MaplePrimes Questions

Hi Guys, 

I'm trying to find stationary points of a numeric function. Any help would be appreciated. 

Assume I have a numeric function g(x). I'm attempting the following:

deriv:=(x)->fdiff(g(t),t=x); (I can't use the D operator as it doesn't like g(x))

Now deriv(x) <- Can be computed and computes the value quickly and easily. However plot and other functions require algebraic functions. I can plot this (with difficulty) via the following

plot(deriv,-10..10) <- This avoids converting to algebraic function and runs as a procedure. 

I can't use convert(deriv,algebraic) as it fails. 

I want to use the Student[NumericalAnalysis]Roots command, but it requires an algebraic function and I can't use the procedure trick which I did in the plot command. 

Does anyone know a better way of doing this? or is there a way I can write the numerical differivative as an algebraic function. (I've tried fsolve <- But this guy doesn't give me the correct answers generally). 

Thanks guys. 

 

 

 

Hey,


I want to assign a value to a symbol stored in a vector. I know the position of the symbol in the vector. Is there an easy way to do this?

Here to illsutrate my problem:

restart:

vec:=<a,b,c>:

vec(1):=1;    # expected result: a:=1

vec := Vector(3, {(1) = 1, (2) = b, (3) = c})

(1)

a;            # expected result: 1

a

(2)

 

 

Download point_to_element.mw

 

 


Why does "eval(c, [b=1,l=1])" turn out to be "1" not "1/1+x"??? its driving me cracy. THX

restart

 

a:=(1/(1+x/l))

1/(1+x/l)

(1)

eval(a, [l=1])

1/(1+x)

(2)

eval(a, [x=2,l=1])

1/3

(3)

c:=(1/b(1+x/l))

1/b(1+x/l)

(4)

eval(c, [b=1,l=1])

1

(5)

 



 

Hello,

Still on the thematic on simplification of trigonometric expression.

I would like to simplify this equation. Normally, for a mecanical point of view, this equation could be simplified a lot and namely the psi[1](t) and theta[1](t) variables should disappear.

The difference with the former posts is the fact that now each term (for example  2*sin(gamma0(t))*z0(t)*cos(beta0(t))*xb[1]) can regroup 2 terms in factor with the trigonometric part.

