Unanswered Questions

This page lists MaplePrimes questions that have not yet received an answer

i did a solution of this ODE equation but the solution of paper is different from mine also in other some equation i have same problem i can't get exactly and pretty solution

I am wondering if Maple DETools package has functions or command to deal with the following problem: algebraic invariant curve. Some first order ODE preserves such type of curve as their solutions. For example, the following ODE has an algebraic curve y(x)=0 as its particular solutions:

> odetest(y(x)=0, y'(x)=y(x)^3-2*x*y(x)^2,y(x));

> 0

The ODE in general does not have algebraic solutions. The solutions are computed in terms of special functions. In some cases the algebraic curve could have multi-variate forms . I am wondering about one question: Does Maple have tools to find solutions of algebraic curve for ODE, without knowing the information of general solutions? I have already tried PDETools:-casesplit, but it seems to classify such curves to the same case to the general solution. 

I will be glad if anyone could give me some advice.

If I'm not mistaken Mapleprimes doesn't accept m files nor folders.

TIA

I added radnormal(sol) to my solution to workaround bug in solve hanging

But now new problem showed up. sometimes radnormal gives internal error when there are _Z's in solution.

radnormal(sol);
Error, (in RootOf) _Z occurs but is not the dependent variable
 

Attached worksheet. Sorry that the solution is very large and has lots of _Zs and RootOf, but this is the first one I can see so far in the log file of my program running, so I left it as is:

Should I check in my code that solution does not contain _Z before calling radnormal on it?  Is this a bug or known limitation?
 

restart;

interface(version);

`Standard Worksheet Interface, Maple 2024.1, Windows 10, June 25 2024 Build ID 1835466`

Physics:-Version();

`The "Physics Updates" version in the MapleCloud is 1767 and is the same as the version installed in this computer, created 2024, June 28, 12:19 hours Pacific Time.`

