MaplePrimes Questions

Hello, when you run an error occurs:

Error, (in plots:-display) unknown plot object: circle
Error, (in plots:-display) expecting plot structure but received: P[0]
Error, (in plots:-display) expecting plot structure but received: PP

I'm not good in Maple. Please help me understand.

Programm: https://dropmefiles.com/Qnkzn

I attempted to show that two lines are parallel.  I started with a problem in Geometry for which I do not have the solution.

I tried several ways with Maple to show this to be true.  Most of the time, I ended when maple could not determine if a-b = c-d, etc.

brg_proof.txt contains a statement of the problem and my latest maple code.

Question: How should I approach the proof, by the compass and straight edge method?  Is this possible in maple?

My problem is: I`d like to parse a value from JSON string and use it as code in Maple.
Ex. This is my value from JSON string: "restart:\na:=5:\nb:=3:\nP:=28*10^(-3):"

and that`s all, I`ve tryed to use JSON.Parse - it says me it`s not JSON. Sscanf - nothing.

Can anyone help me please?

intersection in the geometry package does not seem to recognize assume.

restart: with(geometry):

assume(p[1]<>0, p[2]<>0, p[3]<>0);
assume(q[1]<>0, q[2]<>0, q[3]<>0);
point(T,[p[1],q[1]]);
point(U,[p[2],q[2]]);
point(V,[p[3],q[3]]);
point(Op,[0,0]);

line(OT,[Op,T]);
line(OU,[Op,U]);
line(OV,[Op,V]);

point(B,2*q[2],solve(subs(x=2*q[2],Equation(OU)),y));
coordinates(B);
IsOnLine(B,OU);

PerpendicularLine(AD,B,OT);
ArePerpendicular(AD,OT);
sol:=solve({Equation(AD),Equation(OT)},{x,y});
eval(x,sol);
point(A,eval(x,sol),eval(y,sol));  ## the intersection exists
intersection(xA,AD,OT); ## fails
about(p[1]),about(q[1]);

Hello people in mapleprimes

In the help of parse, there is the following example.

I could not understand why the first one is 4, and next 4^2, and the last 4^3 appeared, there.

Please tell me the way n is increased with the output taking 4, 4^2 and 4^3 sequentially in this example.

n := 0;
                             n := 0
input := "a := 4; a^2; a^3;";
                  input := "a := 4; a^2; a^3;"
parse(input,'lastread'='n','offset'=n,statement);
                               4
parse(input,'lastread'='n','offset'=n,statement);
                               16
parse(input,'lastread'='n','offset'=n,statement);
                               64

I know that it is written in the help that lastread shows the next unparsed character,

with the offset the next statement.

Thanks in advance

taro

I had a single variable equation but I do not know where variable y come from for using genus to run

how to compute Igusa invariant in maple?

why it is not included in maple?

I found useful to use the email address of a relative I live with, to create my own account on Maple Primes.
But I have just realized that his own account has disappeared.

Is there a way to have two differents accounts with the same email address ??? 

If not I will create my own account on my private email addresss

Sorry for the mess

I have several plots generated with geometry objects:

plt1 := draw(...); plt2 := draw(...)

I want to display all them with a reasonable window.  I have been looping and and using a rather dumb proc to find the window size. I use the view=[...] option with the values calculated to set the plot view.

I wanted to post the proc, but, really messed that up!  I will try the proc later.

 

Some of the plots I am working with have views like

> for itm in [relBrgLinePlot,relTgtPositPlot,relTgtLinePlot] do
    op(-1,itm);
end do;
                     VIEW(0. .. 95., -61.58179461 .. 16.)
                 VIEW(5.48225506 .. 95., -61.58179461 .. 16.)
                 VIEW(5.48225506 .. 95., -61.58179461 .. 16.)