eq:=l2[1]^2 = 2*sin(gamma0(t))*z0(t)*cos(beta0(t))*xb[1]-2*sin(gamma0(t))*zp[1](t)*cos(beta0(t))*xb[1]+2*sin(gamma0(t))*y0(t)*sin(alpha0(t))*zb[1]-2*sin(gamma0(t))*yp[1](t)*sin(alpha0(t))*zb[1]+2*sin(gamma0(t))*x0(t)*cos(alpha0(t))*zb[1]-2*sin(gamma0(t))*xp[1](t)*cos(alpha0(t))*zb[1]-2*cos(gamma0(t))*z0(t)*cos(beta0(t))*zb[1]+2*cos(gamma0(t))*zp[1](t)*cos(beta0(t))*zb[1]+2*cos(gamma0(t))*y0(t)*sin(alpha0(t))*xb[1]-2*cos(gamma0(t))*yp[1](t)*sin(alpha0(t))*xb[1]+2*cos(gamma0(t))*x0(t)*cos(alpha0(t))*xb[1]-2*cos(gamma0(t))*xp[1](t)*cos(alpha0(t))*xb[1]+2*y0(t)*cos(alpha0(t))*cos(beta0(t))*yb[1]-2*yp[1](t)*cos(alpha0(t))*cos(beta0(t))*yb[1]-2*x0(t)*sin(alpha0(t))*cos(beta0(t))*yb[1]+2*xp[1](t)*sin(alpha0(t))*cos(beta0(t))*yb[1]-2*sin(psi[1](t))*cos(theta[1](t))*l3[1]*xb[1]+2*sin(psi[1](t))*sin(theta[1](t))*l3[1]*zb[1]-2*cos(theta[1](t))*cos(psi[1](t))*l3[1]*zb[1]-2*cos(psi[1](t))*sin(theta[1](t))*l3[1]*xb[1]-2*sin(gamma0(t))*y0(t)*sin(alpha0(t))*cos(theta[1](t))*cos(psi[1](t))*l3[1]-2*sin(gamma0(t))*yp[1](t)*sin(alpha0(t))*sin(psi[1](t))*sin(theta[1](t))*l3[1]+2*sin(gamma0(t))*yp[1](t)*sin(alpha0(t))*cos(theta[1](t))*cos(psi[1](t))*l3[1]+2*sin(gamma0(t))*x0(t)*cos(alpha0(t))*sin(psi[1](t))*sin(theta[1](t))*l3[1]-2*sin(gamma0(t))*x0(t)*cos(alpha0(t))*cos(theta[1](t))*cos(psi[1](t))*l3[1]-2*sin(gamma0(t))*xp[1](t)*cos(alpha0(t))*sin(psi[1](t))*sin(theta[1](t))*l3[1]+2*sin(gamma0(t))*xp[1](t)*cos(alpha0(t))*cos(theta[1](t))*cos(psi[1](t))*l3[1]-2*cos(gamma0(t))*z0(t)*cos(beta0(t))*sin(psi[1](t))*sin(theta[1](t))*l3[1]+2*cos(gamma0(t))*z0(t)*cos(beta0(t))*cos(theta[1](t))*cos(psi[1](t))*l3[1]+2*cos(gamma0(t))*zp[1](t)*cos(beta0(t))*sin(psi[1](t))*sin(theta[1](t))*l3[1]-2*cos(gamma0(t))*zp[1](t)*cos(beta0(t))*cos(theta[1](t))*cos(psi[1](t))*l3[1]-2*cos(gamma0(t))*y0(t)*sin(alpha0(t))*sin(psi[1](t))*cos(theta[1](t))*l3[1]-2*cos(gamma0(t))*y0(t)*sin(alpha0(t))*cos(psi[1](t))*sin(theta[1](t))*l3[1]+2*cos(gamma0(t))*yp[1](t)*sin(alpha0(t))*sin(psi[1](t))*cos(theta[1](t))*l3[1]+2*cos(gamma0(t))*yp[1](t)*sin(alpha0(t))*cos(psi[1](t))*sin(theta[1](t))*l3[1]-2*cos(gamma0(t))*x0(t)*cos(alpha0(t))*sin(psi[1](t))*cos(theta[1](t))*l3[1]-2*cos(gamma0(t))*x0(t)*cos(alpha0(t))*cos(psi[1](t))*sin(theta[1](t))*l3[1]+2*cos(gamma0(t))*xp[1](t)*cos(alpha0(t))*sin(psi[1](t))*cos(theta[1](t))*l3[1]+2*cos(gamma0(t))*xp[1](t)*cos(alpha0(t))*cos(psi[1](t))*sin(theta[1](t))*l3[1]+yb[1]^2+xb[1]^2+zb[1]^2+l3[1]^2+z0(t)^2+zp[1](t)^2+y0(t)^2+yp[1](t)