MaplePrimes Questions

I don't understand why maple is ignoring my predicate in this worksheet



Maple Worksheet - Error

Failed to load the worksheet /maplenet/convert/Task_List_Win10.mw .
 

Download Task_List_Win10.mw

Dear all

I hope to find the maximum of a given function or show that the maximum is negative.

 

negative_maximum.mw

 

many thanks for your help

Why is it that maple produces an incorrect answer in this command:

`assuming`([RealDomain[solve](sec(x) = sqrt(2), {x}, useassumptions)], [x > 3*Pi*(1/2) and x < 2*Pi])

 

and no answers in this command:

RealDomain[solve]({x > 3*Pi*(1/2), sec(x) = sqrt(2), x < 2*Pi}, {x})

 

???  Please help???

I'm trying to solve a linear first order PDE with polynomial coeffients in Maple. I need to find homogeneous polynomial solutions for the PDE. Although there is PolynomialSolutions option in PDEtools, the polynomial solution obtained from this method is not homogeneous. I want the polynomial solutions to be homogeneous because, for higher degree polynomial solution the calculations are very slow. By the solutions being homogeneous, I can cut down all the unnecessary calculations of finding the lower order terms. So, how do I do this?

Since maple doesn't have mp3 support, the best we can do is just convert to a supported file type and go from there.  We can actually use maple's system command to work within maple to accomplish this and other tasks.  Actually someone using Matlab created an FFmpeg tool package - something similar could also be done with Maple.

So first you need to load the free open source FFmpeg software into your machine.  I'm using windows so Unzip into a folder then into right click on mycomputer go into properties advanced and add a new environment variable.

However I'm having a problem using the ssystem command.  The system command actually works fine, so I don't know if it's an issue with my format of the command or maybe it's a bug within the Maple 18 that I'm currently working in (perhaps it works on the newer versions) so here's the script

system("ffmpeg -i c:/test/test.mp3") #works fine outputed in a new window displays info about specified file

ssystem("ffmpeg -i c:/test/test.mp3") #maple is busy sitting executing with nothing happening

However this works,

ssystem("ffmpeg -version") #does output into Maple just information of the ffmpeg software version

so I suspect something to do with the file formatting??  Any ideas why ssystem doesn't output into maple using a file location?

 

Dear all

I tried to minimize a function but maple 18 does not return any solution.

minimize(sqrt(1-(4*(x-1))*(1-y)/(x^2*(1+y))), x = 3 .. 4, y = 0 .. 1, location)

 

thanks for any help

 

 

 

Hi, when trying to solve 2 equations with 2 variables the fsolve function reutrns just expression instead of numerical solution. Can someone please help with this? Thanks a lot

 

NRTL.mw
 

restart

T:=325:

a12:=2305.28444347652 - 9.14490843016421*T + 0.00680052257590234*T^2:

a21:=-6665.24838284836 + 46.0897018087247*T - 0.0694991633494123*T^2:

alfa:=0.3:

x2:=1-x1:

tau12:=a12/T:

tau21:=a21/T:

G12:=exp(-alfa*tau12):

G21:=exp(-alfa*tau21):

lng1:=x2^2*(tau21*(G21/(x1+x2*G21))^2+tau12*(G12/((x2+x1*G12)^2))):

lng2:=x1^2*(tau12*(G12/(x2+x1*G12))^2+tau21*(G21/((x1+x2*G21)^2))):

lnga1:=subs(x1=xa1,lng1):

lngb1:=subs(x1=xb1,lng1):

lnga2:=subs(x1=xa1,lng2):

lngb2:=subs(x1=xb1,lng2):

r1:=lnga1+ln(xa1)=lngb1+ln(xb1)

(1-xa1)^2*(.4966874722/(.4073000470+.5926999530*xa1)^2+.1510891213/(-0.464212743e-1*xa1+1)^2)+ln(xa1) = (1-xb1)^2*(.4966874722/(.4073000470+.5926999530*xb1)^2+.1510891213/(-0.464212743e-1*xb1+1)^2)+ln(xb1)

(1)

r2:=lnga2+ln(1-xa1)=lngb2+ln(1-xb1)

xa1^2*(.1440753718/(-0.464212743e-1*xa1+1)^2+1.219463331/(.4073000470+.5926999530*xa1)^2)+ln(1-xa1) = xb1^2*(.1440753718/(-0.464212743e-1*xb1+1)^2+1.219463331/(.4073000470+.5926999530*xb1)^2)+ln(1-xb1)

(2)

fsolve({r1,r2})

fsolve({xa1^2*(.1440753718/(-0.464212743e-1*xa1+1)^2+1.219463331/(.4073000470+.5926999530*xa1)^2)+ln(1-xa1) = xb1^2*(.1440753718/(-0.464212743e-1*xb1+1)^2+1.219463331/(.4073000470+.5926999530*xb1)^2)+ln(1-xb1), (1-xa1)^2*(.4966874722/(.4073000470+.5926999530*xa1)^2+.1510891213/(-0.464212743e-1*xa1+1)^2)+ln(xa1) = (1-xb1)^2*(.4966874722/(.4073000470+.5926999530*xb1)^2+.1510891213/(-0.464212743e-1*xb1+1)^2)+ln(xb1)}, {xa1, xb1})

(3)

 


 

Download NRTL.mw

 

I used text math input, finding parenthesis is very difficult sometimes.

 

It would be very nice if parenthesis were color coded OR coloring of the texted was based on parenthetical depth.

