Unanswered Questions

This page lists MaplePrimes questions that have not yet received an answer

Is there anyone who has seen maple 2017 provide some details about what new features are being introduced. Is there a platform where we can suggest what features we would like to be added or enhanced?

I'm trying to define some multilinear forms to study differential geometry. What I need is only symbolic. My intention is symplify computations involving multilinear forms.

For example, to create an symbolic inner product "g" I used the command "define" like in this post:

http://www.mapleprimes.com/questions/203480-Define-And-Use-Abstract-Linear-Operator

 

So I tipped:

define(g, orderless, multilinear);

 

My doubt is: how can I declare that g(x,y) is always scalar?

With it I would simplify things like g(g(z,w)*x,y) = g(z,w)*g(x,y)

 

In my case, specifically, I type:

v:=(X,Y,Z)->g(Y,Z)*X-g(X,Z)*Y;

r:=(X,Y,Z,W)->g(v(X,Y,Z),W)-g(Y,T)*g(v(X,T,Z),W)+g(X,T)*g(v(Y,T,Z),W);

expand(r(X,Y,Z,W));

and the result is:

g(W,g(Y,Z)*X)-g(W,g(X,Z)*Y)-g(T,Y)*g(W,g(T,Z)*X)+g(T,Y)*g(W,g(X,Z)*T)+g(T,X)*g(W,g(T,Z)*Y)-g(T,X)*g(W,g(Y,Z)*T)

But I would enjoy that it were:

g(Y,Z)*g(W,X)-g(X,Z)*g(W,Y)-g(T,Z)*g(T,Y)*g(W,X)+g(X,Z)*g(T,Y)*g(W,T)+g(T,Z)*g(T,X)*g(W,Y)-g(Y,Z)*g(T,X)*g(W,T)

 

Is there a way to declare that g(x,y) is always scalar?

Thanks.

 

 

I have a problem using dchange when my variable depend on two (or more variables) and I would like to apply the chain rule.

For example, when I use the command

I would expect something like 

But I get an error saying that the number of new variables and transformation equations must be the same.

Any idea how I could solve it? 

Thanls a lot for your help.

 

i need to solve for u[i+1] as i attached i wrote the equations but i cant get any answers for it, the delta t is 0.1 and i need to go for ten steps, thank you
 

M := .4556;

.4556

(1)

K := 18;

18

(2)

c := .2865;

.2865

(3)

`u__ double dot`[0] := 0;

0

(4)

u__[0] := 0;

0

(5)

P__[0] := 0;

0

(6)

Typesetting:-delayGradient(t) := .1;

.1

(7)

N := 10;

10

(8)

a__1 := 4/.1^2*.4556+2/(.1)*.2865;

187.9700000

(9)

a__2 := 4/(.1)*.4556+.2865;

18.51050000

(10)

a__3 := .4556;

.4556

(11)

khat := 18+187.9700000;

205.9700000``

(12)

`u__ dot`[0] := 0;

0

(13)

 

for i from 0 to 10 do phat[i+1] := p[i+1]+187.9700000*u[i]+18.51050000*u__dot[i]+.4556*`u__ double dot`[i] end do

p[1]+187.9700000*u[0]+18.51050000*u__dot[0]

 

p[2]+187.9700000*u[1]+18.51050000*u__dot[1]+.4556*`u__ double dot`[1]

 

p[3]+187.9700000*u[2]+18.51050000*u__dot[2]+.4556*`u__ double dot`[2]

 

p[4]+187.9700000*u[3]+18.51050000*u__dot[3]+.4556*`u__ double dot`[3]

 

p[5]+187.9700000*u[4]+18.51050000*u__dot[4]+.4556*`u__ double dot`[4]

 

p[6]+187.9700000*u[5]+18.51050000*u__dot[5]+.4556*`u__ double dot`[5]

 

p[7]+187.9700000*u[6]+18.51050000*u__dot[6]+.4556*`u__ double dot`[6]

 

p[8]+187.9700000*u[7]+18.51050000*u__dot[7]+.4556*`u__ double dot`[7]

 

p[9]+187.9700000*u[8]+18.51050000*u__dot[8]+.4556*`u__ double dot`[8]

 

p[10]+187.9700000*u[9]+18.51050000*u__dot[9]+.4556*`u__ double dot`[9]

