Unanswered Questions

This page lists MaplePrimes questions that have not yet received an answer

sol := y = -3283/4253 - (3283*x)/4253, How can I determine the value of the coefficient of x?
How can I take the value of the coefficient of x? Thank you.

This ode can be solved by just looking at it

ode:=(x+y(x))*diff(y(x),x)=0;

We see the solution is y=-x and y=c__1 because either (x+y)=0 or y'=0

But for some reason ODESteps(ode) says it cannot compute integral.

Any idea why?


 

26348

interface(version);

`Standard Worksheet Interface, Maple 2024.0, Windows 10, March 01 2024 Build ID 1794891`

ode:=(x+y(x))*diff(y(x),x)=0;
Student:-ODEs:-ODESteps(ode);

ode := (x+y(x))*(diff(y(x), x)) = 0

"[[,,"Let's solve"],[,,(x+y(x)) ((ⅆ)/(ⅆx) y(x))=0],["•",,"Highest derivative means the order of the ODE is" 1],[,,(ⅆ)/(ⅆx) y(x)],["•",,"Integrate both sides with respect to" x],[,,∫(x+y(x)) ((ⅆ)/(ⅆx) y(x)) ⅆx=∫0 ⅆx+`c__1`],["•",,"Cannot compute integral"],[,,∫(x+y(x)) ((ⅆ)/(ⅆx) y(x)) ⅆx=`c__1`]]"

 


 

Download odestep_quadrature_unable_to_solve_maple_2024.mw

update:

Here is another simpler example that also confused it
 

26348

interface(version);

`Standard Worksheet Interface, Maple 2024.0, Windows 10, March 01 2024 Build ID 1794891`

ode:=x*diff(y(x),x)=0;
Student:-ODEs:-ODESteps(ode);

ode := x*(diff(y(x), x)) = 0

"[[,,"Let's solve"],[,,x ((ⅆ)/(ⅆx) y(x))=0],["•",,"Highest derivative means the order of the ODE is" 1],[,,(ⅆ)/(ⅆx) y(x)],["•",,"Integrate both sides with respect to" x],[,,∫x ((ⅆ)/(ⅆx) y(x)) ⅆx=∫0 ⅆx+`c__1`],["•",,"Cannot compute integral"],[,,∫x ((ⅆ)/(ⅆx) y(x)) ⅆx=`c__1`]]"

 

 


 

Download odestep_quadrature_unable_to_solve_v2_maple_2024.mw

update

Here is another one which it gets wrong. 
 

26348

interface(version);

`Standard Worksheet Interface, Maple 2024.0, Windows 10, March 01 2024 Build ID 1794891`

ode:=y(x)*diff(y(x),x)=0;
Student:-ODEs:-ODESteps(ode);

ode := y(x)*(diff(y(x), x)) = 0

"[[,,"Let's solve"],[,,y(x) ((ⅆ)/(ⅆx) y(x))=0],["•",,"Highest derivative means the order of the ODE is" 1],[,,(ⅆ)/(ⅆx) y(x)],["•",,"Integrate both sides with respect to" x],[,,∫y(x) ((ⅆ)/(ⅆx) y(x)) ⅆx=∫0 ⅆx+`c__1`],["•",,"Evaluate integral"],[,,((y(x))^2)/2=`c__1`],["•",,"Solve for" y(x)],[,,{y(x)=sqrt(2) sqrt(`c__1`),y(x)=-sqrt(2) sqrt(`c__1`)}]]"

dsolve(ode);

y(x) = 0, y(x) = -c__1

 


The correct solution is given by dsolve, which is y=0 and y=constant (I do not know why dsolve put minus sign in front of the constant, but it is still correct).

Download odestep_quadrature_unable_to_solve_v3_maple_2024.mw

 

 

I am stuck this command works seemlessly in Maple:

ThermophysicalData:-CoolProp:-Property(D, T = 20*Unit('degC'), P = 760*Unit('mmHg'), water)

but it does not work in Maple Flow. Does anyone knows why? Thank you so much for your help in the matter.