sol:=1/6*(-a^3 - 3*RootOf(4*_Z^2 - 4*_Z*(8*_Z^3 + 6*_Z^2*a - 3*_Z*a^2 - a^3 + 3*sqrt(3)*sqrt(-4*_Z^4*a^2 - 4*_Z^3*a^3 - _Z^2*a^4 + 32*_Z^4 + 24*_Z^3*a - 12*_Z^2*a^2 - 4*_Z*a^3 + 108*_Z^2) + 54*_Z)^(1/3) + 2*a*_Z + (8*_Z^3 + 6*_Z^2*a - 3*_Z*a^2 - a^3 + 3*sqrt(3)*sqrt(-4*_Z^4*a^2 - 4*_Z^3*a^3 - _Z^2*a^4 + 32*_Z^4 + 24*_Z^3*a - 12*_Z^2*a^2 - 4*_Z*a^3 + 108*_Z^2) + 54*_Z)^(2/3) - a*(8*_Z^3 + 6*_Z^2*a - 3*_Z*a^2 - a^3 + 3*sqrt(3)*sqrt(-4*_Z^4*a^2 - 4*_Z^3*a^3 - _Z^2*a^4 + 32*_Z^4 + 24*_Z^3*a - 12*_Z^2*a^2 - 4*_Z*a^3 + 108*_Z^2) + 54*_Z)^(1/3) + a^2)*a^2 + 6*RootOf(4*_Z^2 - 4*_Z*(8*_Z^3 + 6*_Z^2*a - 3*_Z*a^2 - a^3 + 3*sqrt(3)*sqrt(-4*_Z^4*a^2 - 4*_Z^3*a^3 - _Z^2*a^4 + 32*_Z^4 + 24*_Z^3*a - 12*_Z^2*a^2 - 4*_Z*a^3 + 108*_Z^2) + 54*_Z)^(1/3) + 2*a*_Z + (8*_Z^3 + 6*_Z^2*a - 3*_Z*a^2 - a^3 + 3*sqrt(3)*sqrt(-4*_Z^4*a^2 - 4*_Z^3*a^3 - _Z^2*a^4 + 32*_Z^4 + 24*_Z^3*a - 12*_Z^2*a^2 - 4*_Z*a^3 + 108*_Z^2) + 54*_Z)^(2/3) - a*(8*_Z^3 + 6*_Z^2*a - 3*_Z*a^2 - a^3 + 3*sqrt(3)*sqrt(-4*_Z^4*a^2 - 4*_Z^3*a^3 - _Z^2*a^4 + 32*_Z^4 + 24*_Z^3*a - 12*_Z^2*a^2 - 4*_Z*a^3 + 108*_Z^2) + 54*_Z)^(1/3) + a^2)^2*a + 8*RootOf(4*_Z^2 - 4*_Z*(8*_Z^3 + 6*_Z^2*a - 3*_Z*a^2 - a^3 + 3*sqrt(3)*sqrt(-4*_Z^4*a^2 - 4*_Z^3*a^3 - _Z^2*a^4 + 32*_Z^4 + 24*_Z^3*a - 12*_Z^2*a^2 - 4*_Z*a^3 + 108*_Z^2) + 54*_Z)^(1/3) + 2*a*_Z + (8*_Z^3 + 6*_Z^2*a - 3*_Z*a^2 - a^3 + 3*sqrt(3)*sqrt(-4*_Z^4*a^2 - 4*_Z^3*a^3 - _Z^2*a^4 + 32*_Z^4 + 24*_Z^3*a - 12*_Z^2*a^2 - 4*_Z*a^3 + 108*_Z^2) + 54*_Z)^(2/3) - a*(8*_Z^3 + 6*_Z^2*a - 3*_Z*a^2 - a^3 + 3*sqrt(3)*sqrt(-4*_Z^4*a^2 - 4*_Z^3*a^3 - _Z^2*a^4 + 32*_Z^4 + 24*_Z^3*a - 12*_Z^2*a^2 - 4*_Z*a^3 + 108*_Z^2) + 54*_Z)^(1/3) + a^2)^3 + 3*sqrt(3)*sqrt(-RootOf(4*_Z^2 - 4*_Z*(8*_Z^3 + 6*_Z^2*a - 3*_Z*a^2 - a^3 + 3*sqrt(3)*sqrt(-4*_Z^4*a^2 - 4*_Z^3*a^3 - _Z^2*a^4 + 32*_Z^4 + 24*_Z^3*a - 12*_Z^2*a^2 - 4*_Z*a^3 + 108*_Z^2) + 54*_Z)^(1/3) + 2*a*_Z + (8*_Z^3 + 6*_Z^2*a - 3*_Z*a^2 - a^3 + 3*sqrt(3)*sqrt(-4*_Z^4*a^2 - 4*_Z^3*a^3 - _Z^2*a^4 + 32*_Z^4 + 24*_Z^3*a - 12*_Z^2*a^2 - 4*_Z*a^3 + 108*_Z^2) + 54*_Z)^(2/3) - a*(8*_Z^3 + 6*_Z^2*a - 3*_Z*a^2 - a^3 + 3*sqrt(3)*sqrt(-4*_Z^4*a^2 - 4*_Z^3*a^3 - _Z^2*a^4 + 32*_Z^4 + 24*_Z^3*a - 12*_Z^2*a^2 - 4*_Z*a^3 + 108*_Z^2) + 54*_Z)^(1/3) + a^2)*(RootOf(4*_Z^2 - 4*_Z*(8*_Z^3 + 6*_Z^2*a - 3*_Z*a^2 - a^3 + 3*sqrt(3)*sqrt(-4*_Z^4*a^2 - 4*_Z^3*a^3 - _Z^2*a^4 + 32*_Z^4 + 24*_Z^3*a - 12*_Z^2*a^2 - 4*_Z*a^3 + 108*_Z^2) + 54*_Z)^(1/3) + 2*a*_Z + (8*_Z^3 + 6*_Z^2*a - 3*_Z*a^2 - a^3 + 3*sqrt(3)*sqrt(-4*_Z^4*a^2 - 4*_Z^3*a^3 - _Z^2*a^4 + 32*_Z^4 + 24*_Z^3*a - 12*_Z^2*a^2 - 4*_Z*a^3 + 108*_Z^2) + 54*_Z)^(2/3) - a*(8*_Z^3 + 6*_Z^2*a - 3*_Z*a^2 - a^3 + 3*sqrt(3)*sqrt(-4*_Z^4*a^2 - 4*_Z^3*a^3 - _Z^2*a^4 + 32*_Z^4 + 24*_Z^3*a - 12*_Z^2*a^2 - 4*_Z*a^3 + 108*_Z^2) + 54*_Z)^(1/3) + a^2)*a^4 + 4*RootOf(4*_Z^2 - 4*_Z*(8*_Z^3 + 6*_Z^2*a - 3*_Z*a^2 - a^3 + 3*sqrt(3)*sqrt(-4*_Z^4*a^2 - 4*_Z^3*a^3 - _Z^2*a^4 + 32*_Z^4 + 24*_Z^3*a - 12*_Z^2*a^2 - 4*_Z*a^3 + 108*_Z^2) + 54*_Z)^(1/3) + 2*a*_Z + (8*_Z^3 + 6*_Z^2*a - 3*_Z*a^2 - a^3 + 3*sqrt(3)*sqrt(-4*_Z^4*a^2 - 4*_Z^3*a^3 - _Z^2*a^4 + 32*_Z^4 + 24*_Z^3*a - 12*_Z^2*a^2 - 4*_Z*a^3 + 108*_Z^2) + 54*_Z)^(2/3) - a*(8*_Z^3 + 6*_Z^2*a - 3*_Z*a^2 - a^3 + 3*sqrt(3)*sqrt(-4*_Z^4*a^2 - 4*_Z^3*a^3 - _Z^2*a^4 + 32*_Z^4 + 24*_Z^3*a - 12*_Z^2*a^2 - 4*_Z*a^3 + 108*_Z^2) + 54*_Z)^(1/3) + a^2)^2*a^3 + 4*RootOf(4*_Z^2 - 4*_Z*(8*_Z^3 + 6*_Z^2*a - 3*_Z*a^2 - a^3 + 3*sqrt(3)*sqrt(-4*_Z^4*a^2 - 4*_Z^3*a^3 - _Z^2*a^4 + 32*_Z^4 + 24*_Z^3*a - 12*_Z^2*a^2 - 4*_Z*a^3 + 108*_Z^2) + 54*_Z)^(1/3) + 2*a*_Z + (8*_Z^3 + 6*_Z^2*a - 3*_Z*a^2 - a^3 + 3*sqrt(3)*sqrt(-4*_Z^4*a^2 - 4*_Z^3*a^3 - _Z^2*a^4 + 32*_Z^4 + 24*_Z^3*a - 12*_Z^2*a^2 - 4*_Z*a^3 + 108*_Z^2) + 54*_Z)^(2/3) - a*(8*_Z^3 + 6*_Z^2*a - 3*_Z*a^2 - a^3 + 3*sqrt(3)*sqrt(-4*_Z^4*a^2 - 4*_Z^3*a^3 - _Z^2*a^4 + 32*_Z^4 + 24*_Z^3*a - 12*_Z^2*a^2 - 4*_Z*a^3 + 108*_Z^2) + 54*_Z)^(1/3) + a^2)^3*a^2 + 4*a^3 + 12*RootOf(4*_Z^2 - 4*_Z*(8*_Z^3 + 6*_Z^2*a - 3*_Z*a^2 - a^3 + 3*sqrt(3)*sqrt(-4*_Z^4*a^2 - 4*_Z^3*a^3 - _Z^2*a^4 + 32*_Z^4 + 24*_Z^3*a - 12*_Z^2*a^2 - 4*_Z*a^3 + 108*_Z^2) + 54*_Z)^(1/3) + 2*a*_Z + (8*_Z^3 + 6*_Z^2*a - 3*_Z*a^2 - a^3 + 3*sqrt(3)*sqrt(-4*_Z^4*a^2 - 4*_Z^3*a^3 - _Z^2*a^4 + 32*_Z^4 + 24*_Z^3*a - 12*_Z^2*a^2 - 4*_Z*a^3 + 108*_Z^2) + 54*_Z)^(2/3) - a*(8*_Z^3 + 6*_Z^2*a - 3*_Z*a^2 - a^3 + 3*sqrt(3)*sqrt(-4*_Z^4*a^2 - 4*_Z^3*a^3 - _Z^2*a^4 + 32*_Z^4 + 24*_Z^3*a - 12*_Z^2*a^2 - 4*_Z*a^3 + 108*_Z^2) + 54*_Z)^(1/3) + a^2)*a^2 - 24*RootOf(4*_Z^2 - 4*_Z*(8*_Z^3 + 6*_Z^2*a - 3*_Z*a^2 - a^3 + 3*sqrt(3)*sqrt(-4*_Z^4*a^2 - 4*_Z^3*a^3 - _Z^2*a^4 + 32*_Z^4 + 24*_Z^3*a - 12*_Z^2*a^2 - 4*_Z*a^3 + 108*_Z^2) + 54*_Z)^(1/3) + 2*a*_Z + (8*_Z^3 + 6*_Z^2*a - 3*_Z*a^2 - a^3 + 3*sqrt(3)*sqrt(-4*_Z^4*a^2 - 4*_Z^3*a^3 - _Z^2*a^4 + 32*_Z^4 + 24*_Z^3*a - 12*_Z^2*a^2 - 4*_Z*a^3 + 108*_Z^2) + 54*_Z)^(2/3) - a*(8*_Z^3 + 6*_Z^2*a - 3*_Z*a^2 - a^3 + 3*sqrt(3)*sqrt(-4*_Z^4*a^2 - 4*_Z^3*a^3 - _Z^2*a^4 + 32*_Z^4 + 24*_Z^3*a - 12*_Z^2*a^2 - 4*_Z*a^3 + 108*_Z^2) + 54*_Z)^(1/3) + a^2)^2*a - 32*RootOf(4*_Z^2 - 4*_Z*(8*_Z^3 + 6*_Z^2*a - 3*_Z*a^2 - a^3 + 3*sqrt(3)*sqrt(-4*_Z^4*a^2 - 4*_Z^3*a^3 - _Z^2*a^4 + 32*_Z^4 + 24*_Z^3*a - 12*_Z^2*a^2 - 4*_Z*a^3 + 108*_Z^2) + 54*_Z)^(1/3) + 2*a*_Z + (8*_Z^3 + 6*_Z^2*a - 3*_Z*a^2 - a^3 + 3*sqrt(3)*sqrt(-4*_Z^4*a^2 - 4*_Z^3*a^3 - _Z^2*a^4 + 32*_Z^4 + 24*_Z^3*a - 12*_Z^2*a^2 - 4*_Z*a^3 + 108*_Z^2) + 54*_Z)^(2/3) - a*(8*_Z^3 + 6*_Z^2*a - 3*_Z*a^2 - a^3 + 3*sqrt(3)*sqrt(-4*_Z^4*a^2 - 4*_Z^3*a^3 - _Z^2*a^4 + 32*_Z^4 + 24*_Z^3*a - 12*_Z^2*a^2 - 4*_Z*a^3 + 108*_Z^2) + 54*_Z)^(1/3) + a^2)^3 - 108*RootOf(4*_Z^2 - 4*_Z*(8*_Z^3 + 6*_Z^2*a - 3*_Z*a^2 - a^3 + 3*sqrt(3)*sqrt(-4*_Z^4*a^2 - 4*_Z^3*a^3 - _Z^2*a^4 + 32*_Z^4 + 24*_Z^3*a - 12*_Z^2*a^2 - 4*_Z*a^3 + 108*_Z^2) + 54*_Z)^(1/3) + 2*a*_Z + (8*_Z^3 + 6*_Z^2*a - 3*_Z*a^2 - a^3 + 3*sqrt(3)*sqrt(-4*_Z^4*a^2 - 4*_Z^3*a^3 - _Z^2*a^4 + 32*_Z^4 + 24*_Z^3*a - 12*_Z^2*a^2 - 4*_Z*a^3 + 108*_Z^2) + 54*_Z)^(2/3) - a*(8*_Z^3 + 6*_Z^2*a - 3*_Z*a^2 - a^3 + 3*sqrt(3)*sqrt(-4*_Z^4*a^2 - 4*_Z^3*a^3 - _Z^2*a^4 + 32*_Z^4 + 24*_Z^3*a - 12*_Z^2*a^2 - 4*_Z*a^3 + 108*_Z^2) + 54*_Z)^(1/3) + a^2))) + 54*RootOf(4*_Z^2 - 4*_Z*(8*_Z^3 + 6*_Z^2*a - 3*_Z*a^2 - a^3 + 3*sqrt(3)*sqrt(-4*_Z^4*a^2 - 4*_Z^3*a^3 - _Z^2*a^4 + 32*_Z^4 + 24*_Z^3*a - 12*_Z^2*a^2 - 4*_Z*a^3 + 108*_Z^2) + 54*_Z)^(1/3) + 2*a*_Z + (8*_Z^3 + 6*_Z^2*a - 3*_Z*a^2 - a^3 + 3*sqrt(3)*sqrt(-4*_Z^4*a^2 - 4*_Z^3*a^3 - _Z^2*a^4 + 32*_Z^4 + 24*_Z^3*a - 12*_Z^2*a^2 - 4*_Z*a^3 + 108*_Z^2) + 54*_Z)^(2/3) - a*(8*_Z^3 + 6*_Z^2*a - 3*_Z*a^2 - a^3 + 3*sqrt(3)*sqrt(-4*_Z^4*a^2 - 4*_Z^3*a^3 - _Z^2*a^4 + 32*_Z^4 + 24*_Z^3*a - 12*_Z^2*a^2 - 4*_Z*a^3 + 108*_Z^2) + 54*_Z)^(1/3) + a^2))^(1/3) + 1/6*(4*RootOf(4*_Z^2 - 4*_Z*(8*_Z^3 + 6*_Z^2*a - 3*_Z*a^2 - a^3 + 3*sqrt(3)*sqrt(-4*_Z^4*a^2 - 4*_Z^3*a^3 - _Z^2*a^4 + 32*_Z^4 + 24*_Z^3*a - 12*_Z^2*a^2 - 4*_Z*a^3 + 108*_Z^2) + 54*_Z)^(1/3) + 2*a*_Z + (8*_Z^3 + 6*_Z^2*a - 3*_Z*a^2 - a^3 + 3*sqrt(3)*sqrt(-4*_Z^4*a^2 - 4*_Z^3*a^3 - _Z^2*a^4 + 32*_Z^4 + 24*_Z^3*a - 12*_Z^2*a^2 - 4*_Z*a^3 + 108*_Z^2) + 54*_Z)^(2/3) - a*(8*_Z^3 + 6*_Z^2*a - 3*_Z*a^2 - a^3 + 3*sqrt(3)*sqrt(-4*_Z^4*a^2 - 4*_Z^3*a^3 - _Z^2*a^4 + 32*_Z^4 + 24*_Z^3*a - 12*_Z^2*a^2 - 4*_Z*a^3 + 108*_Z^2) + 54*_Z)^(1/3) + a^2)^2 + 2*a*RootOf(4*_Z^2 - 4*_Z*(8*_Z^3 + 6*_Z^2*a - 3*_Z*a^2 - a^3 + 3*sqrt(3)*sqrt(-4*_Z^4*a^2 - 4*_Z^3*a^3 - _Z^2*a^4 + 32*_Z^4 + 24*_Z^3*a - 12*_Z^2*a^2 - 4*_Z*a^3 + 108*_Z^2) + 54*_Z)^(1/3) + 2*a*_Z + (8*_Z^3 + 6*_Z^2*a - 3*_Z*a^2 - a^3 + 3*sqrt(3)*sqrt(-4*_Z^4*a^2 - 