 

p[11]+187.9700000*u[10]+18.51050000*u__dot[10]+.4556*`u__ double dot`[10]

(14)

for i from 0 to 10 do u[i+1] := (1/18)*phat[i+1] end do;

(1/18)*p[1]+10.44277778*u[0]+1.028361111*u__dot[0]

 

(1/18)*p[2]+.5801543211*p[1]+109.0516077*u[0]+10.73894656*u__dot[0]+1.028361111*u__dot[1]+0.2531111111e-1*`u__ double dot`[1]

 

(1/18)*p[3]+.5801543211*p[2]+6.058422650*p[1]+1138.801706*u[0]+112.1444325*u__dot[0]+10.73894656*u__dot[1]+.2643183086*`u__ double dot`[1]+1.028361111*u__dot[2]+0.2531111111e-1*`u__ double dot`[2]

 

(1/18)*p[4]+.5801543211*p[3]+6.058422650*p[2]+63.26676144*p[1]+11892.25315*u[0]+1171.099388*u__dot[0]+112.1444325*u__dot[1]+2.760217359*`u__ double dot`[1]+10.73894656*u__dot[2]+.2643183086*`u__ double dot`[2]+1.028361111*u__dot[3]+0.2531111111e-1*`u__ double dot`[3]

 

(1/18)*p[5]+.5801543211*p[4]+6.058422650*p[3]+63.26676144*p[2]+660.6807306*p[1]+124188.1569*u[0]+12229.53067*u__dot[0]+1171.099388*u__dot[1]+28.82433650*`u__ double dot`[1]+112.1444325*u__dot[2]+2.760217359*`u__ double dot`[2]+10.73894656*u__dot[3]+.2643183086*`u__ double dot`[3]+1.028361111*u__dot[4]+0.2531111111e-1*`u__ double dot`[4]

 

(1/18)*p[6]+.5801543211*p[5]+6.058422650*p[4]+63.26676144*p[3]+660.6807306*p[2]+6899.342050*p[1]+1296869.325*u[0]+127710.2711*u__dot[0]+12229.53067*u__dot[1]+301.0061407*`u__ double dot`[1]+1171.099388*u__dot[2]+28.82433650*`u__ double dot`[2]+112.1444325*u__dot[3]+2.760217359*`u__ double dot`[3]+10.73894656*u__dot[4]+.2643183086*`u__ double dot`[4]+1.028361111*u__dot[5]+0.2531111111e-1*`u__ double dot`[5]

 

(1/18)*p[7]+.5801543211*p[6]+6.058422650*p[5]+63.26676144*p[4]+660.6807306*p[3]+6899.342050*p[2]+72048.29583*p[1]+13542918.17*u[0]+1333649.981*u__dot[0]+127710.2711*u__dot[1]+3143.340237*`u__ double dot`[1]+12229.53067*u__dot[2]+301.0061407*`u__ double dot`[2]+1171.099388*u__dot[3]+28.82433650*`u__ double dot`[3]+112.1444325*u__dot[4]+2.760217359*`u__ double dot`[4]+10.73894656*u__dot[5]+.2643183086*`u__ double dot`[5]+1.028361111*u__dot[6]+0.2531111111e-1*`u__ double dot`[6]

 

(1/18)*p[8]+.5801543211*p[7]+6.058422650*p[6]+63.26676144*p[5]+660.6807306*p[4]+6899.342050*p[3]+72048.29583*p[2]+752384.3428*p[1]+141425684.9*u[0]+13927010.38*u__dot[0]+1333649.981*u__dot[1]+32825.20357*`u__ double dot`[1]+127710.2711*u__dot[2]+3143.340237*`u__ double dot`[2]+12229.53067*u__dot[3]+301.0061407*`u__ double dot`[3]+1171.099388*u__dot[4]+28.82433650*`u__ double dot`[4]+112.1444325*u__dot[5]+2.760217359*`u__ double dot`[5]+10.73894656*u__dot[6]+.2643183086*`u__ double dot`[6]+1.028361111*u__dot[7]+0.2531111111e-1*`u__ double dot`[7]

 