> for itm in [geoSensPositPlot,geoSensLinePlot,\
            geoBrgLinePlot,geoTgtPositPlot,geoTgtLinePLot] do
    op(-1,itm);
end do;
                  VIEW(0. .. 35.35331852, 0. .. 87.13244438)
                  VIEW(0. .. 35.35331852, 0. .. 87.13244438)
                     VIEW(0. .. 95., 0. .. 87.13244438)
                 VIEW(40.83557358 .. 95., 16. .. 25.55064977)
                 VIEW(40.83557358 .. 95., 16. .. 25.55064977)

Is there an easier way to do this?

with(plots);

implicitplot3d((x+y+z)^2=0, x=-100..100,y=-100..100,z=-100..100)

can be plot, and only show me an empty box.

and i get the same empty box when i reduce the interval.

for example :

implicitplot3d((x+y+z)^2=0, x=-5..5,y=-5..5,z=-5..5)

and

implicitplot3d((x+y+z)^2=0, x=-0.1..0.1,y=-0.1..0.1,z=-0.1..0.1)

please help me.

thanks for reading this question, and i hope i get an answer.

Linux.  I want to put grid lines on an x11 device.

The x11 device is better for plotting because if the window is resized, the plot resizes with it.

restart;
plotsetup(x11);plot(sin(x),x=-1..1,gridlines = true); ## no gridlines

restart;
plotsetup(maplet);
plot(sin(x),x=-1..1,gridlines = true); ## have gridlines

Any way to get gridlines on x11 device?

Tom Dean

I have a Maple result presented in the first (top) formula which I would like to format as in the second (bottom) formula:

Can this be done? This is Maple 2016.1

Hi!

I am simulate the code for fractional differential equation. But the out put is not wright...
sir_(2).mw

``

S[0] := .8;

.8

(1)

V[0] := .2;

.2

(2)

R[0] := 0;

0

(3)

alpha := 1;

1

 

.4

 

.8

 

gamma = 0.3e-1

(4)

q := .9;

.9

(5)

T := 1;

1

(6)

N := 5;

5

(7)

h := T/N;

1/5

(8)

``

for i from 0 to N do for j from 0 to 0 do a[j, i+1] := i^(alpha+1)-(i-alpha)*(i+1)^alpha; b[j, i+1] := h^alpha*((i+1-j)^alpha-(i-j)^alpha)/alpha end do end do;

for n from 0 to N do Sp[n+1] = S[0]+(sum(b[d, n+1]*(mu*(1-q)-beta*S[d]*V[d]-mu*S[d]), d = 0 .. n))/GAMMA(alpha); Vp[n+1] = V[0]+(sum(b[d, n+1]*(beta*S[d]*V[d]-(mu+gamma)*S[d]), d = 0 .. n))/GAMMA(alpha); Rp[n+1] = R[0]+(sum(b[d, n+1]*(mu*q-mu*R[d]+gamma*V[d]), d = 0 .. n))/GAMMA(alpha); S[n+1] = S[0]+h^alpha*(mu*(1-q)-beta*Sp[n+1]*Vp[n+1]-mu*Sp[n+1])/GAMMA(alpha+2)+h^alpha*(sum(a[e, n+1]*(mu*(1-q)-beta*S[e]*V[e]-mu*S[e]), e = 0 .. n))/GAMMA(alpha+2); V[n+1] = V[0]+h^alpha*(beta*Sp[n+1]*Vp[n+1]-(mu+gamma)*Sp[n+1])/GAMMA(alpha+2)+h^alpha*(sum(a[e, n+1]*(beta*S[e]*V[e]-(mu+gamma)*S[e]), e = 0 .. n))/GAMMA(alpha+2); R[n+1] = R[0]+h^alpha*(mu*q-mu*Rp[n+1]-gamma*Vp[n+1])/GAMMA(alpha+2)+h^alpha*(sum(a[e, n+1]*(mu*q-mu*R[e]-gamma*V[e]), e = 0 .. n))/GAMMA(alpha+2) end do;

Sp[1] = .7184000000

 

Vp[1] = 0.692454936e-1

 

Rp[1] = 0.9508862660e-1

 

S[1] = .7632000000-0.8000000000e-1*Sp[1]*Vp[1]-0.4000000000e-1*Sp[1]

 

V[1] = .1346227468+0.8000000000e-1*Sp[1]*Vp[1]-(1/10)*(.4+gamma)*Sp[1]