Why does 'simplify' not work when calculating Eigenvectors? Further, how can we express (2) in a more simplified form by using 'simplify'?simplify.mw

Hello :) 

I have a math problem, where I first need to use Linear regression to find the equation based on a set of data. I did that, no problem. 

However, in the next part of the problem I need to check if the residuals are under "normal distribution". Usually, I check if a dataset is normally distributed via "QQ-plot", and there will be no problems. But this time, because I need to check the residuals, I need to use the "residualQQplot(data,LinReg)" command to make it happen. But when I read the mean-value, mu, it says "-0," and nothing else? I know it should be "-3,2752*10^-15. 

The standard deviation is correct.

How do I fix this, so the residualQQplot shows me the right result? 

I have attached the worksheet here. worksheet_-_linear_reg_and_residuals_for_normal_distribution.mw

Thank you! 

I can't understand this behavior. Any idea why it happens?

Solve is able to solve equation   f(y)=x+A for y, but can't solve   f(y)=x for y.

This is unexpected for me. I do not see why it can solve it when RHS is x+A but not when RHS is just x.


 

21040

interface(version);

`Standard Worksheet Interface, Maple 2024.0, Windows 10, March 01 2024 Build ID 1794891`

Physics:-Version();

`The "Physics Updates" version in the MapleCloud is 1745. The version installed in this computer is 1744 created 2024, April 17, 19:33 hours Pacific Time, found in the directory C:\Users\Owner\maple\toolbox\2024\Physics Updates\lib\`

restart;

21040

sol:=int(1/sqrt(sin(y)),y);
solve(sol=x,y)

(sin(y)+1)^(1/2)*(-2*sin(y)+2)^(1/2)*(-sin(y))^(1/2)*EllipticF((sin(y)+1)^(1/2), (1/2)*2^(1/2))/(cos(y)*sin(y)^(1/2))

Warning, solutions may have been lost

sol:=int(1/sqrt(sin(y)),y);
solve(sol=x+b,y):
{%}; #to eliminate duplicates

(sin(y)+1)^(1/2)*(-2*sin(y)+2)^(1/2)*(-sin(y))^(1/2)*EllipticF((sin(y)+1)^(1/2), (1/2)*2^(1/2))/(cos(y)*sin(y)^(1/2))

{arctan(JacobiSN(((1/2)*I)*2^(1/2)*(x+b), (1/2)*2^(1/2))^2-1, -(1/2)*JacobiSN(((1/2)*I)*2^(1/2)*(x+b), (1/2)*2^(1/2))*(4-2*JacobiSN(((1/2)*I)*2^(1/2)*(x+b), (1/2)*2^(1/2))^2)^(1/2)*2^(1/2)), arctan(JacobiSN(((1/2)*I)*2^(1/2)*(x+b), (1/2)*2^(1/2))^2-1, (1/2)*JacobiSN(((1/2)*I)*2^(1/2)*(x+b), (1/2)*2^(1/2))*(4-2*JacobiSN(((1/2)*I)*2^(1/2)*(x+b), (1/2)*2^(1/2))^2)^(1/2)*2^(1/2))}

 


I can trick it to solve  f(y)=x for y  by asking it to solve f(y)=x+A for y and then set A=0 in the solution. But one should not have to do this. Is this a bug or Am I missing something?

Download why_solve_when_adding_term_only_may_22_2024.mw

Dear Colleague. 

I am trying to improve the results of abs(res[i] - exy) in the following codes.

restart;
Digits := 30:

