Unanswered Questions

This page lists MaplePrimes questions that have not yet received an answer

restart

with(PDEtools)

with(LinearAlgebra)

NULL

with(SolveTools)

undeclare(prime)

`There is no more prime differentiation variable; all derivatives will be displayed as indexed functions`

(1)

declare(u(x, y, z, t))

u(x, y, z, t)*`will now be displayed as`*u

(2)

pde := diff(u(x, y, z, t), `$`(t, 2))+diff(u(x, y, z, t), `$`(x, 2))-(diff(u(x, y, z, t)^2, `$`(x, 2)))-(diff(u(x, y, z, t), `$`(x, 4)))+diff(diff(u(x, y, z, t), y)+diff(u(x, y, z, t), z)+diff(u(x, y, z, t), t), x)+2*(diff(u(x, y, z, t), y, t))+diff(u(x, y, z, t), `$`(y, 2)) = 0

diff(diff(u(x, y, z, t), t), t)+diff(diff(u(x, y, z, t), x), x)-2*(diff(u(x, y, z, t), x))^2-2*u(x, y, z, t)*(diff(diff(u(x, y, z, t), x), x))-(diff(diff(diff(diff(u(x, y, z, t), x), x), x), x))+diff(diff(u(x, y, z, t), x), y)+diff(diff(u(x, y, z, t), x), z)+diff(diff(u(x, y, z, t), t), x)+2*(diff(diff(u(x, y, z, t), t), y))+diff(diff(u(x, y, z, t), y), y) = 0

(3)

declare(v(t))

v(t)*`will now be displayed as`*v

(4)

declare(f(x, y, z, t))

f(x, y, z, t)*`will now be displayed as`*f

(5)

Q := u(x, y, z, t) = 6*(diff(ln(f(x, y, z, t)), `$`(x, 2)))

LL := diff(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x), x)-(diff(diff(diff(f(x, y, z, t), x), x), x))-(diff(diff(diff(f(x, y, z, t), t), t), x))-(diff(diff(diff(f(x, y, z, t), t), x), x))-2*(diff(diff(diff(f(x, y, z, t), t), x), y))-(diff(diff(diff(f(x, y, z, t), x), x), y))-(diff(diff(diff(f(x, y, z, t), x), x), z))-(diff(diff(diff(f(x, y, z, t), x), y), y)) = 0

diff(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x), x)-(diff(diff(diff(f(x, y, z, t), x), x), x))-(diff(diff(diff(f(x, y, z, t), t), t), x))-(diff(diff(diff(f(x, y, z, t), t), x), x))-2*(diff(diff(diff(f(x, y, z, t), t), x), y))-(diff(diff(diff(f(x, y, z, t), x), x), y))-(diff(diff(diff(f(x, y, z, t), x), x), z))-(diff(diff(diff(f(x, y, z, t), x), y), y)) = 0

(6)

S22 := f(x, y, z, t) = 1+exp((-(1/2)*k[1]-l[1]+(1/2)*sqrt(4*k[1]^4-3*k[1]^2-4*k[1]*s[1]))*t+k[1]*x+l[1]*y+s[1]*z)+exp(k[2]*x+l[2]*y+s[2]*z+(-(1/2)*k[2]-l[2]+(1/2)*sqrt(4*k[2]^4-3*k[2]^2-4*k[2]*s[2]))*t)+B[1]*exp((-(1/2)*k[1]-l[1]+(1/2)*sqrt(4*k[1]^4-3*k[1]^2-4*k[1]*s[1]))*t+k[1]*x+l[1]*y+s[1]*z+k[2]*x+l[2]*y+s[2]*z+(-(1/2)*k[2]-l[2]+(1/2)*sqrt(4*k[2]^4-3*k[2]^2-4*k[2]*s[2]))*t)

f(x, y, z, t) = 1+exp((-(1/2)*k[1]-l[1]+(1/2)*(4*k[1]^4-3*k[1]^2-4*k[1]*s[1])^(1/2))*t+k[1]*x+l[1]*y+s[1]*z)+exp(k[2]*x+l[2]*y+s[2]*z+(-(1/2)*k[2]-l[2]+(1/2)*(4*k[2]^4-3*k[2]^2-4*k[2]*s[2])^(1/2))*t)+B[1]*exp((-(1/2)*k[1]-l[1]+(1/2)*(4*k[1]^4-3*k[1]^2-4*k[1]*s[1])^(1/2))*t+k[1]*x+l[1]*y+s[1]*z+k[2]*x+l[2]*y+s[2]*z+(-(1/2)*k[2]-l[2]+(1/2)*(4*k[2]^4-3*k[2]^2-4*k[2]*s[2])^(1/2))*t)

(7)

NULL

R11 := eval(LL, S22)

k[1]^5*exp((-(1/2)*k[1]-l[1]+(1/2)*(4*k[1]^4-3*k[1]^2-4*k[1]*s[1])^(1/2))*t+k[1]*x+l[1]*y+s[1]*z)+k[2]^5*exp(k[2]*x+l[2]*y+s[2]*z+(-(1/2)*k[2]-l[2]+(1/2)*(4*k[2]^4-3*k[2]^2-4*k[2]*s[2])^(1/2))*t)+B[1]*(k[1]+k[2])^5*exp((-(1/2)*k[1]-l[1]+(1/2)*(4*k[1]^4-3*k[1]^2-4*k[1]*s[1])^(1/2))*t+k[1]*x+l[1]*y+s[1]*z+k[2]*x+l[2]*y+s[2]*z+(-(1/2)*k[2]-l[2]+(1/2)*(4*k[2]^4-3*k[2]^2-4*k[2]*s[2])^(1/2))*t)-k[1]^3*exp((-(1/2)*k[1]-l[1]+(1/2)*(4*k[1]^4-3*k[1]^2-4*k[1]*s[1])^(1/2))*t+k[1]*x+l[1]*y+s[1]*z)-k[2]^3*exp(k[2]*x+l[2]*y+s[2]*z+(-(1/2)*k[2]-l[2]+(1/2)*(4*k[2]^4-3*k[2]^2-4*k[2]*s[2])^(1/2))*t)-B[1]*(k[1]+k[2])^3*exp((-(1/2)*k[1]-l[1]+(1/2)*(4*k[1]^4-3*k[1]^2-4*k[1]*s[1])^(1/2))*t+k[1]*x+l[1]*y+s[1]*z+k[2]*x+l[2]*y+s[2]*z+(-(1/2)*k[2]-l[2]+(1/2)*(4*k[2]^4-3*k[2]^2-4*k[2]*s[2])^(1/2))*t)-(-(1/2)*k[1]-l[1]+(1/2)*(4*k[1]^4-3*k[1]^2-4*k[1]*s[1])^(1/2))^2*k[1]*exp((-(1/2)*k[1]-l[1]+(1/2)*(4*k[1]^4-3*k[1]^2-4*k[1]*s[1])^(1/2))*t+k[1]*x+l[1]*y+s[1]*z)-(-(1/2)*k[2]-l[2]+(1/2)*(4*k[2]^4-3*k[2]^2-4*k[2]*s[2])^(1/2))^2*k[2]*exp(k[2]*x+l[2]*y+s[2]*z+(-(1/2)*k[2]-l[2]+(1/2)*(4*k[2]^4-3*k[2]^2-4*k[2]*s[2])^(1/2))*t)-B[1]*(-(1/2)*k[1]-l[1]+(1/2)*(4*k[1]^4-3*k[1]^2-4*k[1]*s[1])^(1/2)-(1/2)*k[2]-l[2]+(1/2)*(4*k[2]^4-3*k[2]^2-4*k[2]*s[2])^(1/2))^2*(k[1]+k[2])*exp((-(1/2)*k[1]-l[1]+(1/2)*(4*k[1]^4-3*k[1]^2-4*k[1]*s[1])^(1/2))*t+k[1]*x+l[1]*y+s[1]*z+k[2]*x+l[2]*y+s[2]*z+(-(1/2)*k[2]-l[2]+(1/2)*(4*k[2]^4-3*k[2]^2-4*k[2]*s[2])^(1/2))*t)-(-(1/2)*k[1]-l[1]+(1/2)*(4*k[1]^4-3*k[1]^2-4*k[1]*s[1])^(1/2))*k[1]^2*exp((-(1/2)*k[1]-l[1]+(1/2)*(4*k[1]^4-3*k[1]^2-4*k[1]*s[1])^(1/2))*t+k[1]*x+l[1]*y+s[1]*z)-(-(1/2)*k[2]-l[2]+(1/2)*(4*k[2]^4-3*k[2]^2-4*k[2]*s[2])^(1/2))*k[2]^2*exp(k[2]*x+l[2]*y+s[2]*z+(-(1/2)*k[2]-l[2]+(1/2)*(4*k[2]^4-3*k[2]^2-4*k[2]*s[2])^(1/2))*t)-B[1]*(-(1/2)*k[1]-l[1]+(1/2)*(4*k[1]^4-3*k[1]^2-4*k[1]*s[1])^(1/2)-(1/2)*k[2]-l[2]+(1/2)*(4*k[2]^4-3*k[2]^2-4*k[2]*s[2])^(1/2))*(k[1]+k[2])^2*exp((-(1/2)*k[1]-l[1]+(1/2)*(4*k[1]^4-3*k[1]^2-4*k[1]*s[1])^(1/2))*t+k[1]*x+l[1]*y+s[1]*z+k[2]*x+l[2]*y+s[2]*z+(-(1/2)*k[2]-l[2]+(1/2)*(4*k[2]^4-3*k[2]^2-4*k[2]*s[2])^(1/2))*t)-2*(-(1/2)*k[1]-l[1]+(1/2)*(4*k[1]^4-3*k[1]^2-4*k[1]*s[1])^(1/2))*k[1]*l[1]*exp((-(1/2)*k[1]-l[1]+(1/2)*(4*k[1]^4-3*k[1]^2-4*k[1]*s[1])^(1/2))*t+k[1]*x+l[1]*y+s[1]*z)-2*(-(1/2)*k[2]-l[2]+(1/2)*(4*k[2]^4-3*k[2]^2-4*k[2]*s[2])^(1/2))*k[2]*l[2]*exp(k[2]*x+l[2]*y+s[2]*z+(-(1/2)*k[2]-l[2]+(1/2)*(4*k[2]^4-3*k[2]^2-4*k[2]*s[2])^(1/2))*t)-2*B[1]*(-(1/2)*k[1]-l[1]+(1/2)*(4*k[1]^4-3*k[1]^2-4*k[1]*s[1])^(1/2)-(1/2)*k[2]-l[2]+(1/2)*(4*k[2]^4-3*k[2]^2-4*k[2]*s[2])^(1/2))*(k[1]+k[2])*(l[1]+l[2])*exp((-(1/2)*k[1]-l[1]+(1/2)*(4*k[1]^4-3*k[1]^2-4*k[1]*s[1])^(1/2))*t+k[1]*x+l[1]*y+s[1]*z+k[2]*x+l[2]*y+s[2]*z+(-(1/2)*k[2]-l[2]+(1/2)*(4*k[2]^4-3*k[2]^2-4*k[2]*s[2])^(1/2))*t)-k[1]^2*l[1]*exp((-(1/2)*k[1]-l[1]+(1/2)*(4*k[1]^4-3*k[1]^2-4*k[1]*s[1])^(1/2))*t+k[1]*x+l[1]*y+s[1]*z)-k[2]^2*l[2]*exp(k[2]*x+l[2]*y+s[2]*z+(-(1/2)*k[2]-l[2]+(1/2)*(4*k[2]^4-3*k[2]^2-4*k[2]*s[2])^(1/2))*t)-B[1]*(k[1]+k[2])^2*(l[1]+l[2])*exp((-(1/2)*k[1]-l[1]+(1/2)*(4*k[1]^4-3*k[1]^2-4*k[1]*s[1])^(1/2))*t+k[1]*x+l[1]*y+s[1]*z+k[2]*x+l[2]*y+s[2]*z+(-(1/2)*k[2]-l[2]+(1/2)*(4*k[2]^4-3*k[2]^2-4*k[2]*s[2])^(1/2))*t)-k[1]^2*s[1]*exp((-(1/2)*k[1]-l[1]+(1/2)*(4*k[1]^4-3*k[1]^2-4*k[1]*s[1])^(1/2))*t+k[1]*x+l[1]*y+s[1]*z)-k[2]^2*s[2]*exp(k[2]*x+l[2]*y+s[2]*z+(-(1/2)*k[2]-l[2]+(1/2)*(4*k[2]^4-3*k[2]^2-4*k[2]*s[2])^(1/2))*t)-B[1]*(k[1]+k[2])^2*(s[1]+s[2])*exp((-(1/2)*k[1]-l[1]+(1/2)*(4*k[1]^4-3*k[1]^2-4*k[1]*s[1])^(1/2))*t+k[1]*x+l[1]*y+s[1]*z+k[2]*x+l[2]*y+s[2]*z+(-(1/2)*k[2]-l[2]+(1/2)*(4*k[2]^4-3*k[2]^2-4*k[2]*s[2])^(1/2))*t)-k[1]*l[1]^2*exp((-(1/2)*k[1]-l[1]+(1/2)*(4*k[1]^4-3*k[1]^2-4*k[1]*s[1])^(1/2))*t+k[1]*x+l[1]*y+s[1]*z)-k[2]*l[2]^2*exp(k[2]*x+l[2]*y+s[2]*z+(-(1/2)*k[2]-l[2]+(1/2)*(4*k[2]^4-3*k[2]^2-4*k[2]*s[2])^(1/2))*t)-B[1]*(k[1]+k[2])*(l[1]+l[2])^2*exp((-(1/2)*k[1]-l[1]+(1/2)*(4*k[1]^4-3*k[1]^2-4*k[1]*s[1])^(1/2))*t+k[1]*x+l[1]*y+s[1]*z+k[2]*x+l[2]*y+s[2]*z+(-(1/2)*k[2]-l[2]+(1/2)*(4*k[2]^4-3*k[2]^2-4*k[2]*s[2])^(1/2))*t) = 0

