MaplePrimes Questions

If I make this command in maple: solve(sin(x) = -1/2, x) I would like to get all the answers, but the only output I get is pi/6. I know I can find the other output myself, but I would like to know if I can make maple show all the answers. 

Here is how my cas calculater would shows the answer/output: "x=2k*pi+7pi/6 or 2k*pi-pi/6" - shich is how I would like to see it in maple as well.

 

 

Hi,

I was hoping to run two procs: tgf3 and tgf4 in parallel using Grid, Run and get a faster execution time. As I understood the description of Grid Run, the first call to Grid Run will run in the background and before it is finished the second call Grid Run will start. I do not believe I have that situation in my script. I am not understanding Grid Run. How can this problem be fixed? Here is just a portion of the script using Grid Run:

Use Grid Run 0 for tgf3 and 1 for tgf4. Determine the real time and compare times. The Grid Runs do not appear to run in parallel.

rgt := time[real]();
Grid:-Run(0, `~`[tgf3@op](convert(L, listlist)), 'assignto' = ans3roots);
Grid:-Run(1, `~`[tgf4@op](convert(L, listlist)), 'assignto' = ans4roots);
ans3roots;
ans4roots;

GridRunTime := time[real]() - rgt;
                     GridRunTime := 44.074

Here is my script:

Grid_Run_2.mw

 

Thank you for your help.

1. How did Maple come up with this answer?

I've tried all the packages in SumTools and none of them give an answer except Hypergeometric.

2. Is there a way to trace the steps Maple is using so I can try and answer this myself?

3. Why did it sum the series when I didn't even ask - I deliberately used the inert form (no arguments though - I like what it did).

Thank you.

______________________________________________________________________________

H1a := Sum(GAMMA(2*b - 1 + 2*n)*GAMMA(2*n - s)*(b - 1/2 + 2*n)/(GAMMA(2*b + 2*n + s)*GAMMA(2*n + 1)), n = 0 .. infinity);

H1b:=convert(H1a,Hypergeom);

The answer H1b it came up with is 

GAMMA(-s)*2^(1 + 2*b)*GAMMA(b)/(8*GAMMA(b + s)*2^(2*b));

which seems to be correct.

How to plot absolute value in dsolve?
absolute_plot.mw

Plotting in the first coordinate in the plane......

Hello there, 

Would please tell me how to pick up numerical vaules from answers given by 'solve()' command?

If you look at the worksheet (sorry for the error), one possible way is labeled by 'solution 1'. However, when I tried the expression in the 'attempt 1' label, I got an error. Therefore, I'm wondering if there is a way to extract the values from the answers, instead of using the 'rhs()' command. 


Maple Worksheet - Error

Failed to load the worksheet /maplenet/convert/q20210206.mw .
 

Download q20210206.mw

 

Best Regards, 

In Kwon Park

Dear Users!
First, I define the following polynomial as:

restart; with(LinearAlgebra); nu := 1/2; M1 := 3; M2 := 3; #(any value of M1 and M2)
for k1 from 0 while k1 <= M1-1 do for k2 from 0 while k2 <= M2-1 do
SGP[M2*k1+k2+1] := simplify(sum((-1)^(k1-i1)*GAMMA(k1+i1+2*nu)*GAMMA(nu+1/2)*x^i1*(sum((-1)^(k2-i2)*GAMMA(k2+i2+2*nu)*GAMMA(nu+1/2)*t^i2/(GAMMA(i2+nu+1/2)*factorial(k2-i2)*factorial(i2)*GAMMA(2*nu)), i2 = 0 .. k2))/(GAMMA(i1+nu+1/2)*factorial(k1-i1)*factorial(i1)*GAMMA(2*nu)), i1 = 0 .. k1))
end do end do;
Lambda := `<,>`(seq(SGP[i], i = 1 .. M1*M2));

then, I want to define a square matrix A of order M1M2 by M1M2 after collocating SGP[k](x,y) at x=(i-1)/(M1-1) and y=(j-1)/(M2-1) for i=1,2,3,...M1, j=1,2,3,...M2.