1476876999.*u[0]+3143.340237*`u__ double dot`[3]+301.0061407*`u__ double dot`[4]+28.82433650*`u__ double dot`[5]+2.760217359*`u__ double dot`[6]+.2643183086*`u__ double dot`[7]+0.2531111111e-1*`u__ double dot`[8]+342786.3064*`u__ double dot`[1]+32825.20357*`u__ double dot`[2]+13927010.38*u__dot[1]+1333649.981*u__dot[2]+127710.2711*u__dot[3]+12229.53067*u__dot[4]+1171.099388*u__dot[5]+112.1444325*u__dot[6]+10.73894656*u__dot[7]+1.028361111*u__dot[8]+145436674.5*u__dot[0]+(1/18)*p[9]+7856982.494*p[1]+752384.3428*p[2]+72048.29583*p[3]+6899.342050*p[4]+660.6807306*p[5]+63.26676144*p[6]+6.058422650*p[7]+.5801543211*p[8]

 

0.1542269831e11*u[0]+32825.20357*`u__ double dot`[3]+3143.340237*`u__ double dot`[4]+301.0061407*`u__ double dot`[5]+28.82433650*`u__ double dot`[6]+2.760217359*`u__ double dot`[7]+.2643183086*`u__ double dot`[8]+0.2531111111e-1*`u__ double dot`[9]+3579641.223*`u__ double dot`[1]+342786.3064*`u__ double dot`[2]+145436674.5*u__dot[1]+13927010.38*u__dot[2]+1333649.981*u__dot[3]+127710.2711*u__dot[4]+12229.53067*u__dot[5]+1171.099388*u__dot[6]+112.1444325*u__dot[7]+10.73894656*u__dot[8]+1.028361111*u__dot[9]+1518762873.*u__dot[0]+.5801543211*p[9]+(1/18)*p[10]+82048722.17*p[1]+7856982.494*p[2]+752384.3428*p[3]+72048.29583*p[4]+6899.342050*p[5]+660.6807306*p[6]+63.26676144*p[7]+6.058422650*p[8]

 

0.1610558112e12*u[0]+342786.3064*`u__ double dot`[3]+32825.20357*`u__ double dot`[4]+3143.340237*`u__ double dot`[5]+301.0061407*`u__ double dot`[6]+28.82433650*`u__ double dot`[7]+2.760217359*`u__ double dot`[8]+.2643183086*`u__ double dot`[9]+0.2531111111e-1*`u__ double dot`[10]+37381397.82*`u__ double dot`[1]+3579641.223*`u__ double dot`[2]+1518762873.*u__dot[1]+145436674.5*u__dot[2]+13927010.38*u__dot[3]+1333649.981*u__dot[4]+127710.2711*u__dot[5]+12229.53067*u__dot[6]+1171.099388*u__dot[7]+112.1444325*u__dot[8]+10.73894656*u__dot[9]+1.028361111*u__dot[10]+0.1586010318e11*u__dot[0]+6.058422650*p[9]+.5801543211*p[10]+(1/18)*p[11]+856816572.8*p[1]+82048722.17*p[2]+7856982.494*p[3]+752384.3428*p[4]+72048.29583*p[5]+6899.342050*p[6]+660.6807306*p[7]+63.26676144*p[8]

(15)

for i from 0 to 10 do u__dot[i+1] := 2*u[i+1]/(.1)-u[i] end do;

1.111111111*p[1]+207.8555556*u[0]+20.56722222*u__dot[0]

 

1.111111111*p[2]+34.40000000*p[1]+6445.600778*u[0]+636.7611999*u__dot[0]+.5062222222*`u__ double dot`[1]

 

1.111111111*p[3]+34.40000000*p[2]+1065.601376*p[1]+199664.3295*u[0]+19724.81428*u__dot[0]+15.67264000*`u__ double dot`[1]+.5062222222*`u__ double dot`[2]

 

1.111111111*p[4]+34.40000000*p[3]+1065.601376*p[2]+33008.92305*p[1]+6184962.451*u[0]+611011.6704*u__dot[0]+485.4879870*`u__ double dot`[1]+15.67264000*`u__ double dot`[2]+.5062222222*`u__ double dot`[3]

 