 

R[1] = 0.6045568670e-1-(1/10)*gamma*Vp[1]-0.4000000000e-1*Rp[1]

 

Sp[2] = .7264000000-.1600000000*S[1]*V[1]-0.8000000000e-1*S[1]

 

Vp[2] = 0.692454936e-1+.1600000000*S[1]*V[1]-.1954431330*S[1]

 

Rp[2] = .1670886266+.1154431330*V[1]-0.8000000000e-1*R[1]

 

S[2] = .7712000000-0.8000000000e-1*Sp[2]*Vp[2]-0.4000000000e-1*Sp[2]-.1600000000*S[1]*V[1]-0.8000000000e-1*S[1]

 

V[2] = .1346227468+0.8000000000e-1*Sp[2]*Vp[2]-(1/10)*(.4+gamma)*Sp[2]+.1600000000*S[1]*V[1]-.1954431330*S[1]

 

R[2] = .1324556867-(1/10)*gamma*Vp[2]-0.4000000000e-1*Rp[2]-.1154431330*V[1]-0.8000000000e-1*R[1]

 

Sp[3] = .7344000000-.1600000000*S[1]*V[1]-0.8000000000e-1*S[1]-.1600000000*S[2]*V[2]-0.8000000000e-1*S[2]

 

Vp[3] = 0.692454936e-1+.1600000000*S[1]*V[1]-.1954431330*S[1]+.1600000000*S[2]*V[2]-.1954431330*S[2]

 

Rp[3] = .2390886266+.1154431330*V[1]-0.8000000000e-1*R[1]+.1154431330*V[2]-0.8000000000e-1*R[2]

 

S[3] = .7792000000-0.8000000000e-1*Sp[3]*Vp[3]-0.4000000000e-1*Sp[3]-.1600000000*S[1]*V[1]-0.8000000000e-1*S[1]-.1600000000*S[2]*V[2]-0.8000000000e-1*S[2]

 

V[3] = .1346227468+0.8000000000e-1*Sp[3]*Vp[3]-(1/10)*(.4+gamma)*Sp[3]+.1600000000*S[1]*V[1]-.1954431330*S[1]+.1600000000*S[2]*V[2]-.1954431330*S[2]

 

R[3] = .2044556867-(1/10)*gamma*Vp[3]-0.4000000000e-1*Rp[3]-.1154431330*V[1]-0.8000000000e-1*R[1]-.1154431330*V[2]-0.8000000000e-1*R[2]

 

Sp[4] = .7424000000-.1600000000*S[1]*V[1]-0.8000000000e-1*S[1]-.1600000000*S[2]*V[2]-0.8000000000e-1*S[2]-.1600000000*S[3]*V[3]-0.8000000000e-1*S[3]

 

Vp[4] = 0.692454936e-1+.1600000000*S[1]*V[1]-.1954431330*S[1]+.1600000000*S[2]*V[2]-.1954431330*S[2]+.1600000000*S[3]*V[3]-.1954431330*S[3]

 

Rp[4] = .3110886266+.1154431330*V[1]-0.8000000000e-1*R[1]+.1154431330*V[2]-0.8000000000e-1*R[2]+.1154431330*V[3]-0.8000000000e-1*R[3]

 

S[4] = .7872000000-0.8000000000e-1*Sp[4]*Vp[4]-0.4000000000e-1*Sp[4]-.1600000000*S[1]*V[1]-0.8000000000e-1*S[1]-.1600000000*S[2]*V[2]-0.8000000000e-1*S[2]-.1600000000*S[3]*V[3]-0.8000000000e-1*S[3]

 

V[4] = .1346227468+0.8000000000e-1*Sp[4]*Vp[4]-(1/10)*(.4+gamma)*Sp[4]+.1600000000*S[1]*V[1]-.1954431330*S[1]+.1600000000*S[2]*V[2]-.1954431330*S[2]+.1600000000*S[3]*V[3]-.1954431330*S[3]

 