For example, for M1=2 and M3=3 this matrix A is given as:

A:=Matrix(6, 6, {(1, 1) = SGP[1](0, 0), (1, 2) = SGP[2](0, 0), (1, 3) = SGP[3](0, 0), (1, 4) = SGP[4](0, 0), (1, 5) = SGP[5](0, 0), (1, 6) = SGP[6](0, 0), (2, 1) = SGP[1](0, 1), (2, 2) = SGP[2](0, 1), (2, 3) = SGP[3](0, 1), (2, 4) = SGP[4](0, 1), (2, 5) = SGP[5](0, 1), (2, 6) = SGP[6](0, 1), (3, 1) = SGP[1](1/2, 0), (3, 2) = SGP[2](1/2, 0), (3, 3) = SGP[3](1/2, 0), (3, 4) = SGP[4](1/2, 0), (3, 5) = SGP[5](1/2, 0), (3, 6) = SGP[6](1/2, 0), (4, 1) = SGP[1](1/2, 1), (4, 2) = SGP[2](1/2, 1), (4, 3) = SGP[3](1/2, 1), (4, 4) = SGP[4](1/2, 1), (4, 5) = SGP[5](1/2, 1), (4, 6) = SGP[6](1/2, 1), (5, 1) = SGP[1](1, 0), (5, 2) = SGP[2](1, 0), (5, 3) = SGP[3](1, 0), (5, 4) = SGP[4](1, 0), (5, 5) = SGP[5](1, 0), (5, 6) = SGP[6](1, 0), (6, 1) = SGP[1](1, 1), (6, 2) = SGP[2](1, 1), (6, 3) = SGP[3](1, 1), (6, 4) = SGP[4](1, 1), (6, 5) = SGP[5](1, 1), (6, 6) = SGP[6](1, 1)});

for M1=3 and M=2 the matrix A is given as:

A:=Matrix(6, 6, {(1, 1) = SGP[1](0, 0), (1, 2) = SGP[2](0, 0), (1, 3) = SGP[3](0, 0), (1, 4) = SGP[4](0, 0), (1, 5) = SGP[5](0, 0), (1, 6) = SGP[6](0, 0), (2, 1) = SGP[1](0, 1/2), (2, 2) = SGP[2](0, 1/2), (2, 3) = SGP[3](0, 1/2), (2, 4) = SGP[4](0, 1/2), (2, 5) = SGP[5](0, 1/2), (2, 6) = SGP[6](0, 1/2), (3, 1) = SGP[1](0, 1), (3, 2) = SGP[2](0, 1), (3, 3) = SGP[3](0, 1), (3, 4) = SGP[4](0, 1), (3, 5) = SGP[5](0, 1), (3, 6) = SGP[6](0, 1), (4, 1) = SGP[1](1, 0), (4, 2) = SGP[2](1, 0), (4, 3) = SGP[3](1, 0), (4, 4) = SGP[4](1, 0), (4, 5) = SGP[5](1, 0), (4, 6) = SGP[6](1, 0), (5, 1) = SGP[1](1, 1/2), (5, 2) = SGP[2](1, 1/2), (5, 3) = SGP[3](1, 1/2), (5, 4) = SGP[4](1, 1/2), (5, 5) = SGP[5](1, 1/2), (5, 6) = SGP[6](1, 1/2), (6, 1) = SGP[1](1, 1), (6, 2) = SGP[2](1, 1), (6, 3) = SGP[3](1, 1), (6, 4) = SGP[4](1, 1), (6, 5) = SGP[5](1, 1), (6, 6) = SGP[6](1, 1)});

and for M1=M2=3 the matrix A should be the following form:

A:=Matrix(9, 9, {(1, 1) = SGP[1](0, 0), (1, 2) = SGP[2](0, 0), (1, 3) = SGP[3](0, 0), (1, 4) = SGP[4](0, 0), (1, 5) = SGP[5](0, 0), (1, 6) = SGP[6](0, 0), (1, 7) = SGP[7](0, 0), (1, 8) = SGP[8](0, 0), (1, 9) = SGP[9](0, 0), (2, 1) = SGP[1](0, 1/2), (2, 2) = SGP[2](0, 1/2), (2, 3) = SGP[3](0, 1/2), (2, 4) = SGP[4](0, 1/2), (2, 5) = SGP[5](0, 1/2), (2, 6) = SGP[6](0, 1/2), (2, 7) = SGP[7](0, 1/2), (2, 8) = SGP[8](0, 1/2), (2, 9) = SGP[9](0, 1/2), (3, 1) = SGP[1](0, 1), (3, 2) = SGP[2](0, 1), (3, 3) = SGP[3](0, 1), (3, 4) = SGP[4](0, 1), (3, 5) = SGP[5](0, 1), (3, 6) = SGP[6](0, 1), (3, 7) = SGP[7](0, 1), (3, 8) = SGP[8](0, 1), (3, 9) = SGP[9](0, 1), (4, 1) = SGP[1](1/2, 0), (4, 2) = SGP[2](1/2, 0), (4, 3) = SGP[3](1/2, 0), (4, 4) = SGP[4](1/2, 0), (4, 5) = SGP[5](1/2, 0), (4, 6) = SGP[6](1/2, 0), (4, 7) = SGP[7](1/2, 0), (4, 8) = SGP[8](1/2, 0), (4, 9) = SGP[9](1/2, 0), (5, 1) = SGP[1](1/2, 1/2), (5, 2) = SGP[2](1/2, 1/2), (5, 3) = SGP[3](1/2, 1/2), (5, 4) = SGP[4](1/2, 1/2), (5, 5) = SGP[5](1/2, 1/2), (5, 6) = SGP[6](1/2, 1/2), (5, 7) = SGP[7](1/2, 1/2), (5, 8) = SGP[8](1/2, 1/2), (5, 9) = SGP[9](1/2, 1/2), (6, 1) = SGP[1](1/2, 1), (6, 2) = SGP[2](1/2, 1), (6, 3) = SGP[3](1/2, 1), (6, 4) = SGP[4](1/2, 1), (6, 5) = SGP[5](1/2, 1), (6, 6) = SGP[6](1/2, 1), (6, 7) = SGP[7](1/2, 1), (6, 8) = SGP[8](1/2, 1), (6, 9) = SGP[9](1/2, 1), (7, 1) = SGP[1](1, 0), (7, 2) = SGP[2](1, 0), (7, 3) = SGP[3](1, 0), (7, 4) = SGP[4](1, 0), (7, 5) = SGP[5](1, 0), (7, 6) = SGP[6](1, 0), (7, 7) = SGP[7](1, 0), (7, 8) = SGP[8](1, 0), (7, 9) = SGP[9](1, 0), (8, 1) = SGP[1](1, 1/2), (8, 2) = SGP[2](1, 1/2), (8, 3) = SGP[3](1, 1/2), (8, 4) = SGP[4](1, 1/2), (8, 5) = SGP[5](1, 1/2), (8, 6) = SGP[6](1, 1/2), (8, 7) = SGP[7](1, 1/2), (8, 8) = SGP[8](1, 1/2), (8, 9) = SGP[9](1, 1/2), (9, 1) = SGP[1](1, 1), (9, 2) = SGP[2](1, 1), (9, 3) = SGP[3](1, 1), (9, 4) = SGP[4](1, 1), (9, 5) = SGP[5](1, 1), (9, 6) = SGP[6](1, 1), (9, 7) = SGP[7](1, 1), (9, 8) = SGP[8](1, 1), (9, 9) = SGP[9](1, 1)});

Please help to define general matrix A for any values of M1 and M2. I will be very grateful for you. 

 

When I am using

Polynomialdeal package:

sys:=[p31,p32,p33];

as in the end of the post. (for one to reproduce)

 

`J := PolynomialIdeal(sys, characteristic = p)`

 

 

and calculate the corresponding Groebner basis.

It report this "Error, (in Groebner:-Basis) Segmentation Violation occurred in external routine".

Does anyone know how to fix this error?