(8)

L4 := collect(%, [x, y, t], 'distributed')

k[1]^5*exp((-(1/2)*k[1]-l[1]+(1/2)*(4*k[1]^4-3*k[1]^2-4*k[1]*s[1])^(1/2))*t+k[1]*x+l[1]*y+s[1]*z)+k[2]^5*exp(k[2]*x+l[2]*y+s[2]*z+(-(1/2)*k[2]-l[2]+(1/2)*(4*k[2]^4-3*k[2]^2-4*k[2]*s[2])^(1/2))*t)+B[1]*(k[1]+k[2])^5*exp((-(1/2)*k[1]-l[1]+(1/2)*(4*k[1]^4-3*k[1]^2-4*k[1]*s[1])^(1/2))*t+k[1]*x+l[1]*y+s[1]*z+k[2]*x+l[2]*y+s[2]*z+(-(1/2)*k[2]-l[2]+(1/2)*(4*k[2]^4-3*k[2]^2-4*k[2]*s[2])^(1/2))*t)-k[1]^3*exp((-(1/2)*k[1]-l[1]+(1/2)*(4*k[1]^4-3*k[1]^2-4*k[1]*s[1])^(1/2))*t+k[1]*x+l[1]*y+s[1]*z)-k[2]^3*exp(k[2]*x+l[2]*y+s[2]*z+(-(1/2)*k[2]-l[2]+(1/2)*(4*k[2]^4-3*k[2]^2-4*k[2]*s[2])^(1/2))*t)-B[1]*(k[1]+k[2])^3*exp((-(1/2)*k[1]-l[1]+(1/2)*(4*k[1]^4-3*k[1]^2-4*k[1]*s[1])^(1/2))*t+k[1]*x+l[1]*y+s[1]*z+k[2]*x+l[2]*y+s[2]*z+(-(1/2)*k[2]-l[2]+(1/2)*(4*k[2]^4-3*k[2]^2-4*k[2]*s[2])^(1/2))*t)-(-(1/2)*k[1]-l[1]+(1/2)*(4*k[1]^4-3*k[1]^2-4*k[1]*s[1])^(1/2))^2*k[1]*exp((-(1/2)*k[1]-l[1]+(1/2)*(4*k[1]^4-3*k[1]^2-4*k[1]*s[1])^(1/2))*t+k[1]*x+l[1]*y+s[1]*z)-(-(1/2)*k[2]-l[2]+(1/2)*(4*k[2]^4-3*k[2]^2-4*k[2]*s[2])^(1/2))^2*k[2]*exp(k[2]*x+l[2]*y+s[2]*z+(-(1/2)*k[2]-l[2]+(1/2)*(4*k[2]^4-3*k[2]^2-4*k[2]*s[2])^(1/2))*t)-B[1]*(-(1/2)*k[1]-l[1]+(1/2)*(4*k[1]^4-3*k[1]^2-4*k[1]*s[1])^(1/2)-(1/2)*k[2]-l[2]+(1/2)*(4*k[2]^4-3*k[2]^2-4*k[2]*s[2])^(1/2))^2*(k[1]+k[2])*exp((-(1/2)*k[1]-l[1]+(1/2)*(4*k[1]^4-3*k[1]^2-4*k[1]*s[1])^(1/2))*t+k[1]*x+l[1]*y+s[1]*z+k[2]*x+l[2]*y+s[2]*z+(-(1/2)*k[2]-l[2]+(1/2)*(4*k[2]^4-3*k[2]^2-4*k[2]*s[2])^(1/2))*t)-(-(1/2)*k[1]-l[1]+(1/2)*(4*k[1]^4-3*k[1]^2-4*k[1]*s[1])^(1/2))*k[1]^2*exp((-(1/2)*k[1]-l[1]+(1/2)*(4*k[1]^4-3*k[1]^2-4*k[1]*s[1])^(1/2))*t+k[1]*x+l[1]*y+s[1]*z)-(-(1/2)*k[2]-l[2]+(1/2)*(4*k[2]^4-3*k[2]^2-4*k[2]*s[2])^(1/2))*k[2]^2*exp(k[2]*x+l[2]*y+s[2]*z+(-(1/2)*k[2]-l[2]+(1/2)*(4*k[2]^4-3*k[2]^2-4*k[2]*s[2])^(1/2))*t)-B[1]*(-(1/2)*k[1]-l[1]+(1/2)*(4*k[1]^4-3*k[1]^2-4*k[1]*s[1])^(1/2)-(1/2)*k[2]-l[2]+(1/2)*(4*k[2]^4-3*k[2]^2-4*k[2]*s[2])^(1/2))*(k[1]+k[2])^2*exp((-(1/2)*k[1]-l[1]+(1/2)*(4*k[1]^4-3*k[1]^2-4*k[1]*s[1])^(1/2))*t+k[1]*x+l[1]*y+s[1]*z+k[2]*x+l[2]*y+s[2]*z+(-(1/2)*k[2]-l[2]+(1/2)*(4*k[2]^4-3*k[2]^2-4*k[2]*s[2])^(1/2))*t)-2*(-(1/2)*k[1]-l[1]+(1/2)*(4*k[1]^4-3*k[1]^2-4*k[1]*s[1])^(1/2))*k[1]*l[1]*exp((-(1/2)*k[1]-l[1]+(1/2)*(4*k[1]^4-3*k[1]^2-4*k[1]*s[1])^(1/2))*t+k[1]*x+l[1]*y+s[1]*z)-2*(-(1/2)*k[2]-l[2]+(1/2)*(4*k[2]^4-3*k[2]^2-4*k[2]*s[2])^(1/2))*k[2]*l[2]*exp(k[2]*x+l[2]*y+s[2]*z+(-(1/2)*k[2]-l[2]+(1/2)*(4*k[2]^4-3*k[2]^2-4*k[2]*s[2])^(1/2))*t)-2*B[1]*(-(1/2)*k[1]-l[1]+(1/2)*(4*k[1]^4-3*k[1]^2-4*k[1]*s[1])^(1/2)-(1/2)*k[2]-l[2]+(1/2)*(4*k[2]^4-3*k[2]^2-4*k[2]*s[2])^(1/2))*(k[1]+k[2])*(l[1]+l[2])*exp((-(1/2)*k[1]-l[1]+(1/2)*(4*k[1]^4-3*k[1]^2-4*k[1]*s[1])^(1/2))*t+k[1]*x+l[1]*y+s[1]*z+k[2]*x+l[2]*y+s[2]*z+(-(1/2)*k[2]-l[2]+(1/2)*(4*k[2]^4-3*k[2]^2-4*k[2]*s[2])^(1/2))*t)-k[1]^2*l[1]*exp((-(1/2)*k[1]-l[1]+(1/2)*(4*k[1]^4-3*k[1]^2-4*k[1]*s[1])^(1/2))*t+k[1]*x+l[1]*y+s[1]*z)-k[2]^2*l[2]*exp(k[2]*x+l[2]*y+s[2]*z+(-(1/2)*k[2]-l[2]+(1/2)*(4*k[2]^4-3*k[2]^2-4*k[2]*s[2])^(1/2))*t)-B[1]*(k[1]+k[2])^2*(l[1]+l[2])*exp((-(1/2)*k[1]-l[1]+(1/2)*(4*k[1]^4-3*k[1]^2-4*k[1]*s[1])^(1/2))*t+k[1]*x+l[1]*y+s[1]*z+k[2]*x+l[2]*y+s[2]*z+(-(1/2)*k[2]-l[2]+(1/2)*(4*k[2]^4-3*k[2]^2-4*k[2]*s[2])^(1/2))*t)-k[1]^2*s[1]*exp((-(1/2)*k[1]-l[1]+(1/2)*(4*k[1]^4-3*k[1]^2-4*k[1]*s[1])^(1/2))*t+k[1]*x+l[1]*y+s[1]*z)-k[2]^2*s[2]*exp(k[2]*x+l[2]*y+s[2]*z+(-(1/2)*k[2]-l[2]+(1/2)*(4*k[2]^4-3*k[2]^2-4*k[2]*s[2])^(1/2))*t)-B[1]*(k[1]+k[2])^2*(s[1]+s[2])*exp((-(1/2)*k[1]-l[1]+(1/2)*(4*k[1]^4-3*k[1]^2-4*k[1]*s[1])^(1/2))*t+k[1]*x+l[1]*y+s[1]*z+k[2]*x+l[2]*y+s[2]*z+(-(1/2)*k[2]-l[2]+(1/2)*(4*k[2]^4-3*k[2]^2-4*k[2]*s[2])^(1/2))*t)-k[1]*l[1]^2*exp((-(1/2)*k[1]-l[1]+(1/2)*(4*k[1]^4-3*k[1]^2-4*k[1]*s[1])^(1/2))*t+k[1]*x+l[1]*y+s[1]*z)-k[2]*l[2]^2*exp(k[2]*x+l[2]*y+s[2]*z+(-(1/2)*k[2]-l[2]+(1/2)*(4*k[2]^4-3*k[2]^2-4*k[2]*s[2])^(1/2))*t)-B[1]*(k[1]+k[2])*(l[1]+l[2])^2*exp((-(1/2)*k[1]-l[1]+(1/2)*(4*k[1]^4-3*k[1]^2-4*k[1]*s[1])^(1/2))*t+k[1]*x+l[1]*y+s[1]*z+k[2]*x+l[2]*y+s[2]*z+(-(1/2)*k[2]-l[2]+(1/2)*(4*k[2]^4-3*k[2]^2-4*k[2]*s[2])^(1/2))*t) = 0