4*_Z^3*a^3 - _Z^2*a^4 + 32*_Z^4 + 24*_Z^3*a - 12*_Z^2*a^2 - 4*_Z*a^3 + 108*_Z^2) + 54*_Z)^(2/3) - a*(8*_Z^3 + 6*_Z^2*a - 3*_Z*a^2 - a^3 + 3*sqrt(3)*sqrt(-4*_Z^4*a^2 - 4*_Z^3*a^3 - _Z^2*a^4 + 32*_Z^4 + 24*_Z^3*a - 12*_Z^2*a^2 - 4*_Z*a^3 + 108*_Z^2) + 54*_Z)^(1/3) + a^2) + a^2)/(-a^3 - 3*RootOf(4*_Z^2 - 4*_Z*(8*_Z^3 + 6*_Z^2*a - 3*_Z*a^2 - a^3 + 3*sqrt(3)*sqrt(-4*_Z^4*a^2 - 4*_Z^3*a^3 - _Z^2*a^4 + 32*_Z^4 + 24*_Z^3*a - 12*_Z^2*a^2 - 4*_Z*a^3 + 108*_Z^2) + 54*_Z)^(1/3) + 2*a*_Z + (8*_Z^3 + 6*_Z^2*a - 3*_Z*a^2 - a^3 + 3*sqrt(3)*sqrt(-4*_Z^4*a^2 - 4*_Z^3*a^3 - _Z^2*a^4 + 32*_Z^4 + 24*_Z^3*a - 12*_Z^2*a^2 - 4*_Z*a^3 + 108*_Z^2) + 54*_Z)^(2/3) - a*(8*_Z^3 + 6*_Z^2*a - 3*_Z*a^2 - a^3 + 3*sqrt(3)*sqrt(-4*_Z^4*a^2 - 4*_Z^3*a^3 - _Z^2*a^4 + 32*_Z^4 + 24*_Z^3*a - 12*_Z^2*a^2 - 4*_Z*a^3 + 108*_Z^2) + 54*_Z)^(1/3) + a^2)*a^2 + 6*RootOf(4*_Z^2 - 4*_Z*(8*_Z^3 + 6*_Z^2*a - 3*_Z*a^2 - a^3 + 3*sqrt(3)*sqrt(-4*_Z^4*a^2 - 4*_Z^3*a^3 - _Z^2*a^4 + 32*_Z^4 + 24*_Z^3*a - 12*_Z^2*a^2 - 4*_Z*a^3 + 108*_Z^2) + 54*_Z)^(1/3) + 2*a*_Z + (8*_Z^3 + 6*_Z^2*a - 3*_Z*a^2 - a^3 + 3*sqrt(3)*sqrt(-4*_Z^4*a^2 - 4*_Z^3*a^3 - _Z^2*a^4 + 32*_Z^4 + 24*_Z^3*a - 12*_Z^2*a^2 - 4*_Z*a^3 + 108*_Z^2) + 54*_Z)^(2/3) - a*(8*_Z^3 + 6*_Z^2*a - 3*_Z*a^2 - a^3 + 3*sqrt(3)*sqrt(-4*_Z^4*a^2 - 4*_Z^3*a^3 - _Z^2*a^4 + 32*_Z^4 + 24*_Z^3*a - 12*_Z^2*a^2 - 4*_Z*a^3 + 108*_Z^2) + 54*_Z)^(1/3) + a^2)^2*a + 8*RootOf(4*_Z^2 - 4*_Z*(8*_Z^3 + 6*_Z^2*a - 3*_Z*a^2 - a^3 + 3*sqrt(3)*sqrt(-4*_Z^4*a^2 - 4*_Z^3*a^3 - _Z^2*a^4 + 32*_Z^4 + 24*_Z^3*a - 12*_Z^2*a^2 - 4*_Z*a^3 + 108*_Z^2) + 54*_Z)^(1/3) + 2*a*_Z + (8*_Z^3 + 6*_Z^2*a - 3*_Z*a^2 - a^3 + 3*sqrt(3)*sqrt(-4*_Z^4*a^2 - 4*_Z^3*a^3 - _Z^2*a^4 + 32*_Z^4 + 24*_Z^3*a - 12*_Z^2*a^2 - 4*_Z*a^3 + 108*_Z^2) + 54*_Z)^(2/3) - a*(8*_Z^3 + 6*_Z^2*a - 3*_Z*a^2 - a^3 + 3*sqrt(3)*sqrt(-4*_Z^4*a^2 - 4*_Z^3*a^3 - _Z^2*a^4 + 32*_Z^4 + 24*_Z^3*a - 12*_Z^2*a^2 - 4*_Z*a^3 + 108*_Z^2) + 54*_Z)^(1/3) + a^2)^3 + 3*sqrt(3)*sqrt(-RootOf(4*_Z^2 - 4*_Z*(8*_Z^3 + 6*_Z^2*a - 3*_Z*a^2 - a^3 + 3*sqrt(3)*sqrt(-4*_Z^4*a^2 - 4*_Z^3*a^3 - _Z^2*a^4 + 32*_Z^4 + 24*_Z^3*a - 12*_Z^2*a^2 - 4*_Z*a^3 + 108*_Z^2) + 54*_Z)^(1/3) + 2*a*_Z + (8*_Z^3 + 6*_Z^2*a - 3*_Z*a^2 - a^3 + 3*sqrt(3)*sqrt(-4*_Z^4*a^2 - 4*_Z^3*a^3 - _Z^2*a^4 + 32*_Z^4 + 24*_Z^3*a - 12*_Z^2*a^2 - 4*_Z*a^3 + 108*_Z^2) + 54*_Z)^(2/3) - a*(8*_Z^3 + 6*_Z^2*a - 3*_Z*a^2 - a^3 + 3*sqrt(3)*sqrt(-4*_Z^4*a^2 - 4*_Z^3*a^3 - _Z^2*a^4 + 32*_Z^4 + 24*_Z^3*a - 12*_Z^2*a^2 - 4*_Z*a^3 + 108*_Z^2) + 