E.g.,

display(plot(something(or another)))

 

 

How to make an animation that secant lines of f(x) = sin(x) through x = 1 approach the
tangent line 

 

Hello,

I obtained a mode shape from a vibration problem.

I want to normalized mode shape for the comparison of responses corresponding to different modes.

How I can normalize the mode shape that provided in the maple file?

The figure corresponds to this mode shape is plotted that is attached.

Thanks

mode_shapes.mw


 

a := Vector(325, {(1) = 0, (2) = 0., (3) = 0., (4) = 0.1e-3, (5) = 0.1e-3, (6) = 0.2e-3, (7) = 0.4e-3, (8) = 0.7e-3, (9) = 0.10e-2, (10) = 0.16e-2, (11) = 0.23e-2, (12) = 0.33e-2, (13) = 0.44e-2, (14) = 0.65e-2, (15) = 0.89e-2, (16) = 0.114e-1, (17) = 0.139e-1, (18) = 0.162e-1, (19) = 0.178e-1, (20) = 0.186e-1, (21) = 0.183e-1, (22) = 0.171e-1, (23) = 0.150e-1, (24) = 0.120e-1, (25) = 0.85e-2, (26) = 0.51e-2, (27) = 0.16e-2, (28) = -0.19e-2, (29) = -0.51e-2, (30) = -0.79e-2, (31) = -0.103e-1, (32) = -0.120e-1, (33) = -0.132e-1, (34) = -0.138e-1, (35) = -0.136e-1, (36) = -0.129e-1, (37) = -0.118e-1, (38) = -0.106e-1, (39) = -0.94e-2, (40) = -0.83e-2, (41) = -0.75e-2, (42) = -0.71e-2, (43) = -0.69e-2, (44) = -0.71e-2, (45) = -0.75e-2, (46) = -0.79e-2, (47) = -0.83e-2, (48) = -0.84e-2, (49) = -0.81e-2, (50) = -0.73e-2, (51) = -0.60e-2, (52) = -0.43e-2, (53) = -0.20e-2, (54) = 0.11e-2, (55) = 0.46e-2, (56) = 0.82e-2, (57) = 0.117e-1, (58) = 0.149e-1, (59) = 0.174e-1, (60) = 0.191e-1, (61) = 0.200e-1, (62) = 0.198e-1, (63) = 0.187e-1, (64) = 0.167e-1, (65) = 0.139e-1, (66) = 0.103e-1, (67) = 0.65e-2, (68) = 0.28e-2, (69) = -0.5e-3, (70) = -0.27e-2, (71) = -0.45e-2, (72) = -0.56e-2, (73) = -0.62e-2, (74) = -0.64e-2, (75) = -0.64e-2, (76) = -0.62e-2, (77) = -0.60e-2, (78) = -0.58e-2, (79) = -0.57e-2, (80) = -0.59e-2, (81) = -0.62e-2, (82) = -0.69e-2, (83) = -0.78e-2, (84) = -0.90e-2, (85) = -0.103e-1, (86) = -0.122e-1, (87) = -0.138e-1, (88) = -0.150e-1, (89) = -0.153e-1, (90) = -0.147e-1, (91) = -0.133e-1, (92) = -0.111e-1, (93) = -0.82e-2, (94) = -0.49e-2, (95) = -0.13e-2, (96) = 0.25e-2, (97) = 0.62e-2, (98) = 0.96e-2, (99) = 0.126e-1, (100) = 0.150e-1, (101) = 0.167e-1, (102) = 0.176e-1, (103) = 0.176e-1, (104) = 0.169e-1, (105) = 0.155e-1, (106) = 0.135e-1, (107) = 0.112e-1, (108) = 0.89e-2, (109) = 0.68e-2, (110) = 0.50e-2, (111) = 0.37e-2, (112) = 0.28e-2, (113) = 0.23e-2, (114) = 0.22e-2, (115) = 0.21e-2, (116) = 0.22e-2, (117) = 0.22e-2, (118) = 0.21e-2, (119) = 0.19e-2, (120) = 0.15e-2, (121) = 0.8e-3, (122) = -0., (123) = -0.11e-2, (124) = -0.25e-2, (125) = -0.40e-2, (126) = -0.68e-2, (127) = -0.97e-2, (128) = -0.127e-1, (129) = -0.154e-1, (130) = -0.175e-1, (131) = -0.189e-1, (132) = -0.193e-1, (133) = -0.187e-1, (134) = -0.171e-1, (135) = -0.146e-1, (136) = -0.113e-1, (137) = -0.76e-2, (138) = -0.42e-2, (139) = -0.9e-3, (140) = 0.23e-2, (141) = 0.52e-2, (142) = 0.76e-2, (143) = 0.96e-2, (144) = 0.110e-1, (145) = 0.118e-1, (146) = 0.121e-1, (147) = 0.118e-1, (148) = 0.110e-1, (149) = 0.100e-1, (150) = 0.91e-2, (151) = 0.84e-2, (152) = 0.78e-2, (153) = 