191590358.6*u[0]+15.67264000*`u__ double dot`[3]+.5062222222*`u__ double dot`[4]+15038.86535*`u__ double dot`[1]+485.4879870*`u__ double dot`[2]+18927187.66*u__dot[0]+1022510.881*p[1]+33008.92305*p[2]+1065.601376*p[3]+34.40000000*p[4]+1.111111111*p[5]

 

5934856645.*u[0]+485.4879870*`u__ double dot`[3]+15.67264000*`u__ double dot`[4]+.5062222222*`u__ double dot`[5]+465855.9575*`u__ double dot`[1]+15038.86535*`u__ double dot`[2]+586303748.8*u__dot[0]+31674117.34*p[1]+1022510.881*p[2]+33008.92305*p[3]+1065.601376*p[4]+34.40000000*p[5]+1.111111111*p[6]

 

0.1838428805e12*u[0]+15038.86535*`u__ double dot`[3]+485.4879870*`u__ double dot`[4]+15.67264000*`u__ double dot`[5]+.5062222222*`u__ double dot`[6]+14430727.85*`u__ double dot`[1]+465855.9575*`u__ double dot`[2]+0.1816181527e11*u__dot[0]+981162868.1*p[1]+31674117.34*p[2]+1022510.881*p[3]+33008.92305*p[4]+1065.601376*p[5]+34.40000000*p[6]+1.111111111*p[7]

 

0.5694864547e13*u[0]+465855.9575*`u__ double dot`[3]+15038.86535*`u__ double dot`[4]+485.4879870*`u__ double dot`[5]+15.67264000*`u__ double dot`[6]+.5062222222*`u__ double dot`[7]+447017802.5*`u__ double dot`[1]+14430727.85*`u__ double dot`[2]+0.5625949595e12*u__dot[0]+0.3039328810e11*p[1]+981162868.1*p[2]+31674117.34*p[3]+1022510.881*p[4]+33008.92305*p[5]+1065.601376*p[6]+34.40000000*p[7]+1.111111111*p[8]

 

0.1764086927e15*u[0]+14430727.85*`u__ double dot`[3]+465855.9575*`u__ double dot`[4]+15038.86535*`u__ double dot`[5]+485.4879870*`u__ double dot`[6]+15.67264000*`u__ double dot`[7]+.5062222222*`u__ double dot`[8]+0.1384718205e11*`u__ double dot`[1]+447017802.5*`u__ double dot`[2]+0.1742739279e14*u__dot[0]+1.111111111*p[9]+0.9414868743e12*p[1]+0.3039328810e11*p[2]+981162868.3*p[3]+31674117.34*p[4]+1022510.881*p[5]+33008.92305*p[6]+1065.601376*p[7]+34.40000000*p[8]

 

0.5464577183e16*u[0]+447017802.5*`u__ double dot`[3]+14430727.85*`u__ double dot`[4]+465855.9575*`u__ double dot`[5]+15038.86535*`u__ double dot`[6]+485.4879870*`u__ double dot`[7]+15.67264000*`u__ double dot`[8]+.5062222222*`u__ double dot`[9]+0.4289414197e12*`u__ double dot`[1]+0.1384718205e11*`u__ double dot`[2]+0.5398448996e15*u__dot[0]+34.40000000*p[9]+1.111111111*p[10]+0.2916425269e14*p[1]+0.9414868743e12*p[2]+0.3039328810e11*p[3]+981162868.3*p[4]+31674117.34*p[5]+1022510.881*p[6]+33008.92305*p[7]+1065.601376*p[8]

 

0.1692751266e18*u[0]+0.1384718205e11*`u__ double dot`[3]+447017802.5*`u__ double dot`[4]+14430727.85*`u__ double dot`[5]+465855.9575*`u__ double dot`[6]+15038.86535*`u__ double dot`[7]+485.4879870*`u__ double dot`[8]+15.67264000*`u__ double dot`[9]+.5062222222*`u__ double dot`[10]+0.1328723353e14*`u__ double dot`[1]+0.4289414197e12*`u__ double dot`[2]+0.1672266869e17*u__dot[0]+1065.601376*p[9]+34.40000000*p[10]+1.111111111*p[11]+0.9034152876e15*p[1]+0.2916425269e14*p[2]+0.9414868743e12*p[3]+0.3039328810e11*p[4]+981162868.3*p[5]+31674117.34*p[6]+1022510.881*p[7]+33008.92305*p[8]