54*_Z)^(1/3) + a^2)*(RootOf(4*_Z^2 - 4*_Z*(8*_Z^3 + 6*_Z^2*a - 3*_Z*a^2 - a^3 + 3*sqrt(3)*sqrt(-4*_Z^4*a^2 - 4*_Z^3*a^3 - _Z^2*a^4 + 32*_Z^4 + 24*_Z^3*a - 12*_Z^2*a^2 - 4*_Z*a^3 + 108*_Z^2) + 54*_Z)^(1/3) + 2*a*_Z + (8*_Z^3 + 6*_Z^2*a - 3*_Z*a^2 - a^3 + 3*sqrt(3)*sqrt(-4*_Z^4*a^2 - 4*_Z^3*a^3 - _Z^2*a^4 + 32*_Z^4 + 24*_Z^3*a - 12*_Z^2*a^2 - 4*_Z*a^3 + 108*_Z^2) + 54*_Z)^(2/3) - a*(8*_Z^3 + 6*_Z^2*a - 3*_Z*a^2 - a^3 + 3*sqrt(3)*sqrt(-4*_Z^4*a^2 - 4*_Z^3*a^3 - _Z^2*a^4 + 32*_Z^4 + 24*_Z^3*a - 12*_Z^2*a^2 - 4*_Z*a^3 + 108*_Z^2) + 54*_Z)^(1/3) + a^2)*a^4 + 4*RootOf(4*_Z^2 - 4*_Z*(8*_Z^3 + 6*_Z^2*a - 3*_Z*a^2 - a^3 + 3*sqrt(3)*sqrt(-4*_Z^4*a^2 - 4*_Z^3*a^3 - _Z^2*a^4 + 32*_Z^4 + 24*_Z^3*a - 12*_Z^2*a^2 - 4*_Z*a^3 + 108*_Z^2) + 54*_Z)^(1/3) + 2*a*_Z + (8*_Z^3 + 6*_Z^2*a - 3*_Z*a^2 - a^3 + 3*sqrt(3)*sqrt(-4*_Z^4*a^2 - 4*_Z^3*a^3 - _Z^2*a^4 + 32*_Z^4 + 24*_Z^3*a - 12*_Z^2*a^2 - 4*_Z*a^3 + 108*_Z^2) + 54*_Z)^(2/3) - a*(8*_Z^3 + 6*_Z^2*a - 3*_Z*a^2 - a^3 + 3*sqrt(3)*sqrt(-4*_Z^4*a^2 - 4*_Z^3*a^3 - _Z^2*a^4 + 32*_Z^4 + 24*_Z^3*a - 12*_Z^2*a^2 - 4*_Z*a^3 + 108*_Z^2) + 54*_Z)^(1/3) + a^2)^2*a^3 + 4*RootOf(4*_Z^2 - 4*_Z*(8*_Z^3 + 6*_Z^2*a - 3*_Z*a^2 - a^3 + 3*sqrt(3)*sqrt(-4*_Z^4*a^2 - 4*_Z^3*a^3 - _Z^2*a^4 + 32*_Z^4 + 24*_Z^3*a - 12*_Z^2*a^2 - 4*_Z*a^3 + 108*_Z^2) + 54*_Z)^(1/3) + 2*a*_Z + (8*_Z^3 + 6*_Z^2*a - 3*_Z*a^2 - a^3 + 3*sqrt(3)*sqrt(-4*_Z^4*a^2 - 4*_Z^3*a^3 - _Z^2*a^4 + 32*_Z^4 + 24*_Z^3*a - 12*_Z^2*a^2 - 4*_Z*a^3 + 108*_Z^2) + 54*_Z)^(2/3) - a*(8*_Z^3 + 6*_Z^2*a - 3*_Z*a^2 - a^3 + 3*sqrt(3)*sqrt(-4*_Z^4*a^2 - 4*_Z^3*a^3 - _Z^2*a^4 + 32*_Z^4 + 24*_Z^3*a - 12*_Z^2*a^2 - 4*_Z*a^3 + 108*_Z^2) + 54*_Z)^(1/3) + a^2)^3*a^2 + 4*a^3 + 12*RootOf(4*_Z^2 - 4*_Z*(8*_Z^3 + 6*_Z^2*a - 3*_Z*a^2 - a^3 + 3*sqrt(3)*sqrt(-4*_Z^4*a^2 - 4*_Z^3*a^3 - _Z^2*a^4 + 32*_Z^4 + 24*_Z^3*a - 12*_Z^2*a^2 - 4*_Z*a^3 + 108*_Z^2) + 54*_Z)^(1/3) + 2*a*_Z + (8*_Z^3 + 6*_Z^2*a - 3*_Z*a^2 - a^3 + 3*sqrt(3)*sqrt(-4*_Z^4*a^2 - 4*_Z^3*a^3 - _Z^2*a^4 + 32*_Z^4 + 24*_Z^3*a - 12*_Z^2*a^2 - 4*_Z*a^3 + 108*_Z^2) + 54*_Z)^(2/3) - a*(8*_Z^3 + 6*_Z^2*a - 3*_Z*a^2 - a^3 + 3*sqrt(3)*sqrt(-4*_Z^4*a^2 - 4*_Z^3*a^3 - _Z^2*a^4 + 32*_Z^4 + 24*_Z^3*a - 12*_Z^2*a^2 - 4*_Z*a^3 + 108*_Z^2) + 54*_Z)^(1/3) + a^2)*a^2 - 24*RootOf(4*_Z^2 - 4*_Z*(8*_Z^3 + 6*_Z^2*a - 3*_Z*a^2 - a^3 + 3*sqrt(3)*sqrt(-4*_Z^4*a^2 - 4*_Z^3*a^3 - _Z^2*a^4 + 32*_Z^4 + 24*_Z^3*a - 12*_Z^2*a^2 - 4*_Z*a^3 + 108*_Z^2) + 54*_Z)^(1/3) + 2*a*_Z + (8*_Z^3 + 6*_Z^2*a - 3*_Z*a^2 - a^3 + 3*sqrt(3)*sqrt(-4*_Z^4*a^2 - 