0.75e-2, (154) = 0.76e-2, (155) = 0.79e-2, (156) = 0.85e-2, (157) = 0.92e-2, (158) = 0.98e-2, (159) = 0.103e-1, (160) = 0.103e-1, (161) = 0.98e-2, (162) = 0.88e-2, (163) = 0.72e-2, (164) = 0.51e-2, (165) = 0.24e-2, (166) = -0.15e-2, (167) = -0.57e-2, (168) = -0.99e-2, (169) = -0.137e-1, (170) = -0.164e-1, (171) = -0.184e-1, (172) = -0.196e-1, (173) = -0.197e-1, (174) = -0.189e-1, (175) = -0.171e-1, (176) = -0.146e-1, (177) = -0.115e-1, (178) = -0.81e-2, (179) = -0.47e-2, (180) = -0.16e-2, (181) = 0.8e-3, (182) = 0.24e-2, (183) = 0.34e-2, (184) = 0.40e-2, (185) = 0.43e-2, (186) = 0.43e-2, (187) = 0.42e-2, (188) = 0.41e-2, (189) = 0.41e-2, (190) = 0.43e-2, (191) = 0.47e-2, (192) = 0.53e-2, (193) = 0.62e-2, (194) = 0.76e-2, (195) = 0.92e-2, (196) = 0.109e-1, (197) = 0.127e-1, (198) = 0.146e-1, (199) = 0.160e-1, (200) = 0.166e-1, (201) = 0.162e-1, (202) = 0.149e-1, (203) = 0.128e-1, (204) = 0.99e-2, (205) = 0.65e-2, (206) = 0.28e-2, (207) = -0.10e-2, (208) = -0.47e-2, (209) = -0.82e-2, (210) = -0.112e-1, (211) = -0.137e-1, (212) = -0.154e-1, (213) = -0.164e-1, (214) = -0.166e-1, (215) = -0.159e-1, (216) = -0.147e-1, (217) = -0.129e-1, (218) = -0.110e-1, (219) = -0.90e-2, (220) = -0.73e-2, (221) = -0.59e-2, (222) = -0.49e-2, (223) = -0.44e-2, (224) = -0.41e-2, (225) = -0.41e-2, (226) = -0.42e-2, (227) = -0.43e-2, (228) = -0.43e-2, (229) = -0.41e-2, (230) = -0.36e-2, (231) = -0.29e-2, (232) = -0.18e-2, (233) = -0.3e-3, (234) = 0.16e-2, (235) = 0.38e-2, (236) = 0.62e-2, (237) = 0.88e-2, (238) = 0.121e-1, (239) = 0.151e-1, (240) = 0.175e-1, (241) = 0.192e-1, (242) = 0.198e-1, (243) = 0.194e-1, (244) = 0.181e-1, (245) = 0.159e-1, (246) = 0.122e-1, (247) = 0.80e-2, (248) = 0.34e-2, (249) = -0.9e-3, (250) = -0.41e-2, (251) = -0.68e-2, (252) = -0.87e-2, (253) = -0.98e-2, (254) = -0.103e-1, (255) = -0.103e-1, (256) = -0.98e-2, (257) = -0.92e-2, (258) = -0.86e-2, (259) = -0.80e-2, (260) = -0.76e-2, (261) = -0.75e-2, (262) = -0.77e-2, (263) = -0.82e-2, (264) = -0.89e-2, (265) = -0.98e-2, (266) = -0.109e-1, (267) = -0.117e-1, (268) = -0.121e-1, (269) = -0.119e-1, (270) = -0.111e-1, (271) = -0.96e-2, (272) = -0.74e-2, (273) = -0.46e-2, (274) = -0.7e-3, (275) = 0.36e-2, (276) = 0.80e-2, (277) = 0.121e-1, (278) = 0.150e-1, (279) = 0.173e-1, (280) = 0.188e-1, (281) = 0.193e-1, (282) = 0.189e-1, (283) = 0.176e-1, (284) = 0.155e-1, (285) = 0.128e-1, (286) = 0.98e-2, (287) = 0.67e-2, (288) = 0.38e-2, (289) = 0.15e-2, (290) = -0.1e-3, (291) = -0.12e-2, (292) = -0.18e-2, (293) = -0.21e-2, (294) = -0.22e-2, (295) = -0.22e-2, (296) = -0.21e-2, (297) = -0.22e-2, (298) = -0.24e-2, (299) = -0.27e-2, (300) = -0.33e-2, (301) = -0.42e-2, (302) = -0.54e-2, (303) = -0.68e-2, (304) = -0.85e-2, (305) = -0.103e-1, (306) = -0.130e-1, (307) = -0.154e-1, (308) = -0.170e-1, (309) = -0.177e-1, (310) = -0.173e-1, (311) = -0.160e-1, (312) = -0.138e-1, (313) = -0.108e-1, (314) = -0.75e-2, (315) = -0.38e-2, (316) = -0., (317) = 0.37e-2, (318) = 0.71e-2, (319) = 0.101e-1, (320) = 0.124e-1, (321) = 0.141e-1, (322) = 0.149e-1, (323) = 0.152e-1, (324) = 0.152e-1, (325) = 0.149e-1})