Here is the output details.

infolevel[GroebnerBasis] := 5;

 GB:=Groebner[Basis](sys,IdealInfo[DefaultMonomialOrder](J),method=fgb);

memory used=712.9MB, alloc=103.8MB, time=4.48
memory used=779.3MB, alloc=111.8MB, time=4.89
-> MGb
 domain: rat_int_cof
F4 algorithm
1: prime=2132425153
 deg  pairs  taken         matrix                                        found
   6     20      1         8 x 1018       238.5 per row,     0.0 MB      1 new,      0 zero     0.007 sec
   8     22      3       310 x 20321      288.7 per row,     0.7 MB      3 new,      0 zero     0.035 sec
   9     28      5       818 x 38796      397.2 per row,     2.5 MB      5 new,      0 zero     0.069 sec
  10     37     18      5118 x 220200     532.9 per row,    20.8 MB     16 new,      2 zero     0.386 sec
  11     83     52     21117 x 653954     835.4 per row,   134.7 MB     35 new,     17 zero     1.844 sec
  12    218    153     84758 x 2148937   1314.0 per row,   850.0 MB    100 new,     53 zero    14.546 sec
  13    690    551    336032 x 6779582   2133.6 per row,  5471.1 MB    310 new,    241 zero   222.741 sec
  14   2256   1875   1144460 x 18963907  3811.9 per row, 33288.2 MB    732 new,   1143 zero  2407.556 sec
  15   5978   5202  error in FGb
Error, (in Groebner:-Basis) Segmentation Violation occurred in external routine

p31:=-2*(a2^3*A20 + a2^2*a3*(2*A20 - A40) + a1^2*(A20*a3 - a3*A30 + a2*(A20 - A40) - a3*A40 + A10*(a3 - a5) - A20*a5) - a4*(A10*a3*(a3 + a4) + A40*a5*(a4 + a5) + A20*(a3 - a5)*(a3 + a4 + a5)) + a1*(A20*a3^2 - a3^2*A30 + 2*a3*A30*a4 + a2^2*(2*A20 - A40) - a3^2*A40 + 2*a3*a4*A40 + 2*a3*A30*a5 + 2*a3*A40*a5 - A20*a5^2 + a2*(2*A10*a3 + 3*A20*a3 - a3*A30 - 2*a3*A40 + 2*a4*A40 - A20*a5) + A10*(a3^2 - a5^2)) - a2*(A40*(a3^2 - 2*a3*a5 - 2*a4*a5) + A20*(-a3^2 + a3*a4 + a4^2 + a4*a5 + a5^2)));

 