^2+x0(t)^2+xp[1](t)^2+2*z0(t)*sin(beta0(t))*yb[1]-2*zp[1](t)*sin(beta0(t))*yb[1]-2*z0(t)*zp[1](t)-2*y0(t)*yp[1](t)-2*x0(t)*xp[1](t)-2*sin(gamma0(t))*y0(t)*cos(alpha0(t))*sin(beta0(t))*xb[1]+2*sin(gamma0(t))*yp[1](t)*cos(alpha0(t))*sin(beta0(t))*xb[1]+2*sin(gamma0(t))*x0(t)*sin(alpha0(t))*sin(beta0(t))*xb[1]-2*sin(gamma0(t))*xp[1](t)*sin(alpha0(t))*sin(beta0(t))*xb[1]+2*cos(gamma0(t))*y0(t)*cos(alpha0(t))*sin(beta0(t))*zb[1]-2*cos(gamma0(t))*yp[1](t)*cos(alpha0(t))*sin(beta0(t))*zb[1]-2*cos(gamma0(t))*x0(t)*sin(alpha0(t))*sin(beta0(t))*zb[1]+2*cos(gamma0(t))*xp[1](t)*sin(alpha0(t))*sin(beta0(t))*zb[1]-2*sin(gamma0(t))*z0(t)*cos(beta0(t))*sin(psi[1](t))*cos(theta[1](t))*l3[1]-2*sin(gamma0(t))*z0(t)*cos(beta0(t))*cos(psi[1](t))*sin(theta[1](t))*l3[1]+2*sin(gamma0(t))*zp[1](t)*cos(beta0(t))*sin(psi[1](t))*cos(theta[1](t))*l3[1]+2*sin(gamma0(t))*zp[1](t)*cos(beta0(t))*cos(psi[1](t))*sin(theta[1](t))*l3[1]+2*sin(gamma0(t))*y0(t)*sin(alpha0(t))*sin(psi[1](t))*sin(theta[1](t))*l3[1]+2*sin(gamma0(t))*y0(t)*cos(alpha0(t))*sin(beta0(t))*sin(psi[1](t))*cos(theta[1](t))*l3[1]+2*sin(gamma0(t))*y0(t)*cos(alpha0(t))*sin(beta0(t))*cos(psi[1](t))*sin(theta[1](t))*l3[1]-2*sin(gamma0(t))*yp[1](t)*cos(alpha0(t))*sin(beta0(t))*sin(psi[1](t))*cos(theta[1](t))*l3[1]-2*sin(gamma0(t))*yp[1](t)*cos(alpha0(t))*sin(beta0(t))*cos(psi[1](t))*sin(theta[1](t))*l3[1]-2*sin(gamma0(t))*x0(t)*sin(alpha0(t))*sin(beta0(t))*sin(psi[1](t))*cos(theta[1](t))*l3[1]-2*sin(gamma0(t))*x0(t)*sin(alpha0(t))*sin(beta0(t))*cos(psi[1](t))*sin(theta[1](t))*l3[1]+2*sin(gamma0(t))*xp[1](t)*sin(alpha0(t))*sin(beta0(t))*sin(psi[1](t))*cos(theta[1](t))*l3[1]+2*sin(gamma0(t))*xp[1](t)*sin(alpha0(t))*sin(beta0(t))*cos(psi[1](t))*sin(theta[1](t))*l3[1]+2*cos(gamma0(t))*y0(t)*cos(alpha0(t))*sin(beta0(t))*sin(psi[1](t))*sin(theta[1](t))*l3[1]-2*cos(gamma0(t))*y0(t)*cos(alpha0(t))*sin(beta0(t))*cos(theta[1](t))*cos(psi[1](t))*l3[1]-2*cos(gamma0(t))*yp[1](t)*cos(alpha0(t))*sin(beta0(t))*sin(psi[1](t))*sin(theta[1](t))*l3[1]+2*cos(gamma0(t))*yp[1](t)*cos(alpha0(t))*sin(beta0(t))*cos(theta[1](t))*cos(psi[1](t))*l3[1]-2*cos(gamma0(t))*x0(t)*sin(alpha0(t))*sin(beta0(t))*sin(psi[1](t))*sin(theta[1](t))*l3[1]+2*cos(gamma0(t))*x0(t)*sin(alpha0(t))*sin(beta0(t))*cos(theta[1](t))*cos(psi[1](t))*l3[1]+2*cos(gamma0(t))*xp[1](t)*sin(alpha0(t))*sin(beta0(t))*sin(psi[1](t))*sin(theta[1](t))*l3[1]-2*cos(gamma0(t))*xp[1](t)*sin(alpha0(t))*sin(beta0(t))*cos(theta[1](t))*cos(psi[1](t))*l3[1]