(9)

indets(%)

{t, x, y, z, B[1], k[1], k[2], l[1], l[2], s[1], s[2], (4*k[1]^4-3*k[1]^2-4*k[1]*s[1])^(1/2), (4*k[2]^4-3*k[2]^2-4*k[2]*s[2])^(1/2), exp(k[2]*x+l[2]*y+s[2]*z+(-(1/2)*k[2]-l[2]+(1/2)*(4*k[2]^4-3*k[2]^2-4*k[2]*s[2])^(1/2))*t), exp((-(1/2)*k[1]-l[1]+(1/2)*(4*k[1]^4-3*k[1]^2-4*k[1]*s[1])^(1/2))*t+k[1]*x+l[1]*y+s[1]*z), exp((-(1/2)*k[1]-l[1]+(1/2)*(4*k[1]^4-3*k[1]^2-4*k[1]*s[1])^(1/2))*t+k[1]*x+l[1]*y+s[1]*z+k[2]*x+l[2]*y+s[2]*z+(-(1/2)*k[2]-l[2]+(1/2)*(4*k[2]^4-3*k[2]^2-4*k[2]*s[2])^(1/2))*t)}

(10)

eq2 := algsubs(exp((-(1/2)*k[1]-l[1]+(1/2)*sqrt(4*k[1]^4-3*k[1]^2-4*k[1]*s[1]))*t+k[1]*x+l[1]*y+s[1]*z) = X, L4)

-(1/4)*B[1]*exp((-(1/2)*k[1]-l[1]+(1/2)*(4*k[1]^4-3*k[1]^2-4*k[1]*s[1])^(1/2))*t+k[1]*x+l[1]*y+s[1]*z+k[2]*x+l[2]*y+s[2]*z+(-(1/2)*k[2]-l[2]+(1/2)*(4*k[2]^4-3*k[2]^2-4*k[2]*s[2])^(1/2))*t)*(4*k[2]^4-3*k[2]^2-4*k[2]*s[2])*k[2]-exp((-(1/2)*k[1]-l[1]+(1/2)*(4*k[1]^4-3*k[1]^2-4*k[1]*s[1])^(1/2))*t+k[1]*x+l[1]*y+s[1]*z+k[2]*x+l[2]*y+s[2]*z+(-(1/2)*k[2]-l[2]+(1/2)*(4*k[2]^4-3*k[2]^2-4*k[2]*s[2])^(1/2))*t)*B[1]*k[2]^2*s[1]-exp((-(1/2)*k[1]-l[1]+(1/2)*(4*k[1]^4-3*k[1]^2-4*k[1]*s[1])^(1/2))*t+k[1]*x+l[1]*y+s[1]*z+k[2]*x+l[2]*y+s[2]*z+(-(1/2)*k[2]-l[2]+(1/2)*(4*k[2]^4-3*k[2]^2-4*k[2]*s[2])^(1/2))*t)*B[1]*k[2]^2*s[2]+5*exp((-(1/2)*k[1]-l[1]+(1/2)*(4*k[1]^4-3*k[1]^2-4*k[1]*s[1])^(1/2))*t+k[1]*x+l[1]*y+s[1]*z+k[2]*x+l[2]*y+s[2]*z+(-(1/2)*k[2]-l[2]+(1/2)*(4*k[2]^4-3*k[2]^2-4*k[2]*s[2])^(1/2))*t)*B[1]*k[1]^4*k[2]+10*exp((-(1/2)*k[1]-l[1]+(1/2)*(4*k[1]^4-3*k[1]^2-4*k[1]*s[1])^(1/2))*t+k[1]*x+l[1]*y+s[1]*z+k[2]*x+l[2]*y+s[2]*z+(-(1/2)*k[2]-l[2]+(1/2)*(4*k[2]^4-3*k[2]^2-4*k[2]*s[2])^(1/2))*t)*B[1]*k[1]^3*k[2]^2+10*exp((-(1/2)*k[1]-l[1]+(1/2)*(4*k[1]^4-3*k[1]^2-4*k[1]*s[1])^(1/2))*t+k[1]*x+l[1]*y+s[1]*z+k[2]*x+l[2]*y+s[2]*z+(-(1/2)*k[2]-l[2]+(1/2)*(4*k[2]^4-3*k[2]^2-4*k[2]*s[2])^(1/2))*t)*B[1]*k[1]^2*k[2]^3+5*exp((-(1/2)*k[1]-l[1]+(1/2)*(4*k[1]^4-3*k[1]^2-4*k[1]*s[1])^(1/2))*t+k[1]*x+l[1]*y+s[1]*z+k[2]*x+l[2]*y+s[2]*z+(-(1/2)*k[2]-l[2]+(1/2)*(4*k[2]^4-3*k[2]^2-4*k[2]*s[2])^(1/2))*t)*B[1]*k[1]*k[2]^4-exp((-(1/2)*k[1]-l[1]+(1/2)*(4*k[1]^4-3*k[1]^2-4*k[1]*s[1])^(1/2))*t+k[1]*x+l[1]*y+s[1]*z+k[2]*x+l[2]*y+s[2]*z+(-(1/2)*k[2]-l[2]+(1/2)*(4*k[2]^4-3*k[2]^2-4*k[2]*s[2])^(1/2))*t)*B[1]*k[1]^2*s[1]-exp((-(1/2)*k[1]-l[1]+(1/2)*(4*k[1]^4-3*k[1]^2-4*k[1]*s[1])^(1/2))*t+k[1]*x+l[1]*y+s[1]*z+k[2]*x+l[2]*y+s[2]*z+(-(1/2)*k[2]-l[2]+(1/2)*(4*k[2]^4-3*k[2]^2-4*k[2]*s[2])^(1/2))*t)*B[1]*k[1]^2*s[2]-(9/4)*B[1]*exp((-(1/2)*k[1]-l[1]+(1/2)*(4*k[1]^4-3*k[1]^2-4*k[1]*s[1])^(1/2))*t+k[1]*x+l[1]*y+s[1]*z+k[2]*x+l[2]*y+s[2]*z+(-(1/2)*k[2]-l[2]+(1/2)*(4*k[2]^4-3*k[2]^2-4*k[2]*s[2])^(1/2))*t)*k[2]^2*k[1]-(9/4)*B[1]*exp((-(1/2)*k[1]-l[1]+(1/2)*(4*k[1]^4-3*k[1]^2-4*k[1]*s[1])^(1/2))*t+k[1]*x+l[1]*y+s[1]*z+k[2]*x+l[2]*y+s[2]*z+(-(1/2)*k[2]-l[2]+(1/2)*(4*k[2]^4-3*k[2]^2-4*k[2]*s[2])^(1/2))*t)*k[1]^2*k[2]-(1/4)*B[1]*exp((-(1/2)*k[1]-l[1]+(1/2)*(4*k[1]^4-3*k[1]^2-4*k[1]*s[1])^(1/2))*t+k[1]*x+l[1]*y+s[1]*z+k[2]*x+l[2]*y+s[2]*z+(-(1/2)*k[2]-l[2]+(1/2)*(4*k[2]^4-3*k[2]^2-4*k[2]*s[2])^(1/2))*t)*(4*k[1]^4-3*k[1]^2-4*k[1]*s[1])*k[1]-(1/4)*B[1]*exp((-(1/2)*k[1]-l[1]+(1/2)*(4*k[1]^4-3*k[1]^2-4*k[1]*s[1])^(1/2))*t+k[1]*x+l[1]*y+s[1]*z+k[2]*x+l[2]*y+s[2]*z+(-(1/2)*k[2]-l[2]+(1/2)*(4*k[2]^4-3*k[2]^2-4*k[2]*s[2])^(1/2))*t)*(4*k[1]^4-3*k[1]^2-4*k[1]*s[1])*k[2]-(1/4)*B[1]*exp((-(1/2)*k[1]-l[1]+(1/2)*(4*k[1]^4-3*k[1]^2-4*k[1]*s[1])^(1/2))*t+k[1]*x+l[1]*y+s[1]*z+k[2]*x+l[2]*y+s[2]*z+(-(1/2)*k[2]-l[2]+(1/2)*(4*k[2]^4-3*k[2]^2-4*k[2]*s[2])^(1/2))*t)*(4*k[2]^4-3*k[2]^2-4*k[2]*s[2])*k[1]+exp((-(1/2)*k[1]-l[1]+(1/2)*(4*k[1]^4-3*k[1]^2-4*k[1]*s[1])^(1/2))*t+k[1]*x+l[1]*y+s[1]*z+k[2]*x+l[2]*y+s[2]*z+(-(1/2)*k[2]-l[2]+(1/2)*(4*k[2]^4-3*k[2]^2-4*k[2]*s[2])^(1/2))*t)*B[1]*k[1]^5+exp((-(1/2)*k[1]-l[1]+(1/2)*(4*k[1]^4-3*k[1]^2-4*k[1]*s[1])^(1/2))*t+k[1]*x+l[1]*y+s[1]*z+k[2]*x+l[2]*y+s[2]*z+(-(1/2)*k[2]-l[2]+(1/2)*(4*k[2]^4-3*k[2]^2-4*k[2]*s[2])^(1/2))*t)*B[1]*k[2]^5-(3/4)*B[1]*exp((-(1/2)*k[1]-l[1]+(1/2)*(4*k[1]^4-3*k[1]^2-4*k[1]*s[1])^(1/2))*t+k[1]*x+l[1]*y+s[1]*z+k[2]*x+l[2]*y+s[2]*z+(-(1/2)*k[2]-l[2]+(1/2)*(4*k[2]^4-3*k[2]^2-4*k[2]*s[2])^(1/2))*t)*k[1]^3-(3/4)*B[1]*exp((-(1/2)*k[1]-l[1]+(1/2)*(4*k[1]^4-3*k[1]^2-4*k[1]*s[1])^(1/2))*t+k[1]*x+l[1]*y+s[1]*z+k[2]*x+l[2]*y+s[2]*z+(-(1/2)*k[2]-l[2]+(1/2)*(4*k[2]^4-3*k[2]^2-4*k[2]*s[2])^(1/2))*t)*k[2]^3-(1/4)*k[1]*X*(4*k[1]^4-3*k[1]^2-4*k[1]*s[1])-(1/4)*k[2]*exp(k[2]*x+l[2]*y+s[2]*z+(-(1/2)*k[2]-l[2]+(1/2)*(4*k[2]^4-3*k[2]^2-4*k[2]*s[2])^(1/2))*t)*(4*k[2]^4-3*k[2]^2-4*k[2]*s[2])-k[1]^2*s[1]*X-(3/4)*k[2]^3*exp(k[2]*x+l[2]*y+s[2]*z+(-(1/2)*k[2]-l[2]+(1/2)*(4*k[2]^4-3*k[2]^2-4*k[2]*s[2])^(1/2))*t)+k[2]^5*exp(k[2]*x+l[2]*y+s[2]*z+(-(1/2)*k[2]-l[2]+(1/2)*(4*k[2]^4-3*k[2]^2-4*k[2]*s[2])^(1/2))*t)-k[2]^2*s[2]*exp(k[2]*x+l[2]*y+s[2]*z+(-(1/2)*k[2]-l[2]+(1/2)*(4*k[2]^4-3*k[2]^2-4*k[2]*s[2])^(1/2))*t)+k[1]^5*X-(3/4)*k[1]^3*X-2*exp((-(1/2)*k[1]-l[1]+(1/2)*(4*k[1]^4-3*k[1]^2-4*k[1]*s[1])^(1/2))*t+k[1]*x+l[1]*y+s[1]*z+k[2]*x+l[2]*y+s[2]*z+(-(1/2)*k[2]-l[2]+(1/2)*(4*k[2]^4-3*k[2]^2-4*k[2]*s[2])^(1/2))*t)*B[1]*k[1]*k[2]*s[1]-2*exp((-(1/2)*k[1]-l[1]+(1/2)*(4*k[1]^4-3*k[1]^2-4*k[1]*s[1])^(1/2))*t+k[1]*x+l[1]*y+s[1]*z+k[2]*x+l[2]*y+s[2]*z+(-(1/2)*k[2]-l[2]+(1/2)*(4*k[2]^4-3*k[2]^2-4*k[2]*s[2])^(1/2))*t)*B[1]*k[1]*k[2]*s[2]-(1/2)*B[1]*exp((-(1/2)*k[1]-l[1]+(1/2)*(4*k[1]^4-3*k[1]^2-4*k[1]*s[1])^(1/2))*t+k[1]*x+l[1]*y+s[1]*z+k[2]*x+l[2]*y+s[2]*z+(-(1/2)*k[2]-l[2]+(1/2)*(4*k[2]^4-3*k[2]^2-4*k[2]*s[2])^(1/2))*t)*(4*k[1]^4-3*k[1]^2-4*k[1]*s[1])^(1/2)*(4*k[2]^4-3*k[2]^2-4*k[2]*s[2])^(1/2)*k[1]-(1/2)*B[1]*exp((-(1/2)*k[1]-l[1]+(1/2)*(4*k[1]^4-3*k[1]^2-4*k[1]*s[1])^(1/2))*t+k[1]*x+l[1]*y+s[1]*z+k[2]*x+l[2]*y+s[2]*z+(-(1/2)*k[2]-l[2]+(1/2)*(4*k[2]^4-3*k[2]^2-4*k[2]*s[2])^(1/2))*t)*(4*k[1]^4-3*k[1]^2-4*k[1]*s[1])^(1/2)*(4*k[2]^4-3*k[2]^2-4*k[2]*s[2])^(1/2)*k[2] = 0