R[4] = .2764556867-(1/10)*gamma*Vp[4]-0.4000000000e-1*Rp[4]-.1154431330*V[1]-0.8000000000e-1*R[1]-.1154431330*V[2]-0.8000000000e-1*R[2]-.1154431330*V[3]-0.8000000000e-1*R[3]

 

Sp[5] = .7504000000-.1600000000*S[1]*V[1]-0.8000000000e-1*S[1]-.1600000000*S[2]*V[2]-0.8000000000e-1*S[2]-.1600000000*S[3]*V[3]-0.8000000000e-1*S[3]-.1600000000*S[4]*V[4]-0.8000000000e-1*S[4]

 

Vp[5] = 0.692454936e-1+.1600000000*S[1]*V[1]-.1954431330*S[1]+.1600000000*S[2]*V[2]-.1954431330*S[2]+.1600000000*S[3]*V[3]-.1954431330*S[3]+.1600000000*S[4]*V[4]-.1954431330*S[4]

 

Rp[5] = .3830886266+.1154431330*V[1]-0.8000000000e-1*R[1]+.1154431330*V[2]-0.8000000000e-1*R[2]+.1154431330*V[3]-0.8000000000e-1*R[3]+.1154431330*V[4]-0.8000000000e-1*R[4]

 

S[5] = .7952000000-0.8000000000e-1*Sp[5]*Vp[5]-0.4000000000e-1*Sp[5]-.1600000000*S[1]*V[1]-0.8000000000e-1*S[1]-.1600000000*S[2]*V[2]-0.8000000000e-1*S[2]-.1600000000*S[3]*V[3]-0.8000000000e-1*S[3]-.1600000000*S[4]*V[4]-0.8000000000e-1*S[4]

 

V[5] = .1346227468+0.8000000000e-1*Sp[5]*Vp[5]-(1/10)*(.4+gamma)*Sp[5]+.1600000000*S[1]*V[1]-.1954431330*S[1]+.1600000000*S[2]*V[2]-.1954431330*S[2]+.1600000000*S[3]*V[3]-.1954431330*S[3]+.1600000000*S[4]*V[4]-.1954431330*S[4]

 

R[5] = .3484556867-(1/10)*gamma*Vp[5]-0.4000000000e-1*Rp[5]-.1154431330*V[1]-0.8000000000e-1*R[1]-.1154431330*V[2]-0.8000000000e-1*R[2]-.1154431330*V[3]-0.8000000000e-1*R[3]-.1154431330*V[4]-0.8000000000e-1*R[4]

 

Sp[6] = .7584000000-.1600000000*S[1]*V[1]-0.8000000000e-1*S[1]-.1600000000*S[2]*V[2]-0.8000000000e-1*S[2]-.1600000000*S[3]*V[3]-0.8000000000e-1*S[3]-.1600000000*S[4]*V[4]-0.8000000000e-1*S[4]-.1600000000*S[5]*V[5]-0.8000000000e-1*S[5]

 

Vp[6] = 0.692454936e-1+.1600000000*S[1]*V[1]-.1954431330*S[1]+.1600000000*S[2]*V[2]-.1954431330*S[2]+.1600000000*S[3]*V[3]-.1954431330*S[3]+.1600000000*S[4]*V[4]-.1954431330*S[4]+.1600000000*S[5]*V[5]-.1954431330*S[5]

 

Rp[6] = .4550886266+.1154431330*V[1]-0.8000000000e-1*R[1]+.1154431330*V[2]-0.8000000000e-1*R[2]+.1154431330*V[3]-0.8000000000e-1*R[3]+.1154431330*V[4]-0.8000000000e-1*R[4]+.1154431330*V[5]-0.8000000000e-1*R[5]

 

S[6] = .8032000000-0.8000000000e-1*Sp[6]*Vp[6]-0.4000000000e-1*Sp[6]-.1600000000*S[1]*V[1]-0.8000000000e-1*S[1]-.1600000000*S[2]*V[2]-0.8000000000e-1*S[2]-.1600000000*S[3]*V[3]-0.8000000000e-1*S[3]-.1600000000*S[4]*V[4]-0.8000000000e-1*S[4]-.1600000000*S[5]*V[5]-0.8000000000e-1*S[5]