# Define the function
f := proc(n)
    -0.5*y[n] + 0.5*sin(x[n] - Pi)
end proc:

# Define equations
e1 := y[n+2] = 2*h*delta[n] + y[n] - h^2*(-2*sin(u)*f(n)*u^2 - 2*sin(u)*f(n+2)*u^2 + 2*sin(2*u)*f(n+1)*u^2 + 2*cos(u)*f(n)*u - 2*cos(u)*f(n+2)*u + 2*cos(2*u)*f(n+1)*u - 2*cos(2*u)*f(n)*u - 2*sin(u)*f(n) + 2*sin(u)*f(n+2) + sin(2*u)*f(n) - sin(2*u)*f(n+2) - 2*f(n+1)*u + 2*f(n+2)*u)/((2*sin(u) - sin(2*u))*u^2):
e2 := y[n+1] = h*delta[n] + y[n] - (1/2)*h^2*(-sin(u)*f(n)*u^2 - sin(u)*f(n+2)*u^2 + sin(2*u)*f(n+1)*u^2 + 2*cos(u)*f(n)*u - 2*cos(u)*f(n+2)*u + 2*cos(2*u)*f(n+1)*u - 2*cos(2*u)*f(n)*u + 4*sin(u)*f(n+1) - 4*sin(u)*f(n) - 2*sin(2*u)*f(n+1) + 2*sin(2*u)*f(n) - 2*f(n+1)*u + 2*f(n+2)*u)/((2*sin(u) - sin(2*u))*u^2):
e3 := h*delta[n+2] = h*delta[n] + h^2*(2*sin(u)*f(n)*u + 2*sin(u)*f(n+2)*u - 2*sin(2*u)*f(n+1)*u - 2*cos(2*u)*f(n+1) + cos(2*u)*f(n) + cos(2*u)*f(n+2) + 2*f(n+1) - f(n) - f(n+2))/(u*(2*sin(u) - sin(2*u))):

with(LinearAlgebra):
epsilon := 10^(-10):
inx := 0:
ind := 1:
iny := 0:
h := 0.01:
n := 0:
omega := 1:
u := omega * h:
tol := 1e-4:
N := solve(h * p = 8 * Pi, p):

err := Vector(round(N)):
exy_lst := Vector(round(N)):

c := 1:
for j from 0 to 2 do
    t[j] := inx + j * h:
end do:

vars := y[n+1], y[n+2], delta[n+2]:

step := [seq(eval(x, x = c * h), c = 1 .. N)]:
printf("%6s%15s%15s%16s%15s%15s%15s\n", "h", "Num.y", "Num.z", "Ex.y", "Ex.z", "Error y", "Error z");

st := time():
for k from 1 to N / 2 do
    par1 := x[0] = t[0], x[1] = t[1], x[2] = t[2]:
    par2 := y[n] = iny, delta[n] = ind:    
    
    res := eval(<vars>, fsolve(eval({e1, e2, e3}, [par1, par2]), {vars}));

    for i from 1 to 2 do
        exy := eval(sin(c * h)):
        exz := eval(cos(c * h)):
        printf("%6.5f%17.9f%15.9f%15.9f%15.9f%13.5g%15.5g\n", h * c, res[i], res[i+1], exy, exz, abs(res[i] - exy), abs(res[i+1] - exz));
        
        err[c] := abs(evalf(res[i] - exy));
        if Norm(err) <= tol then 
            h := 0.1 * h * (c + 1) * (tol/Norm(err))^(0.2);
        else 
            break
        end if;
        exy_lst[c] := exy;
        numerical_y1[c] := res[i];
        c := c + 1;
    end do;
    iny := res[2];
    ind := res[3];
    inx := t[2];
    for j from 0 to 2 do
        t[j] := inx + j * h;
    end do;
end do:
v := time() - st;
v / 4;
printf("Maximum error is %.13g\n", max(err));
NFE = evalf((N / 4 * 3) + 1);

# Get array of numerical and exact solutions for y1
numerical_array_y1 := [seq(numerical_y1[i], i = 1 .. N)]:
exact_array_y1 := [seq(exy_lst[i], i = 1 .. N)]:

# Get array of time steps
time_t := [seq(step[i], i = 1 .. N)]:

# Display graphs for y1
with(plots):
numerical_plot_y1 := plot(time_t, numerical_array_y1, style = point, symbol = asterisk, color = blue, symbolsize = 20, legend = ["TFIBF"]);
exact_plot_y1 := plot(time_t, exact_array_y1, style = point, symbol = box, color = red, symbolsize = 20, legend = ["EXACT"]);

display({numerical_plot_y1, exact_plot_y1});
Error_plot_y1 := plot(time_t, err, style = line, symbol = box, tickmarks = [piticks, decimalticks], color = navy, labels = [`h=Pi/8`, typeset(`Absolute Errors`)]);

I am suspecting that I didnt update the new h properly (I may be wrong, though). Please kindly help modify the code to allow the values of abs(res[i] - exy) to about 10^(-11). Thank you and best regards.