_rtable[18446746442173411926]

(1)

``

t := Vector(325, {(1) = 0, (2) = 0.67e-2, (3) = 0.134e-1, (4) = 0.202e-1, (5) = 0.269e-1, (6) = 0.336e-1, (7) = 0.403e-1, (8) = 0.471e-1, (9) = 0.538e-1, (10) = 0.637e-1, (11) = 0.736e-1, (12) = 0.836e-1, (13) = 0.935e-1, (14) = .1098, (15) = .1261, (16) = .1424, (17) = .1586, (18) = .1764, (19) = .1943, (20) = .2121, (21) = .2299, (22) = .2465, (23) = .2632, (24) = .2798, (25) = .2965, (26) = .3109, (27) = .3253, (28) = .3397, (29) = .3542, (30) = .3686, (31) = .3830, (32) = .3974, (33) = .4118, (34) = .4284, (35) = .4450, (36) = .4615, (37) = .4781, (38) = .4938, (39) = .5095, (40) = .5253, (41) = .5410, (42) = .5567, (43) = .5724, (44) = .5882, (45) = .6039, (46) = .6204, (47) = .6368, (48) = .6533, (49) = .6697, (50) = .6843, (51) = .6989, (52) = .7135, (53) = .7281, (54) = .7448, (55) = .7615, (56) = .7781, (57) = .7948, (58) = .8113, (59) = .8278, (60) = .8442, (61) = .8607, (62) = .8775, (63) = .8943, (64) = .9112, (65) = .9280, (66) = .9468, (67) = .9655, (68) = .9843, (69) = 1.0031, (70) = 1.0190, (71) = 1.0348, (72) = 1.0507, (73) = 1.0665, (74) = 1.0794, (75) = 1.0924, (76) = 1.1053, (77) = 1.1183, (78) = 1.1312, (79) = 1.1442, (80) = 1.1571, (81) = 1.1700, (82) = 1.1842, (83) = 1.1984, (84) = 1.2126, (85) = 1.2268, (86) = 1.2459, (87) = 1.2651, (88) = 1.2842, (89) = 1.3034, (90) = 1.3198, (91) = 1.3362, (92) = 1.3527, (93) = 1.3691, (94) = 1.3844, (95) = 1.3996, (96) = 1.4149, (97) = 1.4302, (98) = 1.4454, (99) = 1.4607, (100) = 1.4760, (101) = 1.4913, (102) = 1.5075, (103) = 1.5238, (104) = 1.5400, (105) = 1.5563, (106) = 1.5733, (107) = 1.5904, (108) = 1.6075, (109) = 1.6246, (110) = 1.6410, (111) = 1.6574, (112) = 1.6739, (113) = 1.6903, (114) = 1.7021, (115) = 1.7140, (116) = 1.7258, (117) = 1.7377, (118) = 1.7495, (119) = 1.7614, (120) = 1.7732, (121) = 1.7851, (122) = 1.7964, (123) = 1.8076, (124) = 1.8189, (125) = 1.8302, (126) = 1.8475, (127) = 1.8649, (128) = 1.8822, (129) = 1.8995, (130) = 1.9168, (131) = 1.9341, (132) = 1.9514, (133) = 1.9687, (134) = 1.9856, (135) = 2.0026, (136) = 2.0195, (137) = 2.0365, (138) = 2.0507, (139) = 2.0649, (140) = 2.0791, (141) = 2.0933, (142) = 2.1075, (143) = 2.1217, (144) = 2.1359, (145) = 2.1501, (146) = 2.1674, (147) = 2.1846, (148) = 2.2018, (149) = 2.2191, (150) = 2.2341, (151) = 2.2492, (152) = 2.2643, (153) = 2.2793, (154) = 2.2949, (155) = 2.3105, (156) = 2.3261, (157) = 2.3417, (158) = 2.3576, (159) = 2.3735, (160) = 2.3895, (161) = 2.4054, (162) = 2.4203, (163) = 2.4353, (164) = 2.4503, (165) = 2.4653, (166) = 2.4839, (167) = 2.5025, (168) = 2.5211, (169) = 2.5397, (170) = 2.5561, (171) = 2.5725, (172) = 2.5888, (173) = 2.6052, (174) = 2.6226, (175) = 2.6399, (176) = 2.6572, (177) = 2.6746, (178) = 2.6930, (179) = 2.7114, (180) = 2.7297, (181) = 2.7481, (182) = 2.7634, (183) = 2.7787, (184) = 2.7940, (185) = 2.8094, (186) = 2.8226, (187) = 2.8358, (188) = 2.8490, (189) = 2.8622, (190) = 2.8755, (191) = 2.8887, (192) = 2.9019, (193) = 2.9151, (194) = 2.9302, (195) = 2.9453, (196) = 2.9604, (197) = 2.9755, (198) = 2.9940, (199) = 3.0126, (200) = 3.0311, (201) = 3.0496, (202) = 3.0659, (203) = 3.0822, (204) = 3.0985, (205) = 3.1149, (206) = 3.1302, (207) = 3.1455, (208) = 3.1609, (209) = 3.1762, (210) = 3.1915, (211) = 3.2069, (212) = 3.2222, (213) = 3.2375, (214) = 3.2545, (215) = 3.2715, (216) = 3.2885, (217) = 3.3055, (218) = 3.3223, (219) = 3.3391, (220) = 3.3560, (221) = 3.3728, (222) = 3.3888, (223) = 3.4047, (224) = 3.4206, (225) = 3.4365, (226) = 3.4494, (227) = 3.4622, (228) = 3.4750, (229) = 3.4879, (230) = 3.5007, (231) = 3.5136, (232) = 3.5264, (233) = 3.5392, (234) = 3.5529, (235) = 3.5667, (236) = 3.5804, (237) = 3.5941, (238) = 3.6116, (239) = 3.6292, (240) = 3.6468, (241) = 3.6644, (242) = 3.6810, (243) = 3.6976, (244) = 3.7143, (245) = 3.7309, (246) = 3.7508, (247) = 3.7707, (248) = 3.7905, (249) = 3.8104, (250) = 3.8273, (251) = 3.8442, (252) = 3.8610, (253) = 3.8779, (254) = 3.8938, (255) = 3.9096, (256) = 3.9255, (257) = 3.9414, (258) = 3.9559, (259) = 3.9705, (260) = 3.9851, (261) = 3.9997, (262) = 4.0149, (263) = 4.0301, (264) = 4.0452, (265) = 4.0604, (266) = 4.0779, (267) = 4.0953, (268) = 4.1128, (269) = 4.1302, (270) = 4.1459, (271) = 4.1615, (272) = 4.1771, (273) = 4.1927, (274) = 4.2114, (275) = 4.2300, (276) = 4.2486, (277) = 4.2673, (278) = 4.2833, (279) = 4.2993, (280) = 4.3153, (281) = 4.3313, (282) = 4.3485, (283) = 4.3657, (284) = 4.3829, (285) = 4.4001, (286) = 4.4182, (287) = 4.4362, (288) = 4.4543, (289) = 4.4724, (290) = 4.4881, (291) = 4.5037, (292) = 4.5194, (293) = 4.5351, (294) = 4.5472, (295) = 4.5593, (296) = 4.5715, (297) = 4.5836, (298) = 4.5957, (299) = 4.6079, (300) = 4.6200, (301) = 4.6321, (302) = 4.6456, (303) = 4.6591, (304) = 4.6726, (305) = 4.6861, (306) = 4.7059, (307) = 4.7256, (308) = 4.7454, (309) = 4.7652, (310) = 4.7819, (311) = 4.7986, (312) = 4.8153, (313) = 4.8320, (314) = 4.8474, (315) = 4.8627, (316) = 4.8781, (317) = 4.8935, (318) = 4.9088, (319) = 4.9242, (320) = 4.9396, (321) = 4.9550, (322) = 4.9662, (323) = 4.9775, (324) = 4.9887, (325) = 5.0000})