(11)

eq3 := simplify(eq2)

-(1/2)*(k[1]+k[2])*B[1]*((k[1]*(4*k[1]^3-3*k[1]-4*s[1]))^(1/2)*(k[2]*(4*k[2]^3-3*k[2]-4*s[2]))^(1/2)-8*k[1]*k[2]^3-12*k[2]^2*k[1]^2+(-8*k[1]^3+3*k[1]+2*s[1])*k[2]+2*s[2]*k[1])*exp((1/2)*t*(k[1]*(4*k[1]^3-3*k[1]-4*s[1]))^(1/2)+(1/2)*t*(k[2]*(4*k[2]^3-3*k[2]-4*s[2]))^(1/2)+(1/2)*(-k[1]-k[2]-2*l[1]-2*l[2])*t+k[1]*x+k[2]*x+l[1]*y+l[2]*y+z*(s[1]+s[2])) = 0

(12)

indets(eq3)

{t, x, y, z, B[1], k[1], k[2], l[1], l[2], s[1], s[2], (k[1]*(4*k[1]^3-3*k[1]-4*s[1]))^(1/2), (k[2]*(4*k[2]^3-3*k[2]-4*s[2]))^(1/2), exp((1/2)*t*(k[1]*(4*k[1]^3-3*k[1]-4*s[1]))^(1/2)+(1/2)*t*(k[2]*(4*k[2]^3-3*k[2]-4*s[2]))^(1/2)+(1/2)*(-k[1]-k[2]-2*l[1]-2*l[2])*t+k[1]*x+k[2]*x+l[1]*y+l[2]*y+z*(s[1]+s[2]))}

(13)

eq4 := algsubs(exp((1/2)*t*sqrt(k[1]*(4*k[1]^3-3*k[1]-4*s[1]))+(1/2)*t*sqrt(k[2]*(4*k[2]^3-3*k[2]-4*s[2]))+(1/2)*(-k[1]-k[2]-2*l[1]-2*l[2])*t+k[1]*x+k[2]*x+l[1]*y+l[2]*y+z*(s[1]+s[2])) = V, eq3)

-(1/2)*(k[1]+k[2])*B[1]*(-8*k[2]*k[1]^3-12*k[2]^2*k[1]^2-8*k[1]*k[2]^3+(k[1]*(4*k[1]^3-3*k[1]-4*s[1]))^(1/2)*(k[2]*(4*k[2]^3-3*k[2]-4*s[2]))^(1/2)+3*k[1]*k[2]+2*s[2]*k[1]+2*s[1]*k[2])*V = 0

(14)

indets(eq4)

{V, B[1], k[1], k[2], s[1], s[2], (k[1]*(4*k[1]^3-3*k[1]-4*s[1]))^(1/2), (k[2]*(4*k[2]^3-3*k[2]-4*s[2]))^(1/2)}

(15)

eqs := {coeffs(collect(numer(normal(lhs(eq4))), {V}, 'distributed'), {V})}; nops(%); indets(eqs)

{-(k[1]+k[2])*B[1]*(-8*k[2]*k[1]^3-12*k[2]^2*k[1]^2-8*k[1]*k[2]^3+(k[1]*(4*k[1]^3-3*k[1]-4*s[1]))^(1/2)*(k[2]*(4*k[2]^3-3*k[2]-4*s[2]))^(1/2)+3*k[1]*k[2]+2*s[2]*k[1]+2*s[1]*k[2])}

 

1

 

{B[1], k[1], k[2], s[1], s[2], (k[1]*(4*k[1]^3-3*k[1]-4*s[1]))^(1/2), (k[2]*(4*k[2]^3-3*k[2]-4*s[2]))^(1/2)}

(16)

vars := indets(eqs); ans := solve(eqs, vars)

{B[1], k[1], k[2], s[1], s[2], (k[1]*(4*k[1]^3-3*k[1]-4*s[1]))^(1/2), (k[2]*(4*k[2]^3-3*k[2]-4*s[2]))^(1/2)}

 

Warning, solving for expressions other than names or functions is not recommended.

 

{B[1] = B[1], k[1] = -k[2], k[2] = k[2], s[1] = s[1], s[2] = s[2], (k[1]*(4*k[1]^3-3*k[1]-4*s[1]))^(1/2) = (k[1]*(4*k[1]^3-3*k[1]-4*s[1]))^(1/2), (k[2]*(4*k[2]^3-3*k[2]-4*s[2]))^(1/2) = (k[2]*(4*k[2]^3-3*k[2]-4*s[2]))^(1/2)}, {B[1] = 0, k[1] = k[1], k[2] = k[2], s[1] = s[1], s[2] = s[2], (k[1]*(4*k[1]^3-3*k[1]-4*s[1]))^(1/2) = (k[1]*(4*k[1]^3-3*k[1]-4*s[1]))^(1/2), (k[2]*(4*k[2]^3-3*k[2]-4*s[2]))^(1/2) = (k[2]*(4*k[2]^3-3*k[2]-4*s[2]))^(1/2)}, {B[1] = B[1], k[1] = k[1], k[2] = k[2], s[1] = (1/2)*(8*k[2]*k[1]^3+12*k[2]^2*k[1]^2+8*k[1]*k[2]^3-3*k[1]*k[2]-2*s[2]*k[1]-(k[1]*(4*k[1]^3-3*k[1]-4*s[1]))^(1/2)*(k[2]*(4*k[2]^3-3*k[2]-4*s[2]))^(1/2))/k[2], s[2] = s[2], (k[1]*(4*k[1]^3-3*k[1]-4*s[1]))^(1/2) = (k[1]*(4*k[1]^3-3*k[1]-4*s[1]))^(1/2), (k[2]*(4*k[2]^3-3*k[2]-4*s[2]))^(1/2) = (k[2]*(4*k[2]^3-3*k[2]-4*s[2]))^(1/2)}

(17)

case2 := ans[1]

{B[1] = B[1], k[1] = -k[2], k[2] = k[2], s[1] = s[1], s[2] = s[2], (k[1]*(4*k[1]^3-3*k[1]-4*s[1]))^(1/2) = (k[1]*(4*k[1]^3-3*k[1]-4*s[1]))^(1/2), (k[2]*(4*k[2]^3-3*k[2]-4*s[2]))^(1/2) = (k[2]*(4*k[2]^3-3*k[2]-4*s[2]))^(1/2)}