I have a Prime Version Abo. On my iPhone works everyrhing fine. But on IPad there is a Limit of 5 step by step solutions. Same AppleID. What's the Problem?

Is there a way to change the font on the help pages?               

Hi,

I'm trying out the 2024 version of Maple and I'm getting the following warning message:

Warning, not a built-in function (`rtable_alias`)

which I didn´t get for the 2023 version. I have no clue where it is coming from since it happens even when I start a new worksheet:

 

 

I've also attached print outs of the same worksheets (from Maple help examples and from Maple Portal), one using Maple 2023 version and the other one using Maple 2024 version so youcould see the warning and some other problems.

I really appreciate if someone would have an idea of what is going on here. Thanks very much in advance.

interpolation_2023.pdf

interpolation_2024.pdf

optimization_2023.pdf

optimization_2024.pdf

Multiplaction "dot" in Maple 2022 is way too small - causes errors.

e.g. two variables multiplied s*m ends up being sm a new variable as I cannot really see that there is a missing multiplication operator between the variables. This causes huge unnecessary errors.

Maple 9.x e.g had nice clear and big operators and this kind of error was avoided.

How can I undo this unfortunate regression in Maple 2022 to increase the size of multiplication operator and other operators, so that they actually becom visible and not just a little dot almost a pixel in size.

If I was a falcon (20x20)^infinity then this would have been ok, but I am not, I am human.

So how do I change this unfortunate regression so that these errors can be avoided.?

See attached worksheet in Maple 2023.

This example is taken from the Maple help page. I want to 'zoom in' on a plot3d object. The only way I have found was from responses [1] on the maple primes forum. It uses InlinePlot and the scale option to perform the 'zoom in'. Since InlinePlot generates the plot in terms of XML there is no graphic out, only a text based output. In order to reconstitute the InlinePlot as a plot object I can view visually I need to use some additional commands from the DocumentTool package. This is all great but the output, which in our case is P3, is not a plot object and therefore cannot be exported as a png. Is there a way to convert the InlinePlot with the scaling applied back to a typical plot object so I can export it as a .png, using Export("output_plot.png",P3,base=worksheetdir)?

can_I_convert_InlinePlot(P3)_back_to_a_regular_plot_object_so_I_can_export_it_as_a_png.mw

When I try to contract the tensor with connection, maple encounters such promble:

Error, (in DifferentialGeometry:-Tensor:-ContractIndices) expected 2nd argument to be a tensor. Received: _DG([["connection", O, [["con_bas", "cov_bas", "cov_bas"], []]], [`...`]])

The expression is Cacd Hab

Could someone help me understand why Maple hangs solving these two equations when the names of unknowns is c__1,c__2   or the old _C1, _C2?

This worksheets shows this. I had to put timelimit of 90 seconds, else it hangs may be forever.    

This example came from looking at why Maple seems to hang randomly when I run the same problem. I still do not know why, but is seems to have something to do with the use of  lower case c__1 or _C1. 

16020

interface(version);

`Standard Worksheet Interface, Maple 2024.0, Windows 10, March 01 2024 Build ID 1794891`

Physics:-Version();