(16)

 

``

for i from 0 to 10 do `u__ double dot`[i+1] := 4*(u[i+1]-u[i])/.1^2-4*`u__ dot`[i+1]/(.1)-`u__ double dot`[i] end do;

22.22222222*p[1]+3777.111112*u[0]+411.3444444*u__dot[0]-40.00000000*`u__ dot`[1]

 

22.22222222*p[2]+869.6543212*p[1]+159407.8005*u[0]+16097.73632*u__dot[0]-364.9777776*`u__ dot`[1]-40.00000000*`u__ dot`[2]

 

22.22222222*p[3]+869.6543212*p[2]+35344.36401*p[1]+6472746.341*u[0]+654241.8501*u__dot[0]-15483.60256*`u__ dot`[1]-364.9777776*`u__ dot`[2]-40.00000000*`u__ dot`[3]

 

-628632.0873*`u__ dot`[1]-15483.60256*`u__ dot`[2]-364.9777776*`u__ dot`[3]-40.00000000*`u__ dot`[4]+262941585.9*u[0]+26576866.06*u__dot[0]+1435772.456*p[1]+35344.36401*p[2]+869.6543212*p[3]+22.22222222*p[4]

 

-25536885.15*`u__ dot`[1]-628632.0873*`u__ dot`[2]-15483.60256*`u__ dot`[3]-364.9777776*`u__ dot`[4]-40.00000000*`u__ dot`[5]+0.1068138112e11*u[0]+1079622608.*u__dot[0]+58324875.48*p[1]+1435772.456*p[2]+35344.36401*p[3]+869.6543212*p[4]+22.22222222*p[5]

 

-1037375646.*`u__ dot`[1]-25536885.15*`u__ dot`[2]-628632.0873*`u__ dot`[3]-15483.60256*`u__ dot`[4]-364.9777776*`u__ dot`[5]-40.00000000*`u__ dot`[6]+0.4339059231e12*u[0]+0.4385712279e11*u__dot[0]+2369310541.*p[1]+58324875.48*p[2]+1435772.456*p[3]+35344.36401*p[4]+869.6543212*p[5]+22.22222222*p[6]

 

-0.4214093965e11*`u__ dot`[1]-1037375646.*`u__ dot`[2]-25536885.15*`u__ dot`[3]-628632.0873*`u__ dot`[4]-15483.60256*`u__ dot`[5]-364.9777776*`u__ dot`[6]-40.00000000*`u__ dot`[7]+0.1762640503e14*u[0]+0.1781592203e13*u__dot[0]+0.9624765415e11*p[1]+2369310541.*p[2]+58324875.48*p[3]+1435772.456*p[4]+35344.36401*p[5]+869.6543212*p[6]+22.22222222*p[7]

 

-0.1711876309e13*`u__ dot`[1]-0.4214093965e11*`u__ dot`[2]-1037375645.*`u__ dot`[3]-25536885.15*`u__ dot`[4]-628632.0873*`u__ dot`[5]-15483.60256*`u__ dot`[6]-364.9777776*`u__ dot`[7]-40.00000000*`u__ dot`[8]+0.7160311434e15*u[0]+0.7237298245e14*u__dot[0]+0.3909834009e13*p[1]+0.9624765415e11*p[2]+2369310541.*p[3]+58324875.48*p[4]+1435772.456*p[5]+35344.36401*p[6]+869.6543212*p[7]+22.22222222*p[8]

 

-0.6954093867e14*`u__ dot`[1]-0.1711876309e13*`u__ dot`[2]-0.4214093962e11*`u__ dot`[3]-1037375646.*`u__ dot`[4]-25536885.15*`u__ dot`[5]-628632.0873*`u__ dot`[6]-15483.60256*`u__ dot`[7]-364.9777776*`u__ dot`[8]-40.00000000*`u__ dot`[9]+0.2908707689e17*u[0]+0.2939981766e16*u__dot[0]+22.22222222*p[9]+0.1588277878e15*p[1]+0.3909834009e13*p[2]+0.9624765415e11*p[3]+2369310540.*p[4]+58324875.44*p[5]+1435772.456*p[6]+35344.36401*p[7]+869.6543212*p[8]

 