_rtable[18446746442112534638]

(2)

``


 

Download mode_shapes.mw


 

a := Vector(325, {(1) = 0, (2) = 0., (3) = 0., (4) = 0.1e-3, (5) = 0.1e-3, (6) = 0.2e-3, (7) = 0.4e-3, (8) = 0.7e-3, (9) = 0.10e-2, (10) = 0.16e-2, (11) = 0.23e-2, (12) = 0.33e-2, (13) = 0.44e-2, (14) = 0.65e-2, (15) = 0.89e-2, (16) = 0.114e-1, (17) = 0.139e-1, (18) = 0.162e-1, (19) = 0.178e-1, (20) = 0.186e-1, (21) = 0.183e-1, (22) = 0.171e-1, (23) = 0.150e-1, (24) = 0.120e-1, (25) = 0.85e-2, (26) = 0.51e-2, (27) = 0.16e-2, (28) = -0.19e-2, (29) = -0.51e-2, (30) = -0.79e-2, (31) = -0.103e-1, (32) = -0.120e-1, (33) = -0.132e-1, (34) = -0.138e-1, (35) = -0.136e-1, (36) = -0.129e-1, (37) = -0.118e-1, (38) = -0.106e-1, (39) = -0.94e-2, (40) = -0.83e-2, (41) = -0.75e-2, (42) = -0.71e-2, (43) = -0.69e-2, (44) = -0.71e-2, (45) = -0.75e-2, (46) = -0.79e-2, (47) = -0.83e-2, (48) = -0.84e-2, (49) = -0.81e-2, (50) = -0.73e-2, (51) = -0.60e-2, (52) = -0.43e-2, (53) = -0.20e-2, (54) = 0.11e-2, (55) = 0.46e-2, (56) = 0.82e-2, (57) = 0.117e-1, (58) = 0.149e-1, (59) = 0.174e-1, (60) = 0.191e-1, (61) = 0.200e-1, (62) = 0.198e-1, (63) = 0.187e-1, (64) = 0.167e-1, (65) = 0.139e-1, (66) = 0.103e-1, (67) = 0.65e-2, (68) = 0.28e-2, (69) = -0.5e-3, (70) = -0.27e-2, (71) = -0.45e-2, (72) = -0.56e-2, (73) = -0.62e-2, (74) = -0.64e-2, (75) = -0.64e-2, (76) = -0.62e-2, (77) = -0.60e-2, (78) = -0.58e-2, (79) = -0.57e-2, (80) = -0.59e-2, (81) = -0.62e-2, (82) = -0.69e-2, (83) = -0.78e-2, (84) = -0.90e-2, (85) = -0.103e-1, (86) = -0.122e-1, (87) = -0.138e-1, (88) = -0.150e-1, (89) = -0.153e-1, (90) = -0.147e-1, (91) = -0.133e-1, (92) = -0.111e-1, (93) = -0.82e-2, (94) = -0.49e-2, (95) = -0.13e-2, (96) = 0.25e-2, (97) = 0.62e-2, (98) = 0.96e-2, (99) = 0.126e-1, (100) = 0.150e-1, (101) = 0.167e-1, (102) = 0.176e-1, (103) = 0.176e-1, (104) = 0.169e-1, (105) = 0.155e-1, (106) = 0.135e-1, (107) = 0.112e-1, (108) = 0.89e-2, (109) = 0.68e-2, (110) = 0.50e-2, (111) = 0.37e-2, (112) = 0.28e-2, (113) = 0.23e-2, (114) = 0.22e-2, (115) = 0.21e-2, (116) = 0.22e-2, (117) = 0.22e-2, (118) = 0.21e-2, (119) = 0.19e-2, (120) = 0.15e-2, (121) = 0.8e-3, (122) = -0., (123) = -0.11e-2, (124) = -0.25e-2, (125) = -0.40e-2, (126) = -0.68e-2, (127) = -0.97e-2, (128) = -0.127e-1, (129) = -0.154e-1, (130) = -0.175e-1, (131) = -0.189e-1, (132) = -0.193e-1, (133) = -0.187e-1, (134) = -0.171e-1, (135) = -0.146e-1, (136) = -0.113e-1, (137) = -0.76e-2, (138) = -0.42e-2, (139) = -0.9e-3, (140) = 0.23e-2, (141) = 0.52e-2, (142) = 0.76e-2, (143) = 0.96e-2, (144) = 0.110e-1, (145) = 0.118e-1, (146) = 0.121e-1, (147) = 0.118e-1, (148) = 0.110e-1, (149) = 0.100e-1, (150) = 0.91e-2, (151) = 0.84e-2, (152) = 0.78e-2, (153) = 0.75e-2, (154) = 0.76e-2, (155) = 0.79e-2, (156) = 0.85e-2, (157) = 0.92e-2, (158) = 0.98e-2, (159) = 0.103e-1, (160) = 0.103e-1, (161) = 0.98e-2, (162) = 0.88e-2, (163) = 0.72e-2, (164) = 0.51e-2, (165) = 