ux, uxx), uxx), x), x))*B(t)*uxx+(diff(diff(Lambda1(t, x, u, ux, uxx), ux), x))*B(t)*uxx+uxx*ux*(diff(diff(Lambda1(t, x, u, ux, uxx), u), ux))*B(t)+2*uxx*ux*(diff(diff(Lambda1(t, x, u, ux, uxx), ux), uxx))*F(t)+2*uxx*(diff(diff(Lambda1(t, x, u, ux, uxx), uxx), x))*A(t)*u^n+(diff(diff(diff(Lambda1(t, x, u, ux, uxx), ux), ux), uxx))*B(t)*uxx^3+2*(diff(diff(diff(Lambda1(t, x, u, ux, uxx), ux), uxx), x))*B(t)*uxx^2+2*uxx*(diff(diff(diff(Lambda1(t, x, u, ux, uxx), u), ux), uxx))*A(t)*u^n*ux^2+2*uxx*ux*(diff(diff(diff(Lambda1(t, x, u, ux, uxx), u), ux), uxx))*F(t)*u+3*uxx*(diff(diff(Lambda1(t, x, u, ux, uxx), u), uxx))*A(t)*u^n*ux+2*uxx*(diff(diff(diff(Lambda1(t, x, u, ux, uxx), ux), uxx), x))*A(t)*u^n*ux+uxx^2*(diff(diff(diff(Lambda1(t, x, u, ux, uxx), ux), ux), uxx))*A(t)*u^n*ux-uxx*(diff(diff(Lambda1(t, x, u, ux, uxx), ux), ux))*A(t)*u^n*ux+2*ux^2*(diff(diff(Lambda1(t, x, u, ux, uxx), u), uxx))*F(t)-uxx*(diff(diff(Lambda1(t, x, u, ux, uxx), ux), ux))*F(t)*u-ux*(diff(diff(Lambda1(t, x, u, ux, uxx), u), ux))*F(t)*u-2*uxx*(diff(Lambda1(t, x, u, ux, uxx), ux))*A(t)*u^n+ux^2*(diff(diff(diff(Lambda1(t, x, u, ux, uxx), u), u), uxx))*F(t)*u+2*(diff(diff(diff(Lambda1(t, x, u, ux, uxx), u), uxx), x))*A(t)*u^n*ux^2-(diff(diff(Lambda1(t, x, u, ux, uxx), u), ux))*A(t)*u^n*ux^2+2*ux*(diff(diff(diff(Lambda1(t, x, u, ux, uxx), u), uxx), x))*B(t)*uxx+2*ux*(diff(diff(diff(Lambda1(t, x, u, ux, uxx), u), uxx), x))*F(t)*u+(diff(diff(diff(Lambda1(t, x, u, ux, uxx), u), u), uxx))*A(t)*u^n*ux^3+ux^2*(diff(diff(diff(Lambda1(t, x, u, ux, uxx), u), u), uxx))*B(t)*uxx-(diff(diff(Lambda1(t, x, u, ux, uxx), ux), x))*A(t)*u^n*ux+Lambda1(t, x, u, ux, uxx)*F(t)+(diff(diff(Lambda1(t, x, u, ux, uxx), x), x))*B(t) = 0, diff(diff(Lambda1(t, x, u, ux, uxx), uxx), uxx) = 0, diff(diff(diff(Lambda1(t, x, u, ux, uxx), uxx), uxx), uxx) = 0]

(2)

CL_multipliers := [Lambda1(t, x, u, ux, uxx)]

[Lambda1(t, x, u, ux, uxx)]

(3)

simplified_eqs := DEtools[rifsimp](det_eqs, CL_multipliers, mindim = 1)

Error, (in DEtools/Rif/setup) simplification for integer exponents

 

``

``

``

 

 
 

Download question_for_rif

 

Hello

I found this example in the Help.

I'm wanting to export the encrypted file (the gibberish between local and end proc) to friend running another M2018, and want it to run.

I would need to rerieve "abc.mla" repository that we saved it in. But I cant find it. and if i did send it, he would be able to decrypt it surely?