-0.2824936664e16*`u__ dot`[1]-0.6954093867e14*`u__ dot`[2]-0.1711876309e13*`u__ dot`[3]-0.4214093965e11*`u__ dot`[4]-1037375646.*`u__ dot`[5]-25536885.15*`u__ dot`[6]-628632.0873*`u__ dot`[7]-15483.60256*`u__ dot`[8]-364.9777776*`u__ dot`[9]-40.00000000*`u__ dot`[10]+0.1181593915e19*u[0]+0.1194298271e18*u__dot[0]+869.6543212*p[9]+22.22222222*p[10]+0.6452004379e16*p[1]+0.1588277878e15*p[2]+0.3909834009e13*p[3]+0.9624765415e11*p[4]+2369310540.*p[5]+58324875.44*p[6]+1435772.456*p[7]+35344.36401*p[8]

 

-0.1147563911e18*`u__ dot`[1]-0.2824936664e16*`u__ dot`[2]-0.6954093867e14*`u__ dot`[3]-0.1711876310e13*`u__ dot`[4]-0.4214093965e11*`u__ dot`[5]-1037375646.*`u__ dot`[6]-25536885.15*`u__ dot`[7]-628632.0873*`u__ dot`[8]-15483.60256*`u__ dot`[9]-364.9777776*`u__ dot`[10]-40.00000000*`u__ dot`[11]+0.4799946674e20*u[0]+0.4851555123e19*u__dot[0]+35344.36401*p[9]+869.6543212*p[10]+22.22222222*p[11]+0.2620974648e18*p[1]+0.6452004379e16*p[2]+0.1588277877e15*p[3]+0.3909834009e13*p[4]+0.9624765415e11*p[5]+2369310540.*p[6]+58324875.44*p[7]+1435772.456*p[8]

(17)

slon := fsolve({0, p[11]+187.9700000*u[10]+18.51050000*u__dot[10]+.4556*`u__ double dot`[10], 0.1692751266e18*u[0]+0.1384718205e11*`u__ double dot`[3]+447017802.5*`u__ double dot`[4]+14430727.85*`u__ double dot`[5]+465855.9575*`u__ double dot`[6]+15038.86535*`u__ double dot`[7]+485.4879870*`u__ double dot`[8]+15.67264000*`u__ double dot`[9]+.5062222222*`u__ double dot`[10]+0.1328723353e14*`u__ double dot`[1]+0.4289414197e12*`u__ double dot`[2]+0.1672266869e17*u__dot[0]+1065.601376*p[9]+34.40000000*p[10]+1.111111111*p[11]+0.9034152876e15*p[1]+0.2916425269e14*p[2]+0.9414868743e12*p[3]+0.3039328810e11*p[4]+981162868.3*p[5]+31674117.34*p[6]+1022510.881*p[7]+33008.92305*p[8], -0.1147563911e18*`u__ dot`[1]-0.2824936664e16*`u__ dot`[2]-0.6954093867e14*`u__ dot`[3]-0.1711876310e13*`u__ dot`[4]-0.4214093965e11*`u__ dot`[5]-1037375646.*`u__ dot`[6]-25536885.15*`u__ dot`[7]-628632.0873*`u__ dot`[8]-15483.60256*`u__ dot`[9]-364.9777776*`u__ dot`[10]-40.00000000*`u__ dot`[11]+0.4799946674e20*u[0]+0.4851555123e19*u__dot[0]+35344.36401*p[9]+869.6543212*p[10]+22.22222222*p[11]+0.2620974648e18*p[1]+0.6452004379e16*p[2]+0.1588277877e15*p[3]+0.3909834009e13*p[4]+0.9624765415e11*p[5]+2369310540.*p[6]+58324875.44*p[7]+1435772.456*p[8], 0.1610558112e12*u[0]+342786.3064*`u__ double dot`[3]+32825.20357*`u__ double dot`[4]+3143.340237*`u__ double dot`[5]+301.0061407*`u__ double dot`[6]+28.82433650*`u__ double dot`[7]+2.760217359*`u__ double dot`[8]+.2643183086*`u__ double dot`[9]+0.2531111111e-1*`u__ double dot`[10]+37381397.82*`u__ double dot`[1]+3579641.223*`u__ double dot`[2]+1518762873.*u__dot[1]+145436674.5*u__dot[2]+13927010.38*u__dot[3]+1333649.981*u__dot[4]+127710.2711*u__dot[5]+12229.53067*u__dot[6]+1171.099388*u__dot[7]+112.1444325*u__dot[8]+10.73894656*u__dot[9]+1.028361111*u__dot[10]+0.1586010318e11*u__dot[0]+6.058422650*p[9]+.5801543211*p[10]+(1/18)*p[11]+856816572.8*p[1]+82048722.17*p[2]+7856982.494*p[3]+752384.3428*p[4]+72048.29583*p[5]+6899.342050*p[6]+660.6807306*p[7]+63.26676144*p[8]});