0.24e-2, (166) = -0.15e-2, (167) = -0.57e-2, (168) = -0.99e-2, (169) = -0.137e-1, (170) = -0.164e-1, (171) = -0.184e-1, (172) = -0.196e-1, (173) = -0.197e-1, (174) = -0.189e-1, (175) = -0.171e-1, (176) = -0.146e-1, (177) = -0.115e-1, (178) = -0.81e-2, (179) = -0.47e-2, (180) = -0.16e-2, (181) = 0.8e-3, (182) = 0.24e-2, (183) = 0.34e-2, (184) = 0.40e-2, (185) = 0.43e-2, (186) = 0.43e-2, (187) = 0.42e-2, (188) = 0.41e-2, (189) = 0.41e-2, (190) = 0.43e-2, (191) = 0.47e-2, (192) = 0.53e-2, (193) = 0.62e-2, (194) = 0.76e-2, (195) = 0.92e-2, (196) = 0.109e-1, (197) = 0.127e-1, (198) = 0.146e-1, (199) = 0.160e-1, (200) = 0.166e-1, (201) = 0.162e-1, (202) = 0.149e-1, (203) = 0.128e-1, (204) = 0.99e-2, (205) = 0.65e-2, (206) = 0.28e-2, (207) = -0.10e-2, (208) = -0.47e-2, (209) = -0.82e-2, (210) = -0.112e-1, (211) = -0.137e-1, (212) = -0.154e-1, (213) = -0.164e-1, (214) = -0.166e-1, (215) = -0.159e-1, (216) = -0.147e-1, (217) = -0.129e-1, (218) = -0.110e-1, (219) = -0.90e-2, (220) = -0.73e-2, (221) = -0.59e-2, (222) = -0.49e-2, (223) = -0.44e-2, (224) = -0.41e-2, (225) = -0.41e-2, (226) = -0.42e-2, (227) = -0.43e-2, (228) = -0.43e-2, (229) = -0.41e-2, (230) = -0.36e-2, (231) = -0.29e-2, (232) = -0.18e-2, (233) = -0.3e-3, (234) = 0.16e-2, (235) = 0.38e-2, (236) = 0.62e-2, (237) = 0.88e-2, (238) = 0.121e-1, (239) = 0.151e-1, (240) = 0.175e-1, (241) = 0.192e-1, (242) = 0.198e-1, (243) = 0.194e-1, (244) = 0.181e-1, (245) = 0.159e-1, (246) = 0.122e-1, (247) = 0.80e-2, (248) = 0.34e-2, (249) = -0.9e-3, (250) = -0.41e-2, (251) = -0.68e-2, (252) = -0.87e-2, (253) = -0.98e-2, (254) = -0.103e-1, (255) = -0.103e-1, (256) = -0.98e-2, (257) = -0.92e-2, (258) = -0.86e-2, (259) = -0.80e-2, (260) = -0.76e-2, (261) = -0.75e-2, (262) = -0.77e-2, (263) = -0.82e-2, (264) = -0.89e-2, (265) = -0.98e-2, (266) = -0.109e-1, (267) = -0.117e-1, (268) = -0.121e-1, (269) = -0.119e-1, (270) = -0.111e-1, (271) = -0.96e-2, (272) = -0.74e-2, (273) = -0.46e-2, (274) = -0.7e-3, (275) = 0.36e-2, (276) = 0.80e-2, (277) = 0.121e-1, (278) = 0.150e-1, (279) = 0.173e-1, (280) = 0.188e-1, (281) = 0.193e-1, (282) = 0.189e-1, (283) = 0.176e-1, (284) = 0.155e-1, (285) = 0.128e-1, (286) = 0.98e-2, (287) = 0.67e-2, (288) = 0.38e-2, (289) = 0.15e-2, (290) = -0.1e-3, (291) = -0.12e-2, (292) = -0.18e-2, (293) = -0.21e-2, (294) = -0.22e-2, (295) = -0.22e-2, (296) = -0.21e-2, (297) = -0.22e-2, (298) = -0.24e-2, (299) = -0.27e-2, (300) = -0.33e-2, (301) = -0.42e-2, (302) = -0.54e-2, (303) = -0.68e-2, (304) = -0.85e-2, (305) = -0.103e-1, (306) = -0.130e-1, (307) = -0.154e-1, (308) = -0.170e-1, (309) = -0.177e-1, (310) = -0.173e-1, (311) = -0.160e-1, (312) = -0.138e-1, (313) = -0.108e-1, (314) = -0.75e-2, (315) = -0.38e-2, (316) = -0., (317) = 0.37e-2, (318) = 0.71e-2, (319) = 0.101e-1, (320) = 0.124e-1, (321) = 0.141e-1, (322) = 0.149e-1, (323) = 0.152e-1, (324) = 0.152e-1, (325) = 0.149e-1})