(18)

FF := subs(case2, S22)

NULL

F11 := eval(Q, FF)

pdetest(F11, pde)

-6*k[2]^2*exp(t*l[1]+t*l[2]+2*k[2]*x+l[1]*y+l[2]*y+s[1]*z+s[2]*z+(1/2)*t*(k[2]*(4*k[2]^3-3*k[2]+4*s[1]))^(1/2)+(1/2)*t*(k[2]*(4*k[2]^3-3*k[2]-4*s[2]))^(1/2))*(B[1]*exp(-(1/2)*t*k[2]+2*t*l[1]+t*l[2]+3*k[2]*x+l[2]*y+s[2]*z+(1/2)*t*(k[2]*(4*k[2]^3-3*k[2]-4*s[2]))^(1/2))*(k[2]*(4*k[2]^3-3*k[2]+4*s[1]))^(1/2)*(k[2]*(4*k[2]^3-3*k[2]-4*s[2]))^(1/2)+56*k[2]^4*exp(-t*k[2]+2*t*l[1]+4*k[2]*x+2*l[2]*y+2*s[2]*z+t*(k[2]*(4*k[2]^3-3*k[2]-4*s[2]))^(1/2))-6*k[2]^2*exp(-t*k[2]+2*t*l[1]+4*k[2]*x+2*l[2]*y+2*s[2]*z+t*(k[2]*(4*k[2]^3-3*k[2]-4*s[2]))^(1/2))-exp(-(1/2)*t*k[2]+2*t*l[1]+t*l[2]+3*k[2]*x+l[2]*y+s[2]*z+(1/2)*t*(k[2]*(4*k[2]^3-3*k[2]-4*s[2]))^(1/2))*(k[2]*(4*k[2]^3-3*k[2]+4*s[1]))^(1/2)*(k[2]*(4*k[2]^3-3*k[2]-4*s[2]))^(1/2)+B[1]*exp((1/2)*t*k[2]+t*l[1]+2*t*l[2]+k[2]*x+l[1]*y+s[1]*z+(1/2)*t*(k[2]*(4*k[2]^3-3*k[2]+4*s[1]))^(1/2))*(k[2]*(4*k[2]^3-3*k[2]+4*s[1]))^(1/2)*(k[2]*(4*k[2]^3-3*k[2]-4*s[2]))^(1/2)-exp((1/2)*t*k[2]+t*l[1]+2*t*l[2]+k[2]*x+l[1]*y+s[1]*z+(1/2)*t*(k[2]*(4*k[2]^3-3*k[2]+4*s[1]))^(1/2))*(k[2]*(4*k[2]^3-3*k[2]+4*s[1]))^(1/2)*(k[2]*(4*k[2]^3-3*k[2]-4*s[2]))^(1/2)-24*B[1]*k[2]^2*exp(t*l[1]+t*l[2]+2*k[2]*x+l[1]*y+l[2]*y+s[1]*z+s[2]*z+(1/2)*t*(k[2]*(4*k[2]^3-3*k[2]+4*s[1]))^(1/2)+(1/2)*t*(k[2]*(4*k[2]^3-3*k[2]-4*s[2]))^(1/2))+2*exp(-t*k[2]+2*t*l[1]+4*k[2]*x+2*l[2]*y+2*s[2]*z+t*(k[2]*(4*k[2]^3-3*k[2]-4*s[2]))^(1/2))*(k[2]*(4*k[2]^3-3*k[2]+4*s[1]))^(1/2)*(k[2]*(4*k[2]^3-3*k[2]-4*s[2]))^(1/2)+4*k[2]*s[1]*exp(-t*k[2]+2*t*l[1]+4*k[2]*x+2*l[2]*y+2*s[2]*z+t*(k[2]*(4*k[2]^3-3*k[2]-4*s[2]))^(1/2))-4*k[2]*s[2]*exp(-t*k[2]+2*t*l[1]+4*k[2]*x+2*l[2]*y+2*s[2]*z+t*(k[2]*(4*k[2]^3-3*k[2]-4*s[2]))^(1/2))+2*k[2]*s[2]*exp(-(1/2)*t*k[2]+2*t*l[1]+t*l[2]+3*k[2]*x+l[2]*y+s[2]*z+(1/2)*t*(k[2]*(4*k[2]^3-3*k[2]-4*s[2]))^(1/2))-2*k[2]*s[1]*exp(-(1/2)*t*k[2]+2*t*l[1]+t*l[2]+3*k[2]*x+l[2]*y+s[2]*z+(1/2)*t*(k[2]*(4*k[2]^3-3*k[2]-4*s[2]))^(1/2))-224*k[2]^4*exp(t*l[1]+t*l[2]+2*k[2]*x+l[1]*y+l[2]*y+s[1]*z+s[2]*z+(1/2)*t*(k[2]*(4*k[2]^3-3*k[2]+4*s[1]))^(1/2)+(1/2)*t*(k[2]*(4*k[2]^3-3*k[2]-4*s[2]))^(1/2))-4*k[2]*s[2]*exp(t*k[2]+2*t*l[2]+2*l[1]*y+2*s[1]*z+t*(k[2]*(4*k[2]^3-3*k[2]+4*s[1]))^(1/2))+4*k[2]*s[1]*exp(t*k[2]+2*t*l[2]+2*l[1]*y+2*s[1]*z+t*(k[2]*(4*k[2]^3-3*k[2]+4*s[1]))^(1/2))+2*exp(t*k[2]+2*t*l[2]+2*l[1]*y+2*s[1]*z+t*(k[2]*(4*k[2]^3-3*k[2]+4*s[1]))^(1/2))*(k[2]*(4*k[2]^3-3*k[2]+4*s[1]))^(1/2)*(k[2]*(4*k[2]^3-3*k[2]-4*s[2]))^(1/2)+6*B[1]*k[2]^2*exp(-t*k[2]+2*t*l[1]+4*k[2]*x+2*l[2]*y+2*s[2]*z+t*(k[2]*(4*k[2]^3-3*k[2]-4*s[2]))^(1/2))-8*B[1]*k[2]^4*exp(-t*k[2]+2*t*l[1]+4*k[2]*x+2*l[2]*y+2*s[2]*z+t*(k[2]*(4*k[2]^3-3*k[2]-4*s[2]))^(1/2))+3*B[1]*k[2]^2*exp(t*l[1]+3*k[2]*x+l[1]*y+2*l[2]*y+s[1]*z+2*s[2]*z-(1/2)*t*k[2]+t*(k[2]*(4*k[2]^3-3*k[2]-4*s[2]))^(1/2)+(1/2)*t*(k[2]*(4*k[2]^3-3*k[2]+4*s[1]))^(1/2))-28*B[1]*k[2]^4*exp(t*l[2]+k[2]*x+2*l[1]*y+l[2]*y+2*s[1]*z+s[2]*z+(1/2)*t*k[2]+t*(k[2]*(4*k[2]^3-3*k[2]+4*s[1]))^(1/2)+(1/2)*t*(k[2]*(4*k[2]^3-3*k[2]-4*s[2]))^(1/2))-28*B[1]*k[2]^4*exp(t*l[1]+3*k[2]*x+l[1]*y+2*l[2]*y+s[1]*z+2*s[2]*z-(1/2)*t*k[2]+t*(k[2]*(4*k[2]^3-3*k[2]-4*s[2]))^(1/2)+(1/2)*t*(k[2]*(4*k[2]^3-3*k[2]+4*s[1]))^(1/2))+24*k[2]^2*exp(t*l[1]+t*l[2]+2*k[2]*x+l[1]*y+l[2]*y+s[1]*z+s[2]*z+(1/2)*t*(k[2]*(4*k[2]^3-3*k[2]+4*s[1]))^(1/2)+(1/2)*t*(k[2]*(4*k[2]^3-3*k[2]-4*s[2]))^(1/2))+16*B[1]*k[2]*s[1]*exp(t*l[1]+t*l[2]+2*k[2]*x+l[1]*y+l[2]*y+s[1]*z+s[2]*z+(1/2)*t*(k[2]*(4*k[2]^3-3*k[2]+4*s[1]))^(1/2)+(1/2)*t*(k[2]*(4*k[2]^3-3*k[2]-4*s[2]))^(1/2))-16*B[1]*k[2]*s[2]*exp(t*l[1]+t*l[2]+2*k[2]*x+l[1]*y+l[2]*y+s[1]*z+s[2]*z+(1/2)*t*(k[2]*(4*k[2]^3-3*k[2]+4*s[1]))^(1/2)+(1/2)*t*(k[2]*(4*k[2]^3-3*k[2]-4*s[2]))^(1/2))+8*B[1]*exp(t*l[1]+t*l[2]+2*k[2]*x+l[1]*y+l[2]*y+s[1]*z+s[2]*z+(1/2)*t*(k[2]*(4*k[2]^3-3*k[2]+4*s[1]))^(1/2)+(1/2)*t*(k[2]*(4*k[2]^3-3*k[2]-4*s[2]))^(1/2))*(k[2]*(4*k[2]^3-3*k[2]+4*s[1]))^(1/2)*(k[2]*(4*k[2]^3-3*k[2]-4*s[2]))^(1/2)-4*B[1]*k[2]*s[1]*exp(-t*k[2]+2*t*l[1]+4*k[2]*x+2*l[2]*y+2*s[2]*z+t*(k[2]*(4*k[2]^3-3*k[2]-4*s[2]))^(1/2))+4*B[1]*k[2]*s[2]*exp(-t*k[2]+2*t*l[1]+4*k[2]*x+2*l[2]*y+2*s[2]*z+t*(k[2]*(4*k[2]^3-3*k[2]-4*s[2]))^(1/2))-2*B[1]*exp(-t*k[2]+2*t*l[1]+4*k[2]*x+2*l[2]*y+2*s[2]*z+t*(k[2]*(4*k[2]^3-3*k[2]-4*s[2]))^(1/2))*(k[2]*(4*k[2]^3-3*k[2]+4*s[1]))^(1/2)*(k[2]*(4*k[2]^3-3*k[2]-4*s[2]))^(1/2)-2*B[1]*k[2]*s[1]*exp(t*l[2]+k[2]*x+2*l[1]*y+l[2]*y+2*s[1]*z+s[2]*z+(1/2)*t*k[2]+t*(k[2]*(4*k[2]^3-3*k[2]+4*s[1]))^(1/2)+(1/2)*t*(k[2]*(4*k[2]^3-3*k[2]-4*s[2]))^(1/2))+2*B[1]*k[2]*s[2]*exp(t*l[2]+k[2]*x+2*l[1]*y+l[2]*y+2*s[1]*z+s[2]*z+(1/2)*t*k[2]+t*(k[2]*(4*k[2]^3-3*k[2]+4*s[1]))^(1/2)+(1/2)*t*(k[2]*(4*k[2]^3-3*k[2]-4*s[2]))^(1/2))-2*B[1]*k[2]*s[1]*exp(t*l[1]+3*k[2]*x+l[1]*y+2*l[2]*y+s[1]*z+2*s[2]*z-(1/2)*t*k[2]+t*(k[2]*(4*k[2]^3-3*k[2]-4*s[2]))^(1/2)+(1/2)*t*(k[2]*(4*k[2]^3-3*k[2]+4*s[1]))^(1/2))+2*B[1]*k[2]*s[2]*exp(t*l[1]+3*k[2]*x+l[1]*y+2*l[2]*y+s[1]*z+2*s[2]*z-(1/2)*t*k[2]+t*(k[2]*(4*k[2]^3-3*k[2]-4*s[2]))^(1/2)+(1/2)*t*(k[2]*(4*k[2]^3-3*k[2]+4*s[1]))^(1/2))+2*k[2]*s[1]*B[1]^2*exp(t*l[2]+k[2]*x+2*l[1]*y+l[2]*y+2*s[1]*z+s[2]*z+(1/2)*t*k[2]+t*(k[2]*(4*k[2]^3-3*k[2]+4*s[1]))^(1/2)+(1/2)*t*(k[2]*(4*k[2]^3-3*k[2]-4*s[2]))^(1/2))-2*k[2]*s[2]*B[1]^2*exp(t*l[2]+k[2]*x+2*l[1]*y+l[2]*y+2*s[1]*z+s[2]*z+(1/2)*t*k[2]+t*(k[2]*(4*k[2]^3-3*k[2]+4*s[1]))^(1/2)+(1/2)*t*(k[2]*(4*k[2]^3-3*k[2]-4*s[2]))^(1/2))-2*k[2]*s[2]*B[1]^2*exp(t*l[1]+3*k[2]*x+l[1]*y+2*l[2]*y+s[1]*z+2*s[2]*z-(1/2)*t*k[2]+t*(k[2]*(4*k[2]^3-3*k[2]-4*s[2]))^(1/2)+(1/2)*t*