Encrypt_Proc.mw

 

Hi,
I had written some help pages in Maple 18 that I just migrate in Maple 2018.
This seems correct except one single point: when I try ot access them from the help menu, their names are preceeded by a  "WS" label and, when I click on it, the help page appears in a new window of my Maple's session, not in the help window.
I guess "WS" means "WorkSheet" ?
How can I force the halp page of "my" function to appear in the main help page window?

(hope I was clear enough)

Thanks in advance
 

 

 

I want to calculate the voltage between phase 1 and phase N in an electrical circuit:

 

The vectorial formula is:

`#mover(mi("U"),mo("→"))`[L1-N]-`#mover(mi("ΔU",mathcolor = "blue"),mo("→",mathcolor = "blue"))`[L1]+`#mover(mi("ΔU",mathcolor = "#339966"),mo("→",mathcolor = "#339966"))`[N] = `#mover(mi("U",mathcolor = "red"),mo("→",mathcolor = "red"))`[L1-N]

 

Voltage drops are calculated with the current multiplied with the resistance: ΔU = I*Z[L]

 

i

 

-`#mover(mi("I",mathcolor = "blue"),mo("→",mathcolor = "blue"))`[L1]*`#mover(mi("Z",mathcolor = "#ff99cc"),mo("→",mathcolor = "#ff99cc"))`[L]+`#mover(mi("I",mathcolor = "#339966"),mo("→",mathcolor = "#339966"))`[N]*`#mover(mi("Z",mathcolor = "#ff99cc"),mo("→",mathcolor = "#ff99cc"))`[L]+`#mover(mi("U"),mo("→"))`[L1-N] = `#mover(mi("U",mathcolor = "red"),mo("→",mathcolor = "red"))`[L1-N]NULL

This is a real example with realistic values and angles. Note that i have two different vectors with the same index.

This is on purpose and the vector is different. This is because the first vector is before the resistance in the wire and

the one i want to find, is after the resistance in the wire (the red one).:

``

"(U[L1-N])=230∠0°"

"(I[L1])=20∠-30°"

"(Z[L])=0.097∠7.2°"

"(I[N])=40∠-120°"

 

The negative angles is because i am using my reference which is in 0°. And are the vector to the right of my reference is the angle negative, and is it on the left of my reference is the angle negative. I dont want to explain the vectorial diagram, because i think it will do more confusion than explaining.

 

``

"230∠0°-(20∠-30°*0.097∠7.2°)+(40∠-120°*0.097∠7.2°)=(U[L1-N])"

 

My question is, if the formula above is possible to solve in maple?

 

 

The result is calculated on my CAS-calulator:

 

"(U[L1-N])=226 V∠-0.7°"``

``


The example in Maple:

Download Example_to_Mapleprimes.mw

 

The help page for interface states that errorbreak can be between 0 and 2, however despite being able to do so according to the output of 
<code>

interface(errorbreak=0)

</code>

 

My worksheet still breaks on most errors.

 

Is this something I am doing wrong, or is this because i am using maple 2016?

How to find PARETO FRONT WITH fminsearch Command for weighted sum method In Matlab R2015a

I am having problems with the attached worksheet, in which I am attempting to solve a couple pair of PDEs, particularly in defining initial and boundary conditions.  See MapleExample1c.mw

Can anyone help?

Melvin

Hey guys, I'm a new Maple user and I've been struggling to figure the collect command out.

I made a smaller example to show what I am looking for

I want to find out a way to use collect command and go from "c" output to "d", choosing the terms I want to be collected as common factors.

I'm also uploading the files if it's of any help, The one called question is the example in the picture above and final objeticve is the big expression that I`m trying to factor.

In the final objective file I'm looking for a way to make the "i" output be factored like this as:

Wi δ Wi (...) + Wi δ Wf (...) + Wi δ θi (...) + Wi δ θf (...) + Wf δ Wf (...) + Wf δ Wi (...) + Wf δ θi (...) + Wf δ θf (...) + ...

 

Thanks in advance

Download Final_objective.mw

Download Question_about_collect_and_factor.mw

 

First 644 645 646 647 648 649 650 Last Page 646 of 2428