4*_Z^3*a^3 - _Z^2*a^4 + 32*_Z^4 + 24*_Z^3*a - 12*_Z^2*a^2 - 4*_Z*a^3 + 108*_Z^2) + 54*_Z)^(2/3) - a*(8*_Z^3 + 6*_Z^2*a - 3*_Z*a^2 - a^3 + 3*sqrt(3)*sqrt(-4*_Z^4*a^2 - 4*_Z^3*a^3 - _Z^2*a^4 + 32*_Z^4 + 24*_Z^3*a - 12*_Z^2*a^2 - 4*_Z*a^3 + 108*_Z^2) + 54*_Z)^(1/3) + a^2)^2*a - 32*RootOf(4*_Z^2 - 4*_Z*(8*_Z^3 + 6*_Z^2*a - 3*_Z*a^2 - a^3 + 3*sqrt(3)*sqrt(-4*_Z^4*a^2 - 4*_Z^3*a^3 - _Z^2*a^4 + 32*_Z^4 + 24*_Z^3*a - 12*_Z^2*a^2 - 4*_Z*a^3 + 108*_Z^2) + 54*_Z)^(1/3) + 2*a*_Z + (8*_Z^3 + 6*_Z^2*a - 3*_Z*a^2 - a^3 + 3*sqrt(3)*sqrt(-4*_Z^4*a^2 - 4*_Z^3*a^3 - _Z^2*a^4 + 32*_Z^4 + 24*_Z^3*a - 12*_Z^2*a^2 - 4*_Z*a^3 + 108*_Z^2) + 54*_Z)^(2/3) - a*(8*_Z^3 + 6*_Z^2*a - 3*_Z*a^2 - a^3 + 3*sqrt(3)*sqrt(-4*_Z^4*a^2 - 4*_Z^3*a^3 - _Z^2*a^4 + 32*_Z^4 + 24*_Z^3*a - 12*_Z^2*a^2 - 4*_Z*a^3 + 108*_Z^2) + 54*_Z)^(1/3) + a^2)^3 - 108*RootOf(4*_Z^2 - 4*_Z*(8*_Z^3 + 6*_Z^2*a - 3*_Z*a^2 - a^3 + 3*sqrt(3)*sqrt(-4*_Z^4*a^2 - 4*_Z^3*a^3 - _Z^2*a^4 + 32*_Z^4 + 24*_Z^3*a - 12*_Z^2*a^2 - 4*_Z*a^3 + 108*_Z^2) + 54*_Z)^(1/3) + 2*a*_Z + (8*_Z^3 + 6*_Z^2*a - 3*_Z*a^2 - a^3 + 3*sqrt(3)*sqrt(-4*_Z^4*a^2 - 4*_Z^3*a^3 - _Z^2*a^4 + 32*_Z^4 + 24*_Z^3*a - 12*_Z^2*a^2 - 4*_Z*a^3 + 108*_Z^2) + 54*_Z)^(2/3) - a*(8*_Z^3 + 6*_Z^2*a - 3*_Z*a^2 - a^3 + 3*sqrt(3)*sqrt(-4*_Z^4*a^2 - 4*_Z^3*a^3 - _Z^2*a^4 + 32*_Z^4 + 24*_Z^3*a - 12*_Z^2*a^2 - 4*_Z*a^3 + 108*_Z^2) + 54*_Z)^(1/3) + a^2))) + 54*RootOf(4*_Z^2 - 4*_Z*(8*_Z^3 + 6*_Z^2*a - 3*_Z*a^2 - a^3 + 3*sqrt(3)*sqrt(-4*_Z^4*a^2 - 4*_Z^3*a^3 - _Z^2*a^4 + 32*_Z^4 + 24*_Z^3*a - 12*_Z^2*a^2 - 4*_Z*a^3 + 108*_Z^2) + 54*_Z)^(1/3) + 2*a*_Z + (8*_Z^3 + 6*_Z^2*a - 3*_Z*a^2 - a^3 + 3*sqrt(3)*sqrt(-4*_Z^4*a^2 - 4*_Z^3*a^3 - _Z^2*a^4 + 32*_Z^4 + 24*_Z^3*a - 12*_Z^2*a^2 - 4*_Z*a^3 + 108*_Z^2) + 54*_Z)^(2/3) - a*(8*_Z^3 + 6*_Z^2*a - 3*_Z*a^2 - a^3 + 3*sqrt(3)*sqrt(-4*_Z^4*a^2 - 4*_Z^3*a^3 - _Z^2*a^4 + 32*_Z^4 + 24*_Z^3*a - 12*_Z^2*a^2 - 4*_Z*a^3 + 108*_Z^2) + 54*_Z)^(1/3) + a^2))^(1/3) - 1/6*a + 1/3*RootOf(4*_Z^2 - 4*_Z*(8*_Z^3 + 6*_Z^2*a - 3*_Z*a^2 - a^3 + 3*sqrt(3)*sqrt(-4*_Z^4*a^2 - 4*_Z^3*a^3 - _Z^2*a^4 + 32*_Z^4 + 24*_Z^3*a - 12*_Z^2*a^2 - 4*_Z*a^3 + 108*_Z^2) + 54*_Z)^(1/3) + 2*a*_Z + (8*_Z^3 + 6*_Z^2*a - 3*_Z*a^2 - a^3 + 3*sqrt(3)*sqrt(-4*_Z^4*a^2 - 4*_Z^3*a^3 - _Z^2*a^4 + 32*_Z^4 + 24*_Z^3*a - 12*_Z^2*a^2 - 4*_Z*a^3 + 108*_Z^2) + 54*_Z)^(2/3) - a*(8*_Z^3 + 6*_Z^2*a - 3*_Z*a^2 - a^3 + 3*sqrt(3)*sqrt(-4*_Z^4*a^2 - 4*_Z^3*a^3 - _Z^2*a^4 + 32*_Z^4 + 24*_Z^3*a - 12*_Z^2*a^2 - 4*_Z*a^3 + 108*_Z^2) + 54*_Z)^(1/3) + a^2):