(k[2]*(4*k[2]^3-3*k[2]+4*s[1]))^(1/2))+2*k[2]*s[1]*B[1]^2*exp(t*l[1]+3*k[2]*x+l[1]*y+2*l[2]*y+s[1]*z+2*s[2]*z-(1/2)*t*k[2]+t*(k[2]*(4*k[2]^3-3*k[2]-4*s[2]))^(1/2)+(1/2)*t*(k[2]*(4*k[2]^3-3*k[2]+4*s[1]))^(1/2))-4*B[1]*k[2]*s[1]*exp(t*k[2]+2*t*l[2]+2*l[1]*y+2*s[1]*z+t*(k[2]*(4*k[2]^3-3*k[2]+4*s[1]))^(1/2))+4*B[1]*k[2]*s[2]*exp(t*k[2]+2*t*l[2]+2*l[1]*y+2*s[1]*z+t*(k[2]*(4*k[2]^3-3*k[2]+4*s[1]))^(1/2))-2*B[1]*exp(t*k[2]+2*t*l[2]+2*l[1]*y+2*s[1]*z+t*(k[2]*(4*k[2]^3-3*k[2]+4*s[1]))^(1/2))*(k[2]*(4*k[2]^3-3*k[2]+4*s[1]))^(1/2)*(k[2]*(4*k[2]^3-3*k[2]-4*s[2]))^(1/2)-2*B[1]*k[2]*s[2]*exp((1/2)*t*k[2]+t*l[1]+2*t*l[2]+k[2]*x+l[1]*y+s[1]*z+(1/2)*t*(k[2]*(4*k[2]^3-3*k[2]+4*s[1]))^(1/2))+32*B[1]*k[2]^4*exp(t*l[1]+t*l[2]+2*k[2]*x+l[1]*y+l[2]*y+s[1]*z+s[2]*z+(1/2)*t*(k[2]*(4*k[2]^3-3*k[2]+4*s[1]))^(1/2)+(1/2)*t*(k[2]*(4*k[2]^3-3*k[2]-4*s[2]))^(1/2))+2*k[2]*s[2]*exp((1/2)*t*k[2]+t*l[1]+2*t*l[2]+k[2]*x+l[1]*y+s[1]*z+(1/2)*t*(k[2]*(4*k[2]^3-3*k[2]+4*s[1]))^(1/2))-2*k[2]*s[1]*exp((1/2)*t*k[2]+t*l[1]+2*t*l[2]+k[2]*x+l[1]*y+s[1]*z+(1/2)*t*(k[2]*(4*k[2]^3-3*k[2]+4*s[1]))^(1/2))+2*B[1]*k[2]*s[1]*exp((1/2)*t*k[2]+t*l[1]+2*t*l[2]+k[2]*x+l[1]*y+s[1]*z+(1/2)*t*(k[2]*(4*k[2]^3-3*k[2]+4*s[1]))^(1/2))+3*k[2]^2*exp((1/2)*t*k[2]+t*l[1]+2*t*l[2]+k[2]*x+l[1]*y+s[1]*z+(1/2)*t*(k[2]*(4*k[2]^3-3*k[2]+4*s[1]))^(1/2))+3*k[2]^2*exp(-(1/2)*t*k[2]+2*t*l[1]+t*l[2]+3*k[2]*x+l[2]*y+s[2]*z+(1/2)*t*(k[2]*(4*k[2]^3-3*k[2]-4*s[2]))^(1/2))-28*k[2]^4*exp((1/2)*t*k[2]+t*l[1]+2*t*l[2]+k[2]*x+l[1]*y+s[1]*z+(1/2)*t*(k[2]*(4*k[2]^3-3*k[2]+4*s[1]))^(1/2))-28*k[2]^4*exp(-(1/2)*t*k[2]+2*t*l[1]+t*l[2]+3*k[2]*x+l[2]*y+s[2]*z+(1/2)*t*(k[2]*(4*k[2]^3-3*k[2]-4*s[2]))^(1/2))+3*B[1]*k[2]^2*exp(t*l[2]+k[2]*x+2*l[1]*y+l[2]*y+2*s[1]*z+s[2]*z+(1/2)*t*k[2]+t*(k[2]*(4*k[2]^3-3*k[2]+4*s[1]))^(1/2)+(1/2)*t*(k[2]*(4*k[2]^3-3*k[2]-4*s[2]))^(1/2))-3*B[1]*k[2]^2*exp(-(1/2)*t*k[2]+2*t*l[1]+t*l[2]+3*k[2]*x+l[2]*y+s[2]*z+(1/2)*t*(k[2]*(4*k[2]^3-3*k[2]-4*s[2]))^(1/2))+4*B[1]*k[2]^4*exp((1/2)*t*k[2]+t*l[1]+2*t*l[2]+k[2]*x+l[1]*y+s[1]*z+(1/2)*t*(k[2]*(4*k[2]^3-3*k[2]+4*s[1]))^(1/2))+2*B[1]*k[2]*s[1]*exp(-(1/2)*t*k[2]+2*t*l[1]+t*l[2]+3*k[2]*x+l[2]*y+s[2]*z+(1/2)*t*(k[2]*(4*k[2]^3-3*k[2]-4*s[2]))^(1/2))-2*B[1]*k[2]*s[2]*exp(-(1/2)*t*k[2]+2*t*l[1]+t*l[2]+3*k[2]*x+l[2]*y+s[2]*z+(1/2)*t*(k[2]*(4*k[2]^3-3*k[2]-4*s[2]))^(1/2))+B[1]^2*exp(t*l[1]+3*k[2]*x+l[1]*y+2*l[2]*y+s[1]*z+2*s[2]*z-(1/2)*t*k[2]+t*(k[2]*(4*k[2]^3-3*k[2]-4*s[2]))^(1/2)+(1/2)*t*(k[2]*(4*k[2]^3-3*k[2]+4*s[1]))^(1/2))*(k[2]*(4*k[2]^3-3*k[2]+4*s[1]))^(1/2)*(k[2]*(4*k[2]^3-3*k[2]-4*s[2]))^(1/2)+B[1]^2*exp(t*l[2]+k[2]*x+2*l[1]*y+l[2]*y+2*s[1]*z+s[2]*z+(1/2)*t*k[2]+t*(k[2]*(4*k[2]^3-3*k[2]+4*s[1]))^(1/2)+(1/2)*t*(k[2]*(4*k[2]^3-3*k[2]-4*s[2]))^(1/2))*(k[2]*(4*k[2]^3-3*k[2]+4*s[1]))^(1/2)*(k[2]*(4*k[2]^3-3*k[2]-4*s[2]))^(1/2)-B[1]*exp(t*l[1]+3*k[2]*x+l[1]*y+2*l[2]*y+s[1]*z+2*s[2]*z-(1/2)*t*k[2]+t*(k[2]*(4*k[2]^3-3*k[2]-4*s[2]))^(1/2)+(1/2)*t*(k[2]*(4*k[2]^3-3*k[2]+4*s[1]))^(1/2))*(k[2]*(4*k[2]^3-3*k[2]+4*s[1]))^(1/2)*(k[2]*(4*k[2]^3-3*k[2]-4*s[2]))^(1/2)-B[1]*exp(t*l[2]+k[2]*x+2*l[1]*y+l[2]*y+2*s[1]*z+s[2]*z+(1/2)*t*k[2]+t*(k[2]*(4*k[2]^3-3*k[2]+4*s[1]))^(1/2)+(1/2)*t*(k[2]*(4*k[2]^3-3*k[2]-4*s[2]))^(1/2))*(k[2]*(4*k[2]^3-3*k[2]+4*s[1]))^(1/2)*(k[2]*(4*k[2]^3-3*k[2]-4*s[2]))^(1/2)+4*B[1]*k[2]^4*exp(-(1/2)*t*k[2]+2*t*l[1]+t*l[2]+3*k[2]*x+l[2]*y+s[2]*z+(1/2)*t*(k[2]*(4*k[2]^3-3*k[2]-4*s[2]))^(1/2))+4*B[1]^2*k[2]^4*exp(t*l[1]+3*k[2]*x+l[1]*y+2*l[2]*y+s[1]*z+2*s[2]*z-(1/2)*t*k[2]+t*(k[2]*(4*k[2]^3-3*k[2]-4*s[2]))^(1/2)+(1/2)*t*(k[2]*(4*k[2]^3-3*k[2]+4*s[1]))^(1/2))+16*k[2]*s[2]*exp(t*l[1]+t*l[2]+2*k[2]*x+l[1]*y+l[2]*y+s[1]*z+s[2]*z+(1/2)*t*(k[2]*(4*k[2]^3-3*k[2]+4*s[1]))^(1/2)+(1/2)*t*(k[2]*(4*k[2]^3-3*k[2]-4*s[2]))^(1/2))-16*k[2]*s[1]*exp(t*l[1]+t*l[2]+2*k[2]*x+l[1]*y+l[2]*y+s[1]*z+s[2]*z+(1/2)*t*(k[2]*(4*k[2]^3-3*k[2]+4*s[1]))^(1/2)+(1/2)*t*(k[2]*(4*k[2]^3-3*k[2]-4*s[2]))^(1/2))-8*exp(t*l[1]+t*l[2]+2*k[2]*x+l[1]*y+l[2]*y+s[1]*z+s[2]*z+(1/2)*t*(k[2]*(4*k[2]^3-3*k[2]+4*s[1]))^(1/2)+(1/2)*t*(k[2]*(4*k[2]^3-3*k[2]-4*s[2]))^(1/2))*(k[2]*(4*k[2]^3-3*k[2]+4*s[1]))^(1/2)*(k[2]*(4*k[2]^3-3*k[2]-4*s[2]))^(1/2)-6*k[2]^2*exp(t*k[2]+2*t*l[2]+2*l[1]*y+2*s[1]*z+t*(k[2]*(4*k[2]^3-3*k[2]+4*s[1]))^(1/2))+56*k[2]^4*exp(t*k[2]+2*t*l[2]+2*l[1]*y+2*s[1]*z+t*(k[2]*(4*k[2]^3-3*k[2]+4*s[1]))^(1/2))+6*B[1]*k[2]^2*exp(t*k[2]+2*t*l[2]+2*l[1]*y+2*s[1]*z+t*(k[2]*(4*k[2]^3-3*k[2]+4*s[1]))^(1/2))-8*B[1]*k[2]^4*exp(t*k[2]+2*t*l[2]+2*l[1]*y+2*s[1]*z+t*(k[2]*(4*k[2]^3-3*k[2]+4*s[1]))^(1/2))-3*B[1]*k[2]^2*exp((1/2)*t*k[2]+t*l[1]+2*t*l[2]+k[2]*x+l[1]*y+s[1]*z+(1/2)*t*(k[2]*(4*k[2]^3-3*k[2]+4*s[1]))^(1/2))-3*B[1]^2*k[2]^2*exp(t*l[2]+k[2]*x+2*l[1]*y+l[2]*y+2*s[1]*z+s[2]*z+(1/2)*t*k[2]+t*(k[2]*(4*k[2]^3-3*k[2]+4*s[1]))^(1/2)+(1/2)*t*(k[2]*(4*k[2]^3-3*k[2]-4*s[2]))^(1/2))-3*B[1]^2*k[2]^2*exp(t*l[1]+3*k[2]*x+l[1]*y+2*l[2]*y+s[1]*z+2*s[2]*z-(1/2)*t*k[2]+t*(k[2]*(4*k[2]^3-3*k[2]-4*s[2]))^(1/2)+(1/2)*t*(k[2]*(4*k[2]^3-3*k[2]+4*s[1]))^(1/2))+4*B[1]^2*k[2]^4*exp(t*l[2]+k[2]*x+2*l[1]*y+l[2]*y+2*s[1]*z+s[2]*z+(1/2)*t*k[2]+t*(k[2]*(4*k[2]^3-3*k[2]+4*s[1]))^(1/2)+(1/2)*t*(k[2]*(4*k[2]^3-3*k[2]-4*s[2]))^(1/2)))/(B[1]*exp(k[2]*x+l[1]*y+l[2]*y+s[1]*z+s[2]*z+(1/2)*t*(k[2]*(4*k[2]^3-3*k[2]+4*s[1]))^(1/2)+(1/2)*t*(k[2]*(4*k[2]^3-3*k[2]-4*s[2]))^(1/2))+exp(t*l[1]+2*k[2]*x+l[2]*y+s[2]*z-(1/2)*t*k[2]+(1/2)*t*(k[2]*(4*k[2]^3-3*k[2]-4*s[2]))^(1/2))+exp(t*l[2]+l[1]*y+s[1]*z+(1/2)*t*k[2]+(1/2)*t*(k[2]*(4*k[2]^3-3*k[2]+4*s[1]))^(1/2))+exp(t*l[1]+t*l[2]+x*k[2]))^4