_rtable[18446746442173411926]

(1)

``

t := Vector(325, {(1) = 0, (2) = 0.67e-2, (3) = 0.134e-1, (4) = 0.202e-1, (5) = 0.269e-1, (6) = 0.336e-1, (7) = 0.403e-1, (8) = 0.471e-1, (9) = 0.538e-1, (10) = 0.637e-1, (11) = 0.736e-1, (12) = 0.836e-1, (13) = 0.935e-1, (14) = .1098, (15) = .1261, (16) = .1424, (17) = .1586, (18) = .1764, (19) = .1943, (20) = .2121, (21) = .2299, (22) = .2465, (23) = .2632, (24) = .2798, (25) = .2965, (26) = .3109, (27) = .3253, (28) = .3397, (29) = .3542, (30) = .3686, (31) = .3830, (32) = .3974, (33) = .4118, (34) = .4284, (35) = .4450, (36) = .4615, (37) = .4781, (38) = .4938, (39) = .5095, (40) = .5253, (41) = .5410, (42) = .5567, (43) = .5724, (44) = .5882, (45) = .6039, (46) = .6204, (47) = .6368, (48) = .6533, (49) = .6697, (50) = .6843, (51) = .6989, (52) = .7135, (53) = .7281, (54) = .7448, (55) = .7615, (56) = .7781, (57) = .7948, (58) = .8113, (59) = .8278, (60) = .8442, (61) = .8607, (62) = .8775, (63) = .8943, (64) = .9112, (65) = .9280, (66) = .9468, (67) = .9655, (68) = .9843, (69) = 1.0031, (70) = 1.0190, (71) = 1.0348, (72) = 1.0507, (73) = 1.0665, (74) = 1.0794, (75) = 1.0924, (76) = 1.1053, (77) = 1.1183, (78) = 1.1312, (79) = 1.1442, (80) = 1.1571, (81) = 1.1700, (82) = 1.1842, (83) = 1.1984, (84) = 1.2126, (85) = 1.2268, (86) = 1.2459, (87) = 1.2651, (88) = 1.2842, (89) = 1.3034, (90) = 1.3198, (91) = 1.3362, (92) = 1.3527, (93) = 1.3691, (94) = 1.3844, (95) = 1.3996, (96) = 1.4149, (97) = 1.4302, (98) = 1.4454, (99) = 1.4607, (100) = 1.4760, (101) = 1.4913, (102) = 1.5075, (103) = 1.5238, (104) = 1.5400, (105) = 1.5563, (106) = 1.5733, (107) = 1.5904, (108) = 1.6075, (109) = 1.6246, (110) = 1.6410, (111) = 1.6574, (112) = 1.6739, (113) = 1.6903, (114) = 1.7021, (115) = 1.7140, (116) = 1.7258, (117) = 1.7377, (118) = 1.7495, (119) = 1.7614, (120) = 1.7732, (121) = 1.7851, (122) = 1.7964, (123) = 1.8076, (124) = 1.8189, (125) = 1.8302, (126) = 1.8475, (127) = 1.8649, (128) = 1.8822, (129) = 1.8995, (130) = 1.9168, (131) = 1.9341, (132) = 1.9514, (133) = 1.9687, (134) = 1.9856, (135) = 2.0026, (136) = 2.0195, (137) = 2.0365, (138) = 2.0507, (139) = 2.0649, (140) = 2.0791, (141) = 2.0933, (142) = 2.1075, (143) = 2.1217, (144) = 2.1359, (145) = 2.1501, (146) = 2.1674, (147) = 2.1846, (148) = 2.2018, (149) = 2.2191, (150) = 2.2341, (151) = 2.2492, (152) = 2.2643, (153) = 2.2793, (154) = 2.2949, (155) = 2.3105, (156) = 2.3261, (157) = 2.3417, (158) = 2.3576, (159) = 2.3735, (160) = 2.3895, (161) = 2.4054, (162) = 2.4203, (163) = 2.4353, (164) = 2.4503, (165) = 2.4653, (166) = 2.4839, (167) = 2.5025, (168) = 2.5211, (169) = 2.5397, (170) = 2.5561, (171) = 2.5725, (172) = 2.5888, (173) = 2.6052, (174) = 2.6226, (175) = 2.6399, (176) = 2.6572, (177) = 2.6746, (178) = 2.6930, (179) = 2.7114, (180) = 2.7297, (181) = 2.7481, (182) = 2.7634, (183) = 2.7787, (184) = 2.7940, (185) = 2.8094, (186) = 2.8226, (187) = 2.8358, (188) = 2.8490, (189) = 2.8622, (190) = 2.8755, (191) = 2.8887, (192) = 2.9019, (193) = 2.9151, (194) = 2.9302, (195) = 2.9453, (196) = 2.9604, (197) = 2.9755, (198) = 2.9940, (199) = 3.0126, (200) = 3.0311, (201) = 3.0496, (202) = 3.0659, (203) = 3.0822, (204) = 3.0985, (205) = 3.1149, (206) = 3.1302, (207) = 3.1455, (208) = 3.1609, (209) = 3.1762, (210) = 3.1915, (211) = 3.2069, (212) = 3.2222, (213) = 3.2375, (214) = 3.2545, (215) = 3.2715, (216) = 3.2885, (217) = 3.3055, (218) = 3.3223, (219) = 3.3391, (220) = 3.3560, (221) = 3.3728, (222) = 3.3888, (223) = 3.4047, (224) = 3.4206, (225) = 3.4365, (226) = 3.4494, (227) = 3.4622, (228) = 3.4750, (229) = 3.4879, (230) = 3.5007, (231) = 3.5136, (232) = 3.5264, (233) = 3.5392, (234) = 3.5529, (235) = 3.5667, (236) = 3.5804, (237) = 3.5941, (238) = 3.6116, (239) = 3.6292, (240) = 3.6468, (241) = 3.6644, (242) = 3.6810, (243) = 3.6976, (244) = 3.7143, (245) = 3.7309, (246) = 3.7508, (247) = 3.7707, (248) = 3.7905, (249) = 3.8104, (250) = 3.8273, (251) = 3.8442, (252) = 3.8610, (253) = 3.8779, (254) = 3.8938, (255) = 3.9096, (256) = 3.9255, (257) = 3.9414, (258) = 3.9559, (259) = 3.9705, (260) = 3.9851, (261) = 3.9997, (262) = 4.0149, (263) = 4.0301, (264) = 4.0452, (265) = 4.0604, (266) = 4.0779, (267) = 4.0953, (268) = 4.1128, (269) = 4.1302, (270) = 4.1459, (271) = 4.1615, (272) = 4.1771, (273) = 4.1927, (274) = 4.2114, (275) = 4.2300, (276) = 4.2486, (277) = 4.2673, (278) = 4.2833, (279) = 4.2993, (280) = 4.3153, (281) = 4.3313, (282) = 4.3485, (283) = 4.3657, (284) = 4.3829, (285) = 4.4001, (286) = 4.4182, (287) = 4.4362, (288) = 4.4543, (289) = 4.4724, (290) = 4.4881, (291) = 4.5037, (292) = 4.5194, (293) = 4.5351, (294) = 4.5472, (295) = 4.5593, (296) = 4.5715, (297) = 4.5836, (298) = 4.5957, (299) = 4.6079, (300) = 4.6200, (301) = 4.6321, (302) = 4.6456, (303) = 4.6591, (304) = 4.6726, (305) = 4.6861, (306) = 4.7059, (307) = 4.7256, (308) = 4.7454, (309) = 4.7652, (310) = 4.7819, (311) = 4.7986, (312) = 4.8153, (313) = 4.8320, (314) = 4.8474, (315) = 4.8627, (316) = 4.8781, (317) = 4.8935, (318) = 4.9088, (319) = 4.9242, (320) = 4.9396, (321) = 4.9550, (322) = 4.9662, (323) = 4.9775, (324) = 4.9887, (325) = 5.0000})