radnormal(sol);

Error, (in RootOf) _Z occurs but is not the dependent variable

 


 

Download bug_Z.mw

I have had this a few times this week since updating to 2024.1 on Windows 10.

I get sudden freezes in a worksheet. The !!! button greys out. The ! button is ok, so the worksheet can be run by using ctrl A and click !

Has anyone else experienced this?

Dear maple user,for defining the piecewise function please rectify this

h:z-> piecewise(do+Lo<z<do+4*Lo+0.3,    1-cos(2*pi*(z-L), other wise 1)

I have four symmetries as

1] \frac{\partial}{\partial t)

2] \frac{\partial}{\partial x)

3] \frac{\partial}{\partial y)

4] 2t \frac{\partial}{\partial t)+x\frac{\partial}{\partial x)+y\frac{\partial}{\partial y)-2u\frac{\partial}{\partial u)

Kindly help me out to find 1D optimal system with structural constants.

I will be greatful.

I have a Dataframe of data, although I assume this question applies to any type of rTable-like structure.

What is a simple/elegant way to export the image of the data to a JPG file?  I would be happy to see it in the format when I ask it to print the Dataframe, or when I use DocumentTools:-Tabulate.

I have created two graphs*, each is a combination of multiple plots. From this, I use "plots:-display" to create an array of the two graphs.  I wish to export this array of graphs to a jpg file. Is this possible?  (Yes, I can export each graph, but I would like it combined in the array image that Maple displays.)

* Why the asterisk: I make two plots. When I combine them through the plots:-display procedure, what type of output is produced? I've called it a graph. The help implies the output is a plot array. However, that is different from displaying an array of graphs through plots: display (Array([plot1, plot2])). Correct?

Context of My Code:

I want to determine the SU(2) field strength tensor for a specific field configuration(later the equations of motion). I have managed to implement the covariant derivative and the gauge field, but now I am encountering problems with the field strength tensor. When substituting the definitions of my gauge field (7) and my covariant derivative (13) into my field strength tensor (14), the following problems occur:

  1. The derivatives do not act on f(r) or r (r should be the radial component of my coordinate system).
  2. The unit vectors are not explicitly multiplied together. Mixed terms should vanish and quadratic terms should result in one.

I am not even sure if I can properly form F[]^2 due to my definition in (4). I have seen in the setup that there are SU(2) indices, but I couldn't find anything helpful on how to handle this. Is it better to use SU(2) indexing?

It would be nice if someone could tell me why my terms are not simplifying or direct me to where I need to look to understand it.

Here is my code: 

SU(2)_Field_Strength.mw

 

Dear All,

I have a polynomial in terms of time. I know that based on the nature of the problem, the real function that governs this problem is the sum of exponential functions with a negative power, for example, in the form of alpha[0]+add(alpha[i]*exp(-beta[i]*t), i=1.. 5).

Can you help me if there is a method that can be used to obtain these exponential functions using following polynomial?

The polynomial function is as follow:

f:=0.020399949322360296902872908942 + 0.0261353198432118595103693714851*t^3 + 0.0240968505875842806805439681431*t^4 + 0.0148456155621193706595799212802*t^5 + 0.0239969764160351203722354728376*t^2 + 0.0204278458408370651586217048716*t - 0.00450853634927256388740864146173*t^6 - 0.0355389767483113696513996149731*t^7 - 0.0766669789661906882315038416910*t^8 - 0.120843030849135239578151569663*t^9 - 0.153280689906711146639066606024*t^10 - 0.150288711858517536713273977277*t^11 - 0.0808171080937786380164380347445*t^12 + 0.0872390654213369913348407061899*t^13 + 0.373992140377042586618283139889*t^14 + 0.766807288928470485618700282187*t^15 + 1.19339994493571167326973251788*t^16 + 1.49476369302534328383069681700*t^17 + 1.41015598591182237492637420929*t^18 + 0.593451797299651247527539427688*t^19 - 1.31434443870999971750661332301*t^20;

Best wishes

I have this problem with this system of equations, when I solve the 13x13 system it does not give me any solution, neither giving seed values ​​nor placing full digits. The exercise is solved and I tried to assume close values ​​and it doesn't work for me, it leaves everything expressed with the fsolve command.

Download p1.mw

Maple formats output depending on typesetting options "extened" and "standard" for the GUI (or interface). An example taken from

restart;
ts_standard:=proc(k::anything)
     interface(typesetting=standard):
     print(k);
     interface(typesetting=extended): 
     NULL;
end proc:
k:=3/8*ln(55/52)+sin(x)+3/4*exp(x);
                    3   /55\            3       
               k := - ln|--| + sin(x) + - exp(x)
                    8   \52/            4       

ts_standard(k);
                               

Why is the input two times returned and why one time as a list?
Somehow the first interface statement is responsible for that.

I am only interested in the reformated input inside the list.
Is it possible to fix the code?

Other observation with typesetting=standard:

restart;
interface(typesetting=standard);
expr:=cos(x)^2;
((x->x)=combine[trig])(expr);
                      

((x->x)=combine[trig])(expr);#subsequent call
                          2   1            1
                    cos(x)  = - cos(2 x) + -
                              2            2

(with Maple 2024.1 this only accurs in Math-1D)
but

restart;
expr:=cos(x)^2;
interface(typesetting=standard);
((x->x)=combine[trig])(expr);
                                      2
                        expr := cos(x) 

                            extended

                          2   1            1
                    cos(x)  = - cos(2 x) + -
                              2            2

GUI state after interupting with :

After switching to untitled 17 and back to test_timeout:

Sometimes it is necessary to switch back and forth twice.

Does this mean that the kernel did not receive the interupt?

Hello Everyone 

I created a file to sum up 5 vectors and display them in 3d space. (see below)

I would like to optimize my input so that I input the total length of the vector and the angle in the x-y plane and the angle in the x-z plane. 

At the top of the document there is an idea from a different pots how to do it with 2d vectors but I can't get it to work with 3d vectors. 

Any ideas?

Thanks in advance!

3d_vector.mw

4 5 6 7 8 9 10 Last Page 6 of 345