(19)
 

NULL

Download hard_parameters.mw

in a lot of my equation i have such problem and really i don't know how fix this also i try to put : in end and sometime is work and i keep contionues  but sometime not there is any way for solve this problem?

limit.mw

Let us suppose I open Maple, write a worksheet, save it in a folder A and then quit Maple.

Now I run a new session by double clicking on some mw file located in folder B, let us say //B/test_1.mw.
Once opened I do some modifications and decide to save this worksheet into a new file, let us say test_2.mw in the same folder B test_1.mw belongs to (which means I use Save As from the menu bar)

I'm regularly fooled by the fact that the default folder is not B, but the folder A I used in the previous session.

I find this very unpleasant.
Is this a Maple (2015) issue or something related to my operating system (Mac OSX Catalina)?
In case it is a Maple issue which is still present in more recent Maple versions, Would it be possible to set the default backup folder to be the folder to which the active worksheet belongs?

Thanks in advance

It's 2024 and this is still something that doesn't exist? I'd just like to swap the Enter/Shfit+Enter behaviors since I find myself writing a lot of multi-line and custom procs and boy howdy it'd be nice if I could make Maple behave at least the littllest bit like, I dunno, every other product I own and use.

i found solution of PDE but there is some different from my solution and paper solution so there is must be a mistake becuase he solved by maple too he mentioned in the paper i try to figure out but i can't see any mistake from my solution can anyone watch where i did mistake, i change some letter in finding parameter but they are same like p=k&h=A&n=p&w=n

here is paper solution 

parameter-different.mw

I'm calcuating an endomorphism in 2d dimensions. It is contructed out of a tensor contraction, for example, in 6-dimensions, the endomorphism is

K[mu,~nu] = LeviCivita[~alpha,~beta,~gamma,~delta,~upsilon,~nu]*C[alpha,beta,gamma]*C[delta,upsilon,mu]

I appreciate that, in terms of computation, this gets big quickly: it's something like O(exp) in time to sum over repeated indices in each matrix entry. Therefore, I thought, instead of putting the above expression in Define, I could make a matrix with unsummed entries, and then do the sums in parallel using Threads[Map](SumOverRepeatedIndices,...) but looking at my CPU usage and comparing execution times, it doesn't appear that this is working.

Is there any way I can more efficiently calculate these matrix entries?

This isn't the first time that I've seen a question that doesn't seem to have received a comment or answer, but which, when I click on the question title, turns out to have received one.
Here's the opposite phenomenon: a question appears to have two comments or answers, but none of them exist (9:38 GMT+1)

Screen capture from the main page

Screen capture from the question page

In Peter Winkler's book "Mathematical Mind-Benders" the now famous problem of dividing an ice cream cake is posed. It asks: If, when cutting the circular cake with any central angle (whether rational or irrational), neighboring piece after neighboring piece is constantly cut off, the cake segment is rotated to the previous top side, and the cut surface is considered to be healed, then after a finite number of cuts the top side is back where it was at the beginning. I also fell for it at first and assumed that according to Weyl's theorem (uniform distribution modulo 1) this is not possible and therefore the central angle must be rational. I have since found a solution according to which the cutting process must stop after a finite number of steps. Weyl's theorem is obviously not applicable here. Why - I am still puzzling over that.

Now I am interested in whether Maple can be used to animate the uniform distribution modulo 1 on the unit circle and to display the associated statistics in the sense of a sample and calculate the sample value of the uniform distribution. As a Maple beginner, I am not yet able to do this and am asking for help.

I want to calculate Hodge Star of forms on a solvable Lie algebra L, I have defined a metric tensor g on it. But when I use that g to compute the Hodge Star of an operator it tells me that the g is not a metric tensor.

with(DifferentialGeometry);
with(LieAlgebras);
A := Matrix(4, 4, [[A__11, A__12, A__13, A__14], [A__21, -A__11, A__23, A__24], [-A__24, -A__23, -A__11, A__21], [-A__14, -A__13, A__12, A__11]]);
x := [x__1, x__2, x__3, x__4, x__5, x__6];
StructureEquations := [[x[6], x[1]] = a*x[1], [x[6], x[2]] = add(A[1, i]*x[i + 1], i = 1 .. 4), [x[6], x[3]] = add(A[2, i]*x[i + 1], i = 1 .. 4), [x[6], x[4]] = add(A[3, i]*x[i + 1], i = 1 .. 4), [x[6], x[5]] = add(A[4, i]*x[i + 1], i = 1 .. 4)];
L := LieAlgebraData(StructureEquations, [x[1], x[2], x[3], x[4], x[5], x[6]], Alg1);
DGsetup(L);
with(Tensor);
e := [e1, e2, e3, e4, e5, e6];
theta := [theta1, theta2, theta3, theta4, theta5, theta6];
omega := evalDG(add(theta[i] &wedge theta[7 - i], i = 1 .. 3));
g := evalDG(add(theta[i] &t theta[7 - i], i = 1 .. 3));
HodgeStar(g, theta1)

It is showing the following error,

Error, (in DifferentialGeometry:-Tensor:-HodgeStar) expected 1st argument to be a metric tensor. Received: _DG([["tensor", Alg1, [["cov_bas", "cov_bas"], []]], [`...`]])

How can I correct this? If not is there an alternative of doing what I am trying to do?

Is there any function that returns a boolean value that tells me if a point is within a polygon or not?

I tried to contact an author using the menu item more->contact autor.

I got the following back from postmaster@maplesoft.com

The IP-adress 199.71.183.16 (domain maplesoft.com) does not match the IP-adress of my mailprovider.

The authentification of the mailprovider works when I send directly from this mailprovider to gmail accounts.

Is this a known issue when sending via maplesoft.com or only temporary?

Is gmail too restrictive?