_rtable[18446746442112534638]

(2)

``


 

Download mode_shapes.mw

Hi

I would like to know if recent Maples's verion (> 2015) contain methods for solving functional equations ?
Functional_equation

TIA

I'm trying to graph the solution to:

[7.72-7.72*B]*[-7.717267500*a] = 662204.4444*B^2

with a as the independent variable (X-Axis) and B as the dependant variable (Y-Axis). I've been using the command:

 

implicitplot([7.72-7.72*B]*[-7.717267500*a] = 662204.4444*B^2, a = 10 .. 15000, B = 0.1e-1 .. 1)

 

I dont get any errors, but the graph is ust a blank graph that is -10..10 for both axis (at least they are labelled correctly)

Any help as to how to solve this woud be greatly apprecated (either fixing syntax or recommending another command).

Note: These ranges are correct....a will be something between 0 and 20,000 and B will be between 0 and 1

 

Thank you! - Bob

How these system of relations can be defined and plotted?(with any possible assumptions)

 

restart

x[n+1]=1/3*(2*x[n]*y[n]+4*x[n]*z[n])+1/12*(2*x[n-1]*y[n-1]+4*x[n-1]*z[n-1])

x[n+1] = (2/3)*x[n]*y[n]+(4/3)*x[n]*z[n]+(1/6)*x[n-1]*y[n-1]+(1/3)*x[n-1]*z[n-1]

(1)

y[n+1]=1/3*(1/4*x[n]*z[n]+y[n])+1/12*(1/4*x[n-1]*z[n-1]+y[n-1])

y[n+1] = (1/12)*x[n]*z[n]+(1/3)*y[n]+(1/48)*x[n-1]*z[n-1]+(1/12)*y[n-1]

(2)

z[n+1]=1/3*(x[n]*z[n]+2*y[n]*z[n])+1/12*(x[n-1]*z[n-1]+2*y[n-1]*z[n-1])

z[n+1] = (1/3)*x[n]*z[n]+(2/3)*y[n]*z[n]+(1/12)*x[n-1]*z[n-1]+(1/6)*y[n-1]*z[n-1]

(3)

 


 

Download problem.mw

Determine the polynomials P∈R₃ [X] such that P (-1) = - 18 and whose remainders in the Euclidean division by X-1, X-2 and X-3 are equal to 6.

Error, (in pdsolve/numeric/process_PDEs) number of dependent variables and number of PDE must be the same

restart;
PDE := diff(u(x, t), t) - Laplacian(u(x, t), [x]) - u(x, t) + x - 2*sin(2*x)*cos(x) = 0;

IBC := D[1](u)(Pi/2, t) = 1, u(0, t) = 0, u(x, 0) = x;

pds := pdsolve(eval(PDE), {IBC}, type = numeric);
Error, (in pdsolve/numeric/process_PDEs) number of dependent variables and number of PDE must be the same
 

First 427 428 429 430 431 432 433 Last Page 429 of 2281