Do you have some ideas so as to simplify this equation ?

N.B : Former posts on the topic of trigonometric simplification

http://www.mapleprimes.com/questions/209884-Simplification-Of-Trigonometric-Expression-II

http://www.mapleprimes.com/questions/209721-Simplification-Of-Trigonometric-Expressions

I put a worksheet attached in order to facilitate the troubleshooting.

Thanks a lot for your help

trigonometric_simplification.mw

 

Solution.mw 
 
 

Download Solution.mw

 

Hi all, if there anyone eho couyld help me with this difficult problem. I couldn't solve the attached nonhomogeneous equation...

But I found one series solution which doesn't satisfy the command: odetest (Solution, ode)

Hi. I'm hacing trouble writing a maple procedure for the question below, can anyone help?

 

Write a maple procedure which takes as its input the vectoeat u1 and u2 and the eigenvectors lambda1 and lambda2 where u1,u2 are element of R^2 and the lambdas are real numbers.

If u1,U2 is linearly independent then the output is the matrix A an element of R^2x2 with the property that Au1= lambda1u1 and AU2=lambda2u2;

if u1,u2 is linearly dependent then the output is the statement "not an eigenbasis".

 

I I then have two inputs which I have to do but I'm not sure on how to write the procedure. Any help will be much appreciated.  

 

Thanks :)

 

 

Hi dear Maple masters:

Excuse-me. I have a stupid question to ask: how to extract symbolic coefficient in maple? For example, I would like to get the coefficient before sin(Ωt) and cos(Ωt) in the following equation:

eq := (-Omega^2*a*A[2]-Omega^2*m*B[1]+Omega*A[1]*c[1]+B[1]*k[1])*cos(Omega*t)+(Omega^2*a*B[2]-Omega^2*m*A[1]-Omega*B[1]*c[1]+A[1]*k[1])*sin(Omega*t) = 0;

Thank you in adavance for taking a look, wish you a nice day!

Best regards,

Zihan

Hi dear friends. Recently, I am troubled by a question of how to draw an exictation-response diagram in Maplesoft.

I would like to draw an excitation-response diagram with following equation, Ω is greatrer or equal to 0:

(0.1299e-4*(17.1740*Omega^2-1.570200000*10^6))*Omega^2/(-196.1270800*Omega^4+3.954121290*10^7*Omega^2-1.877174100*10^12);

 

But, when I would like to use Bode diagram in Maple to draw it, it looks very differently.

Maybe I use a wrong function to draw it.


In the book, the diagram takes the form:

 

Thanks a lot for taking a lookDiagram in book.

Looking everywhere for this.  Hard to find.  Trying to shade under the curve of $2=x^{.5}+y^{.5}$ from x=0 to 1.  Here is what I found and tried:

 

A:=implicitplot(x^.5+y^.5=2,x=-1..2,y=-1..2,thickness=3,color=blue):
B:=implicitplot(x^.5+y^.5=2,x=0..1,filled=true,color=yellow,view[0..1,-1..1]):
plots[display](A,B, scaling=constrained);

 

 

no idea what the view does.  Any help would be much appreciated. 

 

Nick


I am trying to setup a Dual Quaternion Multiplication Table. I found the table on Wikki. I  need some help here.

Have set

x1  =1   x2 = i   x3  =j   x4   =k   x5 =e   x6 = ei   x7 = ej   x8 =ek

 

restart

                                                                                                              #    x1   x2    x3   x4    x5   x6    x7   x8

with(DifferentialGeometry):

NULL

 

StructureEquations := [[x1, x1] = x1, [x1, x2] = x2, [x1, x3] = x3, [x1, x4] = x4, [x1, x5] = x1*x5, [x1, x6] = x6, [x1, x7] = x7, [x1, x8] = x8, [x2, x1] = x2, [x2, x2] = -1, [x2, x3] = x4, [x2, x4] = -x3, [x2, x5] = x6, [x2, x6] = -x5, [x2, x7] = x8, [x2, x8] = -x7, [x3, x1] = x3, [x3, x2] = -x4, [x3, x3] = -1, [x3, x4] = x2, [x3, x5] = x7, [x3, x6] = -x8, [x3, x7] = -x5, [x3, x8] = x6, [x4, x1] = x4, [x4, x2] = x3, [x4, x3] = -x2, [x4, x4] = -1, [x4, x5] = x8, [x4, x6] = x7, [x4, x7] = -x6, [x4, x8] = -x5, [x5, x1] = x5, [x5, x2] = x6, [x5, x3] = x7, [x5, x4] = x8, [x5, x5] = 0, [x6, x1] = x6, [x6, x2] = -x5, [x6, x3] = x8, [x6, x4] = -x7, [x7, x1] = x7, [x7, x2] = -x8, [x7, x3] = -x5, [x7, x4] = x6, [x8, x1] = x8, [x8, x2] = x7, [x8, x3] = -x6, [x8, x4] = -x5]