p32:=1/8 + 2*(-(a2^3*A21) + A11*a3^2*a4 + A21*a3^2*a4 + A11*a3*a4^2 + A21*a3*a4^2 - A21*a4^2*a5 + a4^2*A41*a5 - A21*a4*a5^2 + a4*A41*a5^2 - A10*a3^2*b1 - A20*a3^2*b1 + a3^2*A30*b1 - 2*a3*A30*a4*b1 + a3^2*A40*b1 - 2*a3*a4*A40*b1 - 2*a3*A30*a5*b1 - 2*a3*A40*a5*b1 + A10*a5^2*b1 + A20*a5^2*b1 - A20*a3^2*b2 + A20*a3*a4*b2 + A20*a4^2*b2 + a3^2*A40*b2 + A20*a4*a5*b2 - 2*a3*A40*a5*b2 - 2*a4*A40*a5*b2 + A20*a5^2*b2 + 2*A10*a3*a4*b3 + 2*A20*a3*a4*b3 + A10*a4^2*b3 + A20*a4^2*b3 + a2^2*(-2*A21*a3 + a3*A41 - 2*A20*b1 + A40*b1 - 3*A20*b2 - 2*A20*b3 + A40*b3) + A10*a3^2*b4 + A20*a3^2*b4 + 2*A10*a3*a4*b4 + 2*A20*a3*a4*b4 - 2*A20*a4*a5*b4 + 2*a4*A40*a5*b4 - A20*a5^2*b4 + A40*a5^2*b4 - A20*a4^2*b5 + a4^2*A40*b5 - 2*A20*a4*a5*b5 + 2*a4*A40*a5*b5 + a1^2*(-(A21*a3) + a3*A31 + a3*A41 + a2*(-A21 + A41) + A21*a5 + A11*(-a3 + a5) - A20*b2 + A40*b2 - A10*b3 - A20*b3 + A30*b3 + A40*b3 + A10*b5 + A20*b5) + a1*(-(A21*a3^2) + a3^2*A31 - 2*a3*A31*a4 + a3^2*A41 - 2*a3*a4*A41 + a2^2*(-2*A21 + A41) - 2*a3*A31*a5 - 2*a3*A41*a5 + A21*a5^2 + A11*(-a3^2 + a5^2) - 2*A10*a3*b1 - 2*A20*a3*b1 + 2*a3*A30*b1 + 2*a3*A40*b1 + 2*A10*a5*b1 + 2*A20*a5*b1 - 2*A10*a3*b2 - 3*A20*a3*b2 + a3*A30*b2 + 2*a3*A40*b2 - 2*a4*A40*b2 + A20*a5*b2 - 2*A10*a3*b3 - 2*A20*a3*b3 + 2*a3*A30*b3 - 2*A30*a4*b3 + 2*a3*A40*b3 - 2*a4*A40*b3 - 2*A30*a5*b3 - 2*A40*a5*b3 - 2*a3*A30*b4 - 2*a3*A40*b4 - 2*a3*A30*b5 - 2*a3*A40*b5 + 2*A10*a5*b5 + 2*A20*a5*b5 + a2*(-2*A11*a3 - 3*A21*a3 + a3*A31 + 2*a3*A41 - 2*a4*A41 + A21*a5 - 2*A20*b1 + 2*A40*b1 - 4*A20*b2 + 2*A40*b2 - 2*A10*b3 - 3*A20*b3 + A30*b3 + 2*A40*b3 - 2*A40*b4 + A20*b5)) + a2*(a3^2*A41 - 2*a4*A41*a5 + A21*(-a3^2 + a3*a4 + a4^2 + a4*a5 + a5^2) - 2*a4*A40*b1 + A20*a5*b1 + A20*a4*b3 - 2*A40*a5*b3 + 2*A20*a4*b4 + A20*a5*b4 - 2*A40*a5*b4 + A20*a4*b5 - 2*a4*A40*b5 + 2*A20*a5*b5 + a3*(-2*A41*a5 - 2*A10*b1 - 3*A20*b1 + A30*b1 + 2*A40*b1 - 4*A20*b2 + 2*A40*b2 - 2*A20*b3 + 2*A40*b3 + A20*b4 - 2*A40*b5)));

 