`The "Physics Updates" version in the MapleCloud is 1744 and is the same as the version installed in this computer, created 2024, April 17, 19:33 hours Pacific Time.`

restart;

dsolve(diff(y(x),x$9)=1,arbitraryconstants=subscripted);

y(x) = (1/362880)*x^9+(1/40320)*c__1*x^8+(1/5040)*c__2*x^7+(1/720)*c__3*x^6+(1/120)*c__4*x^5+(1/24)*c__5*x^4+(1/6)*c__6*x^3+(1/2)*c__7*x^2+c__8*x+c__9

eqs:=[-1/2*arctanh(1/2*sqrt(1 + 2*c__1)*sqrt(2)/sqrt(c__1))*sqrt(2)/sqrt(c__1) = c__2, 1 = (-exp(2*c__2*sqrt(c__1)*sqrt(2)) + 1)*sqrt(c__1)*sqrt(2)/(exp(2*c__2*sqrt(c__1)*sqrt(2)) + 1)];
unknowns:=[c__1,c__2];
time();
C_sol:=[timelimit(90,solve(eqs,unknowns))];
time()

[-(1/2)*arctanh((1/2)*(1+2*c__1)^(1/2)*2^(1/2)/c__1^(1/2))*2^(1/2)/c__1^(1/2) = c__2, 1 = (-exp(2*c__2*c__1^(1/2)*2^(1/2))+1)*c__1^(1/2)*2^(1/2)/(exp(2*c__2*c__1^(1/2)*2^(1/2))+1)]

[c__1, c__2]

.609

Error, (in evalf/hypergeom) time expired

106.125

restart; #try again but do not do the arbitraryconstants=subscripted now.

eqs:=[-1/2*arctanh(1/2*sqrt(1 + 2*c__1)*sqrt(2)/sqrt(c__1))*sqrt(2)/sqrt(c__1) = c__2, 1 = (-exp(2*c__2*sqrt(c__1)*sqrt(2)) + 1)*sqrt(c__1)*sqrt(2)/(exp(2*c__2*sqrt(c__1)*sqrt(2)) + 1)];
unknowns:=[c__1,c__2];
time();
C_sol:=[timelimit(90,solve(eqs,unknowns))];
time()

[-(1/2)*arctanh((1/2)*(1+2*c__1)^(1/2)*2^(1/2)/c__1^(1/2))*2^(1/2)/c__1^(1/2) = c__2, 1 = (-exp(2*c__2*c__1^(1/2)*2^(1/2))+1)*c__1^(1/2)*2^(1/2)/(exp(2*c__2*c__1^(1/2)*2^(1/2))+1)]

[c__1, c__2]

106.234

[[]]

106.390

#see? it finisghed instantly now.


Download why_solve_hangs_with_subscripted_may_15_2024.mw

The same thing happens If I use the old _C1 and _C2 instead of c__1 and c__2. It also hangs. 

The following worksheet shows this.  If I change _C1 and _C2 to other symbols, say C1 and C2, then it does not hang. 

Why the names of the unknowns makes difference to solve?
 

18792

restart;

18792

eqs:=[-1/2*arctanh(1/2*sqrt(1 + 2*_C1)*sqrt(2)/sqrt(_C1))*sqrt(2)/sqrt(_C1) = _C2, 1 = (-exp(2*_C2*sqrt(_C1)*sqrt(2)) + 1)*sqrt(_C1)*sqrt(2)/(exp(2*_C2*sqrt(_C1)*sqrt(2)) + 1)];
unknowns:=[_C1,_C2];
time();
C_sol:=[timelimit(90,solve(eqs,unknowns))];
time()

[-(1/2)*arctanh((1/2)*(1+2*_C1)^(1/2)*2^(1/2)/_C1^(1/2))*2^(1/2)/_C1^(1/2) = _C2, 1 = (-exp(2*_C2*_C1^(1/2)*2^(1/2))+1)*_C1^(1/2)*2^(1/2)/(exp(2*_C2*_C1^(1/2)*2^(1/2))+1)]

[_C1, _C2]

.125

Error, (in evalf/cos) time expired

105.218

restart;

18792

eqs:=[-1/2*arctanh(1/2*sqrt(1 + 2*C1)*sqrt(2)/sqrt(C1))*sqrt(2)/sqrt(C1) = C2, 1 = (-exp(2*C2*sqrt(C1)*sqrt(2)) + 1)*sqrt(C1)*sqrt(2)/(exp(2*C2*sqrt(C1)*sqrt(2)) + 1)];
unknowns:=[C1,C2];
time();
C_sol:=[timelimit(90,solve(eqs,unknowns))];
time()