I need assistance with building the homotopy analysis method to solve the system of odes. here is the attempt to do it. I'm still new to maple restart; # Declare functions for the system PDEtools[declare]([f(x), g(x)], prime = x): # Order of expansion N := 4; # Define series for each function f1(x) := sum(p^i*f[i](x), i = 0..N): f2(x) := sum(p^i*g[i](x), i = 0..N): # Define the system of ODEs using Homotopy HPMEq1 := (1-p)*(diff(f1(x), x$3)) + p*(diff(f1(x), x) + f2(x)): HPMEq2 := (1-p)*(diff(f2(x), x$3)) + p*(diff(f2(x), x) - f1(x)): # Extract coefficients for the system for i from 0 to N do equl[1][i] := coeff(HPMEq1, p, i) = 0: equl[2][i] := coeff(HPMEq2, p, i) = 0: end do: # Define boundary conditions for the system cond= 0, D(f1[0])(5) = 1]: cond = 0, D(f2[0])(0) 1]: for j from 1 to N do cond = 0, D(f1[j])(0) = 0, D(f1[j])(5) , D(f2[j])(0) = 0, D(f2[j])(5) = 0]: end do: # Solve the system iteratively for each order for k from 0 to N do dsolve([equl[1][k], cond[1][k]], f1[k](x)): dsolve([equl[2][k], cond[2][k]], f2[k](x)): end do:

i try to get same result by substituation but i don't know what is mistake after i take second derivative is wronge i don't know how get same result as in paper did can anyone help  to calculate this part is not hard but is complicated ,How calculated second derivative and put in our ode to get the parameters?

restart

with(PDEtools)

with(LinearAlgebra)

NULL

with(SolveTools)

undeclare(prime)

`There is no more prime differentiation variable; all derivatives will be displayed as indexed functions`

(1)

"          with(Student[ODEs][Solve]):"

_local(gamma)

declare(Omega(x, y, t)); declare(U(xi)); declare(u(x, y, t)); declare(Q(xi)); declare(V(xi)); declare(W(xi)); declare(f(xi))

Omega(x, y, t)*`will now be displayed as`*Omega

 

U(xi)*`will now be displayed as`*U

 

u(x, y, t)*`will now be displayed as`*u

 

Q(xi)*`will now be displayed as`*Q

 

V(xi)*`will now be displayed as`*V

 

W(xi)*`will now be displayed as`*W

 

f(xi)*`will now be displayed as`*f

(2)

NULL

ode := -delta*(diff(diff(U(xi), xi), xi))+U(xi)*(w^2-gamma*U(xi)-beta-alpha) = 0

-delta*(diff(diff(U(xi), xi), xi))+U(xi)*(w^2-gamma*U(xi)-beta-alpha) = 0

(3)

ode1 := -delta*(diff(diff(f(xi), xi), xi))+f(xi)*(w^2-gamma*f(xi)-beta-alpha) = 0

-delta*(diff(diff(f(xi), xi), xi))+f(xi)*(w^2-gamma*f(xi)-beta-alpha) = 0

(4)

F := U(xi) = sum(tanh(xi)^(i-1)*(B[i]*sech(xi)+A[i]*tanh(xi)), i = 1 .. n)+A[0]

U(xi) = sum(tanh(xi)^(i-1)*(B[i]*sech(xi)+A[i]*tanh(xi)), i = 1 .. n)+A[0]

(5)

S := U(f(xi)) = sum(cos(f(xi))^(i-1)*(B[i]*sin(f(xi))+A[i]*cos(f(xi))), i = 1 .. n)+A[0]

U(f(xi)) = sum(cos(f(xi))^(i-1)*(B[i]*sin(f(xi))+A[i]*cos(f(xi))), i = 1 .. n)+A[0]

(6)

``

n := 2

2

(7)

eval(ode1, S)

-delta*(diff(diff(f(xi), xi), xi))+f(xi)*(w^2-gamma*f(xi)-beta-alpha) = 0

(8)

Download complex-issue.mw

The maple worksheet shows an incorrect evaluation of the integral in (1) which is a standard integral representation of a Bessel function.  Equations (2)-(5) along with the graph show the incorrectness of the evaluation.  What is going on?

Bessel.mw

Found this old procedure code and revived it
Trying to include an Exploreplot as well
a0,a1,a2,b1,b2 are coeifficents in a ode to construct 
How about odetype when constructing a ode is this correct in code?


 

restart;

Odegenerator := proc(V, x, y, df, const_values)
    local input_args, xi, F, result, a0, a1, a2, b0, b1, sol, Fsol, rows, numrows, eq, count, odeplot_cmd, ode_type, row_number, values;
    uses plots, PDEtools;
       if nargs = 1 and V = "help" then
        printf("Use this procedure as follows:\n");
        printf("Define an ODE template:\n");
        printf("Odegenerator(V, x, y, df, const_values)\n");
        printf("V: A set of values for iteration over constants (if df > 0)\n");
        printf("x: The independent variable\n");
        printf("y: The function\n");
        printf("df: The row number in the DataFrame or 0 for manual input\n");
        printf("const_values: A list of values for the constants (used if df = 0)\n");
        return;
    end if;

    if nargs < 4 or nargs > 5 then
        error "Incorrect number of arguments. Expected: V, x, y, df, [const_values (optional)]";
    end if;

    # Determine the ODE type using odeadvisor for the global eq_template
    ode_type := odeadvisor(eq_template);

    # Display the ODE and its type
    print(eq_template, ode_type);

    rows := [];
    count := 0;
    ###################### BOF manuele invoer ###################
    if df = 0 then
    # If df = 0, use const_values for substitution
    if nargs < 5 or not type(const_values, list) then
        error "When df = 0, a list of constant values must be provided as the fifth argument.";
    end if;

    # Assign constant values
    if nops(const_values) <> 5 then
        error "The list of constant values must contain exactly 5 elements.";
    end if;

    # Find the corresponding row number by unique identification
    count := 1;
    for a0 in V do
        for a1 in V do
            for a2 in V do
                for b0 in V do
                    for b1 in V do
                        if [a0, a1, a2, b0, b1] = const_values then
                            row_number := sprintf("%d", count);  # Convert to string
                        end if;
                        count := count + 1;
                    end do;
                end do;
            end do;
        end do;
    end do;

    if not assigned(row_number) then
        row_number := "Unique (outside iterative rows)";  # Mark as unique
    end if;

    # Substitute the given values
    eq := subs({'a__0' = const_values[1], 'a__1' = const_values[2], 'a__2' = const_values[3], 'b__0' = const_values[4], 'b__1' = const_values[5]}, eq_template);

    # Solve the equation
    sol := dsolve(eq, y(x));
    if type(sol, `=`) then
        Fsol := rhs(sol);
    else
        Fsol := "No explicit solution";
    end if;

    # Display the solution and its row number
    odeplot_cmd := DEtools[DEplot](eq, y(x), x = 0 .. 2, y = -10 .. 10, [[y(0) = 1]]);
    print(plots:-display(odeplot_cmd, size = [550, 550]));

    printf("The found function is:\n");
    print(Fsol);
    printf("The corresponding row number is: %s\n", row_number);

    # -- Start of Additional Functionality --
    # Optionally display the simplified ODE
    printf("The simplified ODE using the given coefficients is:\n");
    print(eq, ode_type);
    # -- End of Additional Functionality --

    return Fsol;
     ################# EOF manuele berekening ##################
     ############## BOF iterative berekening##############
    else
        # Iterative approach for DataFrame generation
        for a0 in V do
            for a1 in V do
                for a2 in V do
                    for b0 in V do
                        for b1 in V do
                            xi := x;
                            F := y;

                            # Substitute constant values into the ODE
                            eq := subs({'a__0' = a0, 'a__1' = a1, 'a__2' = a2, 'b__0' = b0, 'b__1' = b1}, eq_template);

                            sol := dsolve(eq, F(xi));
                            if type(sol, `=`) then
                                Fsol := rhs(sol);
                            else
                                Fsol := "No explicit solution";
                            end if;

                            rows := [op(rows), [a0, a1, a2, b0, b1, Fsol]];
                        end do;
                    end do;
                end do;
            end do;
        end do;

        numrows := nops(rows);
        result := DataFrame(Matrix(numrows, 6, rows), columns = ['a__0', 'a__1', 'a__2', 'b__0', 'b__1', y(x)]);

        interface(rtablesize = numrows + 10);

        if df > 0 and df <= numrows then
            a0 := result[df, 'a__0'];
            a1 := result[df, 'a__1'];
            a2 := result[df, 'a__2'];
            b0 := result[df, 'b__0'];
            b1 := result[df, 'b__1'];

            eq := subs({'a__0' = a0, 'a__1' = a1, 'a__2' = a2, 'b__0' = b0, 'b__1' = b1}, eq_template);

            # Display the additional parameters
            print(eq, ode_type, [df], [a0, a1, a2, b0, b1]);

            # Retrieve the solution
            Fsol := result[df, y(x)];

            # Display the solution in DEplot
            odeplot_cmd := DEtools[DEplot](eq, y(x), x = 0 .. 2, y = -10 .. 10, [[y(0) = 1]]);
            print(plots:-display(odeplot_cmd, size = [550, 550]));

            printf("The found function for row number %d is:\n", df);
            print(Fsol);

        else
            printf("The specified row (%d) is out of bounds for the DataFrame.\n", df);
        end if;

        return result;
     ########## EOF iteratief bwrekening ########################
    end if;

end proc:


# Test cases
V := {0, 1};
eq_template := diff(y(t), t) = 'a__0'*sin(t) + 'a__1'*y(t) + 'a__2'*y(t)^2 + 'b__0'*exp(-t);



 

{0, 1}

 

diff(y(t), t) = a__0*sin(t)+a__1*y(t)+a__2*y(t)^2+b__0*exp(-t)

(1)

 

 

# Iterative test
result := Odegenerator(V, t, y, 25);

diff(y(t), t) = a__0*sin(t)+a__1*y(t)+a__2*y(t)^2+b__0*exp(-t), odeadvisor(diff(y(t), t) = a__0*sin(t)+a__1*y(t)+a__2*y(t)^2+b__0*exp(-t))

 

diff(y(t), t) = sin(t)+y(t), odeadvisor(diff(y(t), t) = a__0*sin(t)+a__1*y(t)+a__2*y(t)^2+b__0*exp(-t)), [25], [1, 1, 0, 0, 0]

 

 

The found function for row number 25 is:

 

-(1/2)*cos(t)-(1/2)*sin(t)+c__1*exp(t)

 

module DataFrame () description "two-dimensional rich data container"; local columns, rows, data, binder; option object(BaseDataObject); end module

(2)

 

# Manual input test
Odegenerator(V, t, y, 0, [1, 1, 0, 0, 0]); #0 after y is rownumber = 0 and [1, 1, 0, 0, 0] are coeifficents

diff(y(t), t) = a__0*sin(t)+a__1*y(t)+a__2*y(t)^2+b__0*exp(-t), odeadvisor(diff(y(t), t) = a__0*sin(t)+a__1*y(t)+a__2*y(t)^2+b__0*exp(-t))

 

 

The found function is:

 

-(1/2)*cos(t)-(1/2)*sin(t)+c__1*exp(t)

 

The corresponding row number is: 25
The simplified ODE using the given coefficients is:

 

diff(y(t), t) = sin(t)+y(t), odeadvisor(diff(y(t), t) = a__0*sin(t)+a__1*y(t)+a__2*y(t)^2+b__0*exp(-t))

 

-(1/2)*cos(t)-(1/2)*sin(t)+c__1*exp(t)

(3)
 

 

 


Download ODEGENERATORFUNCTIE_opgepakt-uitgebreid_naar_MprimesDEF_14-1-2025.mw

First 8 9 10 11 12 13 14 Last Page 10 of 361