[[x1, x1] = x1, [x1, x2] = x2, [x1, x3] = x3, [x1, x4] = x4, [x1, x5] = x1*x5, [x1, x6] = x6, [x1, x7] = x7, [x1, x8] = x8, [x2, x1] = x2, [x2, x2] = -1, [x2, x3] = x4, [x2, x4] = -x3, [x2, x5] = x6, [x2, x6] = -x5, [x2, x7] = x8, [x2, x8] = -x7, [x3, x1] = x3, [x3, x2] = -x4, [x3, x3] = -1, [x3, x4] = x2, [x3, x5] = x7, [x3, x6] = -x8, [x3, x7] = -x5, [x3, x8] = x6, [x4, x1] = x4, [x4, x2] = x3, [x4, x3] = -x2, [x4, x4] = -1, [x4, x5] = x8, [x4, x6] = x7, [x4, x7] = -x6, [x4, x8] = -x5, [x5, x1] = x5, [x5, x2] = x6, [x5, x3] = x7, [x5, x4] = x8, [x5, x5] = 0, [x6, x1] = x6, [x6, x2] = -x5, [x6, x3] = x8, [x6, x4] = -x7, [x7, x1] = x7, [x7, x2] = -x8, [x7, x3] = -x5, [x7, x4] = x6, [x8, x1] = x8, [x8, x2] = x7, [x8, x3] = -x6, [x8, x4] = -x5]

(1)

``

(2)

DQ := LieAlgebraData(StructureEquations, [x1, x2, x3, x4, x5, x6, x7, x8])

_DG([["LieAlgebra", "L1", [8, table( [ ] )]], [[[1, 2, 2], 1], [[1, 3, 3], 1], [[1, 4, 4], 1], [[1, 5, 1], x5], [[1, 5, 5], x1], [[1, 6, 6], 1], [[1, 7, 7], 1], [[1, 8, 8], 1], [[1, 2, 2], -1], [[2, 3, 4], 1], [[2, 4, 3], -1], [[2, 5, 6], 1], [[2, 6, 5], -1], [[2, 7, 8], 1], [[2, 8, 7], -1], [[1, 3, 3], -1], [[2, 3, 4], 1], [[3, 4, 2], 1], [[3, 5, 7], 1], [[3, 6, 8], -1], [[3, 7, 5], -1], [[3, 8, 6], 1], [[1, 4, 4], -1], [[2, 4, 3], -1], [[3, 4, 2], 1], [[4, 5, 8], 1], [[4, 6, 7], 1], [[4, 7, 6], -1], [[4, 8, 5], -1], [[1, 5, 5], -1], [[2, 5, 6], -1], [[3, 5, 7], -1], [[4, 5, 8], -1], [[1, 6, 6], -1], [[2, 6, 5], 1], [[3, 6, 8], -1], [[4, 6, 7], 1], [[1, 7, 7], -1], [[2, 7, 8], 1], [[3, 7, 5], 1], [[4, 7, 6], -1], [[1, 8, 8], -1], [[2, 8, 7], -1], [[3, 8, 6], 1], [[4, 8, 5], 1]]])

(3)

DGsetup(DQ)

`Lie algebra: L1`

(4)

MultiplicationTable(DQ, "AlgebraTable")

Error, (in DifferentialGeometry:-LieAlgebras:-MultiplicationTable) invalid input: DifferentialGeometry:-ChangeFrame expects its 1st argument, frame_name, to be of type {name, string}, but received _DG([["LieAlgebra", "L1", [8, table( [ ] )]], [[[1, 2, 2], 1], [[1, 3, 3], 1], [[1, 4, 4], 1], [[1, 5, 1], x5], [[1, 5, 5], x1], [[1, 6, 6], 1], [[1, 7, 7], 1], [[1, 8, 8], 1], [[1, 2, 2], -1], [[2, 3, 4], 1], [[2, 4, 3], -1], [[2, 5, 6], 1], [[2, 6, 5], -1], [[2, 7, 8], 1], [[2, 8, 7], -1], [[1, 3, 3], -1], [[2, 3, 4], 1], [[3, 4, 2], 1], [[3, 5, 7], 1], [[3, 6, 8], -1], [[3, 7, 5], -1], [[3, 8, 6], 1], [[1, 4, 4], -1], [[2, 4, 3], -1], [[3, 4, 2]...

 

NULL

 

Download Dual_Quaternion_Defining_Algebra.mw

 

Hello,

I have use a sparsematrixplot to identify the patterns in a matrix.

In order to facilitate the readability of my sparsematrixplot, i would like to change the labels of the rows/ columns axis.

Instead of the numeric graduation, i would like to add :

- for my rows, the labels : [eq1,eq2, ..., ]
- for my columns, the labels : [q1,q2,q3,...,]

Do you have ideas how I can do that ?

Thank you for your help

 

Dear all,

I developed a program to solve f(x, y) = 0 and g(x, y) = 0, I obtained as results (x=2.726, y=2.126) . running the same program another time it gives (x=2.762, y=1.992). how to explain this?