p33:=2*(-(A11*a3^2*b1) - A21*a3^2*b1 + a3^2*A31*b1 - 2*a3*A31*a4*b1 + a3^2*A41*b1 - 2*a3*a4*A41*b1 - 2*a3*A31*a5*b1 - 2*a3*A41*a5*b1 + A11*a5^2*b1 + A21*a5^2*b1 - A10*a3*b1^2 - A20*a3*b1^2 + a3*A30*b1^2 + a3*A40*b1^2 + A10*a5*b1^2 + A20*a5*b1^2 - A21*a3^2*b2 + A21*a3*a4*b2 + A21*a4^2*b2 + a3^2*A41*b2 + A21*a4*a5*b2 - 2*a3*A41*a5*b2 - 2*a4*A41*a5*b2 + A21*a5^2*b2 - 2*A10*a3*b1*b2 - 3*A20*a3*b1*b2 + a3*A30*b1*b2 + 2*a3*A40*b1*b2 - 2*a4*A40*b1*b2 + A20*a5*b1*b2 - 2*A20*a3*b2^2 + a3*A40*b2^2 + 2*A11*a3*a4*b3 + 2*A21*a3*a4*b3 + A11*a4^2*b3 + A21*a4^2*b3 - 2*A10*a3*b1*b3 - 2*A20*a3*b1*b3 + 2*a3*A30*b1*b3 - 2*A30*a4*b1*b3 + 2*a3*A40*b1*b3 - 2*a4*A40*b1*b3 - 2*A30*a5*b1*b3 - 2*A40*a5*b1*b3 - 2*A20*a3*b2*b3 + A20*a4*b2*b3 + 2*a3*A40*b2*b3 - 2*A40*a5*b2*b3 + A10*a4*b3^2 + A20*a4*b3^2 + a2^2*(A41*(b1 + b3) - A21*(2*b1 + 3*b2 + 2*b3)) + A11*a3^2*b4 + A21*a3^2*b4 + 2*A11*a3*a4*b4 + 2*A21*a3*a4*b4 - 2*A21*a4*a5*b4 + 2*a4*A41*a5*b4 - A21*a5^2*b4 + A41*a5^2*b4 - 2*a3*A30*b1*b4 - 2*a3*A40*b1*b4 + A20*a3*b2*b4 + 2*A20*a4*b2*b4 + A20*a5*b2*b4 - 2*A40*a5*b2*b4 + 2*A10*a3*b3*b4 + 2*A20*a3*b3*b4 + 2*A10*a4*b3*b4 + 2*A20*a4*b3*b4 + A10*a3*b4^2 + A20*a3*b4^2 - A20*a5*b4^2 + A40*a5*b4^2 - A21*a4^2*b5 + a4^2*A41*b5 - 2*A21*a4*a5*b5 + 2*a4*A41*a5*b5 - 2*a3*A30*b1*b5 - 2*a3*A40*b1*b5 + 2*A10*a5*b1*b5 + 2*A20*a5*b1*b5 + A20*a4*b2*b5 - 2*a3*A40*b2*b5 - 2*a4*A40*b2*b5 + 2*A20*a5*b2*b5 - 2*A20*a4*b4*b5 + 2*a4*A40*b4*b5 - 2*A20*a5*b4*b5 + 2*A40*a5*b4*b5 - A20*a4*b5^2 + a4*A40*b5^2 + a1^2*(-(A11*b3) + A31*b3 + A41*(b2 + b3) - A21*(b2 + b3 - b5) + A11*b5) + a1*(-2*A21*a3*b1 + 2*a3*A31*b1 + 2*a3*A41*b1 + 2*A21*a5*b1 - 3*A21*a3*b2 + a3*A31*b2 + 2*a3*A41*b2 - 2*a4*A41*b2 + A21*a5*b2 - 2*A20*b1*b2 + 2*A40*b1*b2 - 2*A20*b2^2 + A40*b2^2 - 2*A21*a3*b3 + 2*a3*A31*b3 - 2*A31*a4*b3 + 2*a3*A41*b3 - 2*a4*A41*b3 - 2*A31*a5*b3 - 2*A41*a5*b3 - 2*A10*b1*b3 - 2*A20*b1*b3 + 2*A30*b1*b3 + 2*A40*b1*b3 - 2*A10*b2*b3 - 3*A20*b2*b3 + A30*b2*b3 + 2*A40*b2*b3 - A10*b3^2 - A20*b3^2 + A30*b3^2 + A40*b3^2 - 2*A11*a3*(b1 + b2 + b3) - 2*a3*A31*b4 - 2*a3*A41*b4 - 2*A40*b2*b4 - 2*A30*b3*b4 - 2*A40*b3*b4 - 2*a3*A31*b5 - 2*a3*A41*b5 + 2*A21*a5*b5 + 2*A10*b1*b5 + 2*A20*b1*b5 + A20*b2*b5 - 2*A30*b3*b5 - 2*A40*b3*b5 + A10*b5^2 + A20*b5^2 + 2*A11*a5*(b1 + b5) + a2*((-2*A11 + A31)*b3 + 2*A41*(b1 + b2 + b3 - b4) + A21*(-2*b1 - 4*b2 - 3*b3 + b5))) + a2*(-2*A11*a3*b1 + a3*A31*b1 + 2*a3*A41*b1 - 2*a4*A41*b1 - A20*b1^2 + A40*b1^2 + 2*a3*A41*b2 - 4*A20*b1*b2 + 2*A40*b1*b2 - 3*A20*b2^2 + 2*a3*A41*b3 - 2*A41*a5*b3 - 2*A10*b1*b3 - 3*A20*b1*b3 + A30*b1*b3 + 2*A40*b1*b3 - 4*A20*b2*b3 + 2*A40*b2*b3 - A20*b3^2 + A40*b3^2 - 2*A41*a5*b4 - 2*A40*b1*b4 + A20*b3*b4 + A20*b4^2 - 2*a3*A41*b5 - 2*a4*A41*b5 + A20*b1*b5 - 2*A40*b3*b5 + A20*b4*b5 - 2*A40*b4*b5 + A20*b5^2 + A21*(a3*(-3*b1 - 4*b2 - 2*b3 + b4) + a4*(b3 + 2*b4 + b5) + a5*(b1 + b4 + 2*b5))));