{p[1] = 0.2999999998e-1*`u__ dot`[2]+0.9374999995e-13*`u__ dot`[3]-0.1499999999e-4*`u__ dot`[4]+0.1312499999e-15*`u__ dot`[5]+0.4999999999e-8*`u__ dot`[6]-0.6999999938e-9*`u__ dot`[7]+0.9899999882e-9*`u__ dot`[8]-0.1827374978e-8*`u__ dot`[9]+0.3743087460e-8*`u__ dot`[10]+0.7499999993e-16*`u__ dot`[11]+0.4597499946e-10*p[9]-0.1051124990e-9*p[10]-0.2053929019e-9*p[11]-0.2499999999e-1*p[2]-0.2499999998e-3*p[3]-0.2499999999e-4*p[4]-0.2499999999e-6*p[5]-0.5000000000e-8*p[6]-0.9999999992e-9*p[7]-0.3749999970e-10*p[8], p[2] = p[2], p[3] = p[3], p[4] = p[4], p[5] = p[5], p[6] = p[6], p[7] = p[7], p[8] = p[8], p[9] = p[9], p[10] = p[10], p[11] = p[11], u[0] = 0.281894999e-4*`u__ dot`[2]+0.7830419785e-6*`u__ dot`[3]+0.318079236e-8*`u__ dot`[4]+0.9022187373e-9*`u__ dot`[5]-0.1628286346e-10*`u__ dot`[6]+0.1100239238e-9*`u__ dot`[7]-0.2048575058e-9*`u__ dot`[8]+0.3826992048e-9*`u__ dot`[9]-0.7123420880e-9*`u__ dot`[10]+0.1380032829e-8*`u__ dot`[11]-0.9758339382e-11*p[9]+0.1808837852e-10*p[10]-0.3663799046e-10*p[11]-0.989828263e-4*p[2]-0.884545513e-6*p[3]-0.8052117590e-7*p[4]-0.1650827489e-8*p[5]-0.2205906206e-10*p[6]-0.3199234662e-11*p[7]+0.5195642082e-11*p[8], `u__ dot`[1] = -0.4999999998e-1*`u__ dot`[2]+0.2499999997e-3*`u__ dot`[3]+0.4999999998e-5*`u__ dot`[4]+0.7499999995e-6*`u__ dot`[5]-0.1499999999e-7*`u__ dot`[6]+0.7949999997e-7*`u__ dot`[7]-0.1479199999e-6*`u__ dot`[8]+0.2763269999e-6*`u__ dot`[9]-0.5141608198e-6*`u__ dot`[10]+0.9999999996e-6*`u__ dot`[11]-0.7045749997e-8*p[9]+0.1305056749e-7*p[10]-0.2665930549e-7*p[11]+0.1499999999e-2*p[3]-0.2499999999e-4*p[4]-0.9999999996e-9*p[7]+0.3769999998e-8*p[8], `u__ dot`[2] = `u__ dot`[2], `u__ dot`[3] = `u__ dot`[3], `u__ dot`[4] = `u__ dot`[4], `u__ dot`[5] = `u__ dot`[5], `u__ dot`[6] = `u__ dot`[6], `u__ dot`[7] = `u__ dot`[7], `u__ dot`[8] = `u__ dot`[8], `u__ dot`[9] = `u__ dot`[9], `u__ dot`[10] = `u__ dot`[10], `u__ dot`[11] = `u__ dot`[11], u__dot[0] = -0.2499999998e-2*`u__ dot`[2]+0.1249999999e-4*`u__ dot`[3]+0.1249999999e-5*`u__ dot`[4]+0.1749999998e-7*`u__ dot`[5]-0.2499999998e-9*`u__ dot`[6]+0.8349999992e-9*`u__ dot`[7]-0.1525399998e-8*`u__ dot`[8]+0.2848549998e-8*`u__ dot`[9]-0.5316285694e-8*`u__ dot`[10]+0.9999999990e-8*`u__ dot`[11]-0.7260249992e-10*p[9]+0.1354106748e-9*p[10]-0.2570080548e-9*p[11]+0.9999999994e-3*p[2]+0.2499999997e-4*p[3]+0.7499999994e-6*p[4]+0.9999999994e-8*p[5]+0.4999999995e-10*p[7]+0.3949999996e-10*p[8]}