> fsolve({f(x, y) = 0, g(x, y) = 0}, {x = 0 .. infinity, y= 0 .. infinity});

Thanks in advance.

Hello,

In the post :

http://www.mapleprimes.com/questions/209721-Simplification-Of-Trigonometric-Expressions

you have help me to build a procedure so as to simplify trigonometric expressions of the following form, that is to say where each trigonometric expression is in factor with a term :

x0(t)+sin(alpha0(t))*sin(gamma0(t))*sin(beta0(t))*xb[1]-sin(alpha0(t))*sin(beta0(t))*cos(gamma0(t))*zb[1]-sin(alpha0(t))*cos(beta0(t))*yb[1]+cos(alpha0(t))*sin(gamma0(t))*zb[1]+cos(alpha0(t))*cos(gamma0(t))*xb[1]-l2[1]*(sin(psi[1](t))*sin(alpha0(t))*sin(gamma0(t))*sin(beta0(t))-cos(psi[1](t))*sin(alpha0(t))*sin(beta0(t))*cos(gamma0(t))+sin(psi[1](t))*cos(alpha0(t))*cos(gamma0(t))+cos(psi[1](t))*cos(alpha0(t))*sin(gamma0(t)))-l3[1]*(sin(theta[1](t))*sin(psi[1](t))*sin(alpha0(t))*sin(beta0(t))*cos(gamma0(t))+sin(theta[1](t))*cos(psi[1](t))*sin(alpha0(t))*sin(gamma0(t))*sin(beta0(t))+cos(theta[1](t))*sin(psi[1](t))*sin(alpha0(t))*sin(gamma0(t))*sin(beta0(t))-cos(theta[1](t))*cos(psi[1](t))*sin(alpha0(t))*sin(beta0(t))*cos(gamma0(t))-sin(theta[1](t))*sin(psi[1](t))*cos(alpha0(t))*sin(gamma0(t))+sin(theta[1](t))*cos(psi[1](t))*cos(alpha0(t))*cos(gamma0(t))+cos(theta[1](t))*sin(psi[1](t))*cos(alpha0(t))*cos(gamma0(t))+cos(theta[1](t))*cos(psi[1](t))*cos(alpha0(t))*sin(gamma0(t)))-xp[1](t) = 0

From a mechanical point of view, this form of equations comes from the constraint equations obtained with a vectorial closure.

Now I would like to silmplify the constraint equations which come form angular closure.

The equations are in the form :

sin(gamma0(t))*cos(beta0(t)) = -(sin(psi[1](t))*cos(theta[1](t))*cos(gamma[1](t))+sin(psi[1](t))*sin(theta[1](t))*sin(gamma[1](t))-cos(theta[1](t))*cos(psi[1](t))*sin(gamma[1](t))+cos(psi[1](t))*sin(theta[1](t))*cos(gamma[1](t)))*cos(beta[1](t))

i try to treat the right side with the following code :

applyrule([
cos(u::anything)*cos(v::anything)-sin(u::anything)*sin(v::anything)=cos(u+v),
cos(u::anything)*sin (v::anything)+sin(u::anything)*cos(v::anything)=sin(u+v),
sin(u::anything)*sin(v::anything)-cos(u::anything)*cos(v::anything)=-cos(u+v),
-sin(v::anything)*cos(u::anything)-sin(u::anything)*cos(v::anything)=-sin(u+v)], simplify(-(sin(psi[1](t))*cos(theta[1](t))*cos(gamma[1](t))+sin(psi[1](t))*sin(theta[1](t))*sin(gamma[1](t))-cos(theta[1](t))*cos(psi[1](t))*sin(gamma[1](t))+cos(psi[1](t))*sin(theta[1](t))*cos(gamma[1](t)))*cos(beta[1](t)), size))

The result is :

(-sin(theta[1](t)+psi[1](t))*cos(gamma[1](t))+sin(gamma[1](t))*cos(theta[1](t)+psi[1](t)))*cos(beta[1](t))

It seems that the result is not simplified enough. I would like to obtain this expression :

cos(beta[1](t))*sin(gamma[1](t)-theta[1](t)-psi[1](t))

Have you a idea why the simplification is not conducted once more ? Do you have ideas so as to simplify the equation so as to obtain the result mentioned ?

