Unanswered Questions

This page lists MaplePrimes questions that have not yet received an answer

This question is about a particularity of a widely used function, which looks like a bug at the first glance, but is not (after carefully studying the help page).

The function “add” (a built-in function with special evaluation rules) is intended to be used on sequences. If for any reason (in a procedure for example) a sequence degenerates to a single scalar expression and add is applied to it, the expression can change. This is most likely undesired. In the case below (simplified from a real case that happened to me) a product is transformed into a nonsense sum.

data := 1.*Unit(m);
accu_length := add(data);
data := data, 2.*Unit(m);
accu_length := add(data);
                       data := 1. Unit(m)

                  accu_length := 1. + Unit(m)

                 data := 1. Unit(m), 2. Unit(m)

                   accu_length := 3. Unit(m)

It is quite likely that the above unit error will be noticed. In the following case it is more likely that a change in value remains unnoticed.

data := 2/5;
add(data);
                                   2
                           data := -
                                   5

                               7

I was wondering whether Maple could issue a warning to prevent this use error of add, when certain types of expressions are passed to add.
Alternatively Maple could return the expression unchanged. So far, I have not found a case where it makes sense to apply add to operands of a scalar expression (excluding set, list, array, ... ).

This leads to the question of whether this functionality (add working on a scalar expression) is needed at all. I tried a few and none of them is useful

[a = b, a^b, a@b, a/b, sin(a), int(f(x), x), a[b]];
map(add, %);
        [        b       a                            ]
        [a = b, a , a@b, -, sin(a), int(f(x), x), a[b]]
        [                b                            ]

          [                         1                ]
          [a + b, a + b, a + b, a + -, a, f(x) + x, b]
          [                         b                ]

Anything else which could make sense?

In the File menu,  the Export As dialog is missing. Only the default (.pdf) can be used; no .mpl or .tex)
The Save As dialog is incomplete (e.g. save to .mws).

Or, is the installation corrupted?

I need to take up an issue which is quite old, but still unsolved.

https://www.mapleprimes.com/questions/234249-Text-Quality-On-Screen

The problem is that in specific display configurations with one (rotated) vertical screen and multiple horizontal screens, the quality of fonts especially is significantly lower in Maple as with a configuration with just horizontal screens.

The affect is visible in Maple when it is on the horizontal (unrotated) screens.

Here are screenshots for comparision, and the layout of my desktop.

Screen layout:

Screenshot rotated

Screenshot unrotated

It seems that the problem is present when starting Maple. Changing the rotation of the screen when Maple is running does not affect the font quality in Maple.

Other (Windows) programs are not affected at all of this