[-(1/2)*arctanh((1/2)*(1+2*C1)^(1/2)*2^(1/2)/C1^(1/2))*2^(1/2)/C1^(1/2) = C2, 1 = (-exp(2*C2*C1^(1/2)*2^(1/2))+1)*C1^(1/2)*2^(1/2)/(exp(2*C2*C1^(1/2)*2^(1/2))+1)]

[C1, C2]

105.312

[[]]

105.468

 

 

Download why_solve_hangs_with_OLD_C_also_may_15_2024.mw

Only thing I see in help related to name of symbols to solve for is this:

The solve command solves one or more equations or inequalities for the specified unknowns. The unknowns may be names, including indexed names (though for efficiency reasons, indexed names should be avoided when possible), 

ps. This looks like a bug to me. So I send bug report to Maplesoft support also.

 

pps. I tried this in Maple 2023 and Maple 2022 and same behavior. Could someone with earlier version of Maple try to see if this behavior was there also?   It can possibly be correct that the choice of letter used makes difference for solving equations. I have to use c__1 and c__2 etc.. since these equations come from differential equations and this is what I use for constants of integrations., Otherwise I have to make lots of changes now to use different letters.

Update

did trace on solve using _C1 and _C2 and then using A,B for variables to solve for. Code flow is different. This expalins why it hangs. The flow starts the same until it gets to 

TriangularDecomposition: something went wrong during backsubstitution - trying a different variable order

Then when using _C1 and _C2 the code goes into different path than when using A,B. 

Here is flow when using _C1,_C2.

eqs:=[-1/2*arctanh(1/2*sqrt(1 + 2*_C1)*sqrt(2)/sqrt(_C1))*sqrt(2)/sqrt(_C1) = _C2, 1 = (-exp(2*_C2*sqrt(_C1)*sqrt(2)) + 1)*sqrt(_C1)*sqrt(2)/(exp(2*_C2*sqrt(_C1)*sqrt(2)) + 1)];
unknowns:={_C1,_C2};
time();
infolevel[solve]:=5;
C_sol:=[timelimit(60,solve(eqs,unknowns))]; 
time()


Main: Entering solver with 2 equations in 2 variables
Main: attempting to solve as a linear system
Dispatch: dispatching to Radicals handler
Recurse: recursively solving 2 equations and 2 inequations in 2 variables
Dispatch: dispatching to Radicals handler
Transformer:   solving for linear equation in _X000001
Recurse: recursively solving 2 equations and 2 inequations in 2 variables
Dispatch: dispatching to Radicals handler
Recurse: recursively solving 3 equations and 2 inequations in 3 variables
Dispatch: dispatching to Exponentials handler
Transformer:   solving for linear equation in _S000004
Recurse: recursively solving 3 equations and 3 inequations in 4 variables
Dispatch: dispatching to Rename handler
Dispatch: renaming _S000005 = arctanh(1/2*_S000002*RootOf(_Z^2-2,index = 1)/_S000001)
Recurse: recursively solving 3 equations and 3 inequations in 5 variables
Dispatch: handling polynomials of the form a*x^n-b
Dispatch: dispatching to PolynomialSystem handler
Main: polynomial system split into 1 parts under preprocessing
Main: using RegularChains based methods
SolverVariableOrder: using the variable order  _S000003 > _X000002 > _S000005 > _S000002 > _S000001
TriangularDecomposition: using deterministic algorithm for decomposition
TriangularDecomposition: decomposition successfully found 1 components
TriangularDecomposition: backsubstituting to form solutions
TriangularDecomposition: something went wrong during backsubstitution - trying a different variable order
Transformer:   solving the uncoupled linear subsystem in {_S000003, _X000002}
Linear: solving 2 linear equations
Polynomial: # of equations is: 2
Polynomial: best equation / unknown _S000005*_z1 _X000002 2*_S000001
Polynomial: # of equations is: 1
Polynomial: best equation / unknown -_z1*_S000001+1 _S000003 _z1*_S000001+1
Polynomial: backsubstitution at: 2
Polynomial: backsubstitution at: 1
Main: polynomial system split into 1 parts under preprocessing
Main: subsystem is essentially univariate
UnivariateHandler: subsystem has only one equation
UnivariateHandler: solving as if univariate in _S000002
Recurse: recursively solving 1 equations and 0 inequations in 1 variables
Dispatch: dispatching to OnlyIn handler
Transformer:   solving for linear equation in _S000006
Recurse: recursively solving 1 equations and 0 inequations in 1 variables
Transformer:   solving the uncoupled linear subsystem in _S000006
Recurse: recursively solving 1 equations and 1 inequations in 1 variables
Transformer:   solving the uncoupled linear subsystem in t
Error, (in evalf/hypergeom) time expired