 

V[6] = .1346227468+0.8000000000e-1*Sp[6]*Vp[6]-(1/10)*(.4+gamma)*Sp[6]+.1600000000*S[1]*V[1]-.1954431330*S[1]+.1600000000*S[2]*V[2]-.1954431330*S[2]+.1600000000*S[3]*V[3]-.1954431330*S[3]+.1600000000*S[4]*V[4]-.1954431330*S[4]+.1600000000*S[5]*V[5]-.1954431330*S[5]

 

R[6] = .4204556867-(1/10)*gamma*Vp[6]-0.4000000000e-1*Rp[6]-.1154431330*V[1]-0.8000000000e-1*R[1]-.1154431330*V[2]-0.8000000000e-1*R[2]-.1154431330*V[3]-0.8000000000e-1*R[3]-.1154431330*V[4]-0.8000000000e-1*R[4]-.1154431330*V[5]-0.8000000000e-1*R[5]

(9)

``

``

 

Download sir_(2).mw

 

Dear all,

I would like to find a way to make the reflection of a spherical wave inside a tube (a cylinder). You have herafter an exemple of a sphere increasing inside a tube, but without the reflections...

 

Any idea how to do this?

Thanks a lot for your help.

 

how i can calculate roots of the characteristic polynomial equations {dsys and dsys2}
and dsolve them with arbitrary initial condition for differennt amont of m and n?
thanks
Kr.mw

restart; a := 1; b := 2; Number := 10; q := 1; omega := 0.2e-1
``

Q1 := besselj(0, xi*b)*(eval(diff(bessely(0, xi*r), r), r = a))-(eval(diff(besselj(0, xi*r), r), r = a))*bessely(0, xi*b):

J := 0:

m := 0:

U1 := (int(r*K1[m]*(diff(K_01[m], r)+K_01[m]/r), r = a .. b))/(int(r*K1[m]^2, r = a .. b)); -1; U2 := -(int(r*K_01[m]*(diff(K1[m], r)), r = a .. b))/(int(r*K_01[m]^2, r = a .. b)); -1; U3 := (int(r^2*omega^2*K_01[m], r = a .. b))/(int(r*K_01[m]^2, r = a .. b))

0.6222222222e-3/K_01[12]

(1)

Q2 := besselj(1, eta*b)*(eval(diff(bessely(1, eta*r), r), r = a))-(eval(diff(besselj(1, eta*r), r), r = a))*bessely(1, eta*b):

E2 := unapply(Q2, eta):

m := 0:

 
dsys := {diff(S_mn(t), t, t, t)+xi[m]^2*(diff(S_mn(t), t, t))+(-U1*U2+eta__n^2)*(diff(S_mn(t), t))+xi[m]^2*eta__n^2*S_mn(t) = -(2*U2*b_m/(Pi*xi[m])*(-besselj(0, xi[m]*b)/besselj(1, xi[m]*a)))*q+xi[m]^2*U3}; 1; dsolve(dsys)

{S_mn(t) = (3111111111/5000000000000)/(K_01[12]*eta__n^2)+_C1*cos(eta__n*t)+_C2*sin(eta__n*t)+_C3*exp(-xi[12]^2*t)}

(2)

dsys2 := {diff(Q_mn(t), t, t, t)+xi[m]^2*(diff(Q_mn(t), t, t))+(-U1*U2+eta__n^2)*(diff(Q_mn(t), t))+xi[m]^2*eta__n^2*Q_mn(t) = -2*besselj(0, xi[m]*b)*U1*U2*b_m*(1-exp(-xi[m]^2*t))/(besselj(1, xi[m]*a)*Pi*xi[m]^3)}; 1; dsolve(dsys2)

{Q_mn(t) = _C1*exp(-xi[12]^2*t)+_C2*sin(eta__n*t)+_C3*cos(eta__n*t)}

(3)

``

 

``



Download Kr.mw

 
First 1119 1120 1121 1122 1123 1124 1125 Last Page 1121 of 2434