 

Good day everyone,

I am trying to write various parameters for two functions using "if loop" but it is substituting for the first one only. Anyone with useful information, please.

The link is attached below

Thank you

nops_not_substituting.mw

Is it possible to solve DE without initial conditions
(1/24)*exp(-8)-(1/12)*exp(-5)+(1/24)*exp(-2)-(1/24)*exp(-10)+(1/24)*exp(-9)+(1/24)*exp(-1)+diff(f(x), x, x, x, x, x)+d*(diff(f(x), x))+e*f(x)+a*(diff(f(x), x, x, x, x))+b*(diff(f(x), x, x, x))+c*(diff(f(x), x, x))-1/24

where, a, b, c, d, and e are constant coefficients.....

I would like to have Maple give me sin(2nPi) = 0 assuming that n is a positive integer. Is there a way to do it?

Thank you.
mapleatha.

 

Dear there,

I have a code.mw

 

  • If I don't use command Digits in the code, I get the following result:

Question 1: The third column of matrix B includes 16 decimal, but the fourth column of matrix B includes 11 decimal. Why?

 

  • When I write the command Digits:=20, I get the following result:

 

Question 2: The last column of matrix B shows the absolute error of the method. 

When asked what is the absolute error of the method, what is the right answer?  (Because the higher the digit is chosen, the lower the absolute error is.)

 

Question 3: Are the two results consistent? How can we explain to someone who asks why the difference comes from?

 12 yeas later, the probelm  is not still improved in following links 

https://www.mapleprimes.com/posts/38473-Simplify-Ceil-And-Floor

simplify(ceil(x)+floor(-x));

                         floor(-x) + ceil(x)



I think extending simplify by Joe Riel 8221  is a little complicated. 

restart;
`simplify/ceil` := proc(ex)
    evalindets(ex, 'specfunc(anything,ceil)', x -> -floor(-op(x)));
end proc:

simplify(floor(-x) + ceil(x));

 It seems that maple know  ceil(x)=-floor(-x) 

 

why does not maple2020 still handle that?  

 

 

With each new release of Maple Player, there are more and more restrictions. Tell me, please (in the latest release 2020.1) the ability to copy data from the Maple Player window was removed? (Ctrl+C)? And how do I find out all the restrictions?

How to solve and plot DE?

eq1 := diff(f(x), `$`(x, 5))+2*(diff(f(x), `$`(x, 4)))+diff(f(x), `$`(x, 3))+diff(f(x), `$`(x, 2))+2*(diff(f(x), `$`(x, 1)))+3*f(x) = g(x)

Hello all, 

When I enter the following expression:

eqaux_2 := l__bb = L__aa0 + L__aa2 * cos(2*theta - 4/3*Pi);
 

the cos function got converted an equivalent sin function automatically and the result was displayed like this:

l__bb = L__aa0 - L__aa2*sin(2*theta + Pi/6)

Is there any way to ask Maple not to do this automatic conversion?



Maple Worksheet - Error

Failed to load the worksheet /maplenet/convert/q20210204.mw .
 

Download q20210204.mw
 

 

First 439 440 441 442 443 444 445 Last Page 441 of 2424