 

This is trace when using A,B

 

eqs:=[-1/2*arctanh(1/2*sqrt(1 + 2*A)*sqrt(2)/sqrt(A))*sqrt(2)/sqrt(A) =B, 1 = (-exp(2*B*sqrt(A)*sqrt(2)) + 1)*sqrt(A)*sqrt(2)/(exp(2*B*sqrt(A)*sqrt(2)) + 1)];
unknowns:={A,B};
time();
infolevel[solve]:=5;
C_sol:=[timelimit(90,solve(eqs,unknowns))]; 
time()


Main: Entering solver with 2 equations in 2 variables
Main: attempting to solve as a linear system
Dispatch: dispatching to Radicals handler
Recurse: recursively solving 2 equations and 2 inequations in 2 variables
Dispatch: dispatching to Radicals handler
Transformer:   solving for linear equation in A
Recurse: recursively solving 2 equations and 2 inequations in 2 variables
Dispatch: dispatching to Radicals handler
Recurse: recursively solving 3 equations and 2 inequations in 3 variables
Dispatch: dispatching to Exponentials handler
Transformer:   solving for linear equation in _S000004
Recurse: recursively solving 3 equations and 3 inequations in 4 variables
Dispatch: dispatching to Rename handler
Dispatch: renaming _S000005 = arctanh(1/2*_S000002*RootOf(_Z^2-2,index = 1)/_S000001)
Recurse: recursively solving 3 equations and 3 inequations in 5 variables
Dispatch: handling polynomials of the form a*x^n-b
Dispatch: dispatching to PolynomialSystem handler
Main: polynomial system split into 1 parts under preprocessing
Main: using RegularChains based methods
SolverVariableOrder: using the variable order  _S000003 > B > _S000005 > _S000002 > _S000001
TriangularDecomposition: using deterministic algorithm for decomposition
TriangularDecomposition: decomposition successfully found 1 components
TriangularDecomposition: backsubstituting to form solutions
TriangularDecomposition: something went wrong during backsubstitution - trying a different variable order
Main: polynomial system split into 1 parts under preprocessing
Main: applying the solver for domain=absolute, engine=traditional
PseudoResultant: 225530 [1 200002087 _S000001] 3 3 151 2 45 0
PseudoResultant: 120059 [2 200004772 _S000003] 2 2 131 0 3 0
PseudoResultant: 134507 [1 700002396 _S000002] 1 1 53 0 3 0
PseudoResultant: -10 [] 0 0 3 0 3 0
PseudoResultant: 1 solutions found, now doing backsubstitution
PseudoResultant: backsubstitution of _S000002
PseudoResultant: backsubstitution of _S000003
PseudoResultant: backsubstitution of _S000001
SolutionsLost: setting solutions lost flag
Main: solving successful - now forming solutions
Main: Exiting solver returning 0 solutions

solve: Warning: no solutions found

 

 I can't achieve this using StringTools:-RegSplit. The StringTools,Regular_Expressions documentation doesn't seem to address these functionalities.

My goal is to split the string at the occurences of "." that are somewhere between "]" and "["* yet not enclosed between the two digits, and to ignore all other occurences of "."

1 2 3 4 5 6 7 Last Page 1 of 337