Thanks a lot for your help

 

 

Dear All

How can we collect coefficient wrt certain differential ration in an expression?

See for detail:


with(PDEtools):

u := a[0]+a[1]*(diff(phi(xi), xi))/phi(xi)

a[0]+a[1]*(diff(phi(xi), xi))/phi(xi)

(1)

-k*(diff(u, `$`(xi, 2)))+alpha*(diff(u, `$`(xi, 3)))

-k*(a[1]*(diff(diff(diff(phi(xi), xi), xi), xi))/phi(xi)-3*a[1]*(diff(diff(phi(xi), xi), xi))*(diff(phi(xi), xi))/phi(xi)^2+2*a[1]*(diff(phi(xi), xi))^3/phi(xi)^3)+alpha*(a[1]*(diff(diff(diff(diff(phi(xi), xi), xi), xi), xi))/phi(xi)-4*a[1]*(diff(diff(diff(phi(xi), xi), xi), xi))*(diff(phi(xi), xi))/phi(xi)^2+12*a[1]*(diff(diff(phi(xi), xi), xi))*(diff(phi(xi), xi))^2/phi(xi)^3-3*a[1]*(diff(diff(phi(xi), xi), xi))^2/phi(xi)^2-6*a[1]*(diff(phi(xi), xi))^4/phi(xi)^4)

(2)

expand(dsubs(diff(phi(xi), `$`(xi, 2)) = -lambda*(diff(phi(xi), xi))-mu*phi(xi), -k*(a[1]*(diff(diff(diff(phi(xi), xi), xi), xi))/phi(xi)-3*a[1]*(diff(diff(phi(xi), xi), xi))*(diff(phi(xi), xi))/phi(xi)^2+2*a[1]*(diff(phi(xi), xi))^3/phi(xi)^3)+alpha*(a[1]*(diff(diff(diff(diff(phi(xi), xi), xi), xi), xi))/phi(xi)-4*a[1]*(diff(diff(diff(phi(xi), xi), xi), xi))*(diff(phi(xi), xi))/phi(xi)^2+12*a[1]*(diff(diff(phi(xi), xi), xi))*(diff(phi(xi), xi))^2/phi(xi)^3-3*a[1]*(diff(diff(phi(xi), xi), xi))^2/phi(xi)^2-6*a[1]*(diff(phi(xi), xi))^4/phi(xi)^4)))

-a[1]*(diff(phi(xi), xi))*alpha*lambda^3/phi(xi)-a[1]*alpha*lambda^2*mu-7*a[1]*(diff(phi(xi), xi))^2*alpha*lambda^2/phi(xi)^2-8*a[1]*(diff(phi(xi), xi))*alpha*lambda*mu/phi(xi)-a[1]*(diff(phi(xi), xi))*k*lambda^2/phi(xi)-2*a[1]*alpha*mu^2-a[1]*k*lambda*mu-12*a[1]*(diff(phi(xi), xi))^3*alpha*lambda/phi(xi)^3-8*a[1]*(diff(phi(xi), xi))^2*alpha*mu/phi(xi)^2-3*a[1]*(diff(phi(xi), xi))^2*k*lambda/phi(xi)^2-2*a[1]*(diff(phi(xi), xi))*k*mu/phi(xi)-6*a[1]*(diff(phi(xi), xi))^4*alpha/phi(xi)^4-2*a[1]*(diff(phi(xi), xi))^3*k/phi(xi)^3

(3)

How ca extract coefficients of fraction (diff(phi(xi), xi))/phi(xi) in (3) ????


Download Coefficients_of_Fractions.mw

Regards

Dear All

In student numerical package, for in case of Secant method, how can we force Maple to print procedure and result of every iteration like we do in calculations by hand??

It gives direct output like:

 

with(Student[NumericalAnalysis]):

f := x^3-7*x^2+14*x-6

x^3-7*x^2+14*x-6

(1)

Secant(f, x = [2.7, 3.2], tolerance = 10^(-2))

3.005775850

(2)

Secant(f, x = [2.7, 3.2], tolerance = 10^(-2), output = sequence)

2.7, 3.2, 3.100884956, 2.858406793, 3.026267866, 3.005775850

(3)

What is we want print actual procedure that carry out calculations in step (3) ?

*What if, **want to

Download Secant_Method.mw

Regards

First 1161 1162 1163 1164 1165 1166 1167 Last Page 1163 of 2434