(18)

``


 

Download hw_4_structural.mw

Greetings,

currently im working on a project in which i basically have to calcuate and plot a little solar system, using newton mechanic. The work is done, but as it appears, the solution simply cannot be true. In the given example you can see that the planets move in more or less straight lines. I presume that the error is somewhere in the solution of the system of differential equations, but i can't see where it is.

I am grateful for every advice.

PlanetenSpacecurve.mw

I m using the follwing commands for ploting the five differnt values of M

with(plots):
SDfd1 := odeplot(dsol[1], [eta, diff(f(eta), eta)], -1 .. 1, color = green, axes = box);
SDfd2 := odeplot(dsol[2], [eta, diff(f(eta), eta)], -1 .. 1, color = red, axes = box);
SDfd3 := odeplot(dsol[3], [eta, diff(f(eta), eta)], -1 .. 1, color = blue, axes = box);
SDfd4 := odeplot(dsol[4], [eta, diff(f(eta), eta)], -1 .. 1, color = black, axes = box);
SDfd5 := odeplot(dsol[5], [eta, diff(f(eta), eta)], -1 .. 1, color = pink, axes = box);
display([SDfd1, SDfd2, SDfd3, SDfd4, SDfd5], labels = ["η", "f ' (η)"],
    labeldirections = [horizontal, vertical], labelfont = [italic, 16], axes = boxed,
    axesfont = [times, 14], thickness = 3);

But i do not want in colors.....i need graph without colors in different styles. how can ? Moreover i need legend which must be in centre of graph or within the box. It must not on left, right ,up or below. can some one help ?

Find the least number of moves and how many different ways that is achieved to win snakes and ladders with 1 die, with 2 dice, and how about 3 dice.  How to realize this with Maple?

 

Hi,

I need your help to classify the follwing set {0}, {1} and [0,1] are local attractor or not and in the case of local attractor how can we determine the bassin of attraction. 

ode:=diff(x(t),t)=sqrt(x(t));

how can we prove using maple which of {0}, {1} and [0,1] are local attarctor or not.

Many thanks

 

How to convert a system of differential equations to a matrix?

can infolevel show this matrix during the process?

Hello, I'd like to generate some data from an audio file, like get the amplitude and the time, so that I can plot it with x = time and y = amplitude, do you know how to do that ?

If algebra use factorise method,

Which method do maple use to dsolve differential equation?

 

I am trying to perform the following integral:

Which spits the integral back out at me.

I've also tried

Which, again, spits the integral back out at me.

My last attempt was this

Which... Still spit back out the integral.

Is there something special I should be doing for functions I'm integrating with a natural log? I need to get an exact value for this, not an approximation (because I am trying to check the accuracy of an approximation with this!).

Thanks!

hi,

i'am beginers in  the maple programmation, i want to solve the einstien equation in the spherical coordinate,

 

 

I have a nested for loop that iterates through a range of values for x and y coordinates to create a 3d surface for illustration of my research. after the x loop there is a y loop, and inside of that y loop is a series of commands to find some eigenvalues of a matrix (which become the z coordinates) and sort them into already open files. This isn't bad when the precision i require is more than .02, but some of my matrices require up to 0.005 or less. The latter precision costs hours of computation time on just one processor. However my laptop has an i7, so I want to see if i can get the for loop to send its next iteration to the next processor in line while it has the previous ones still calculating. Have any tips?

how to design antenna with maple i am looking for designing patch antenna using graphene 

First 170 171 172 173 174 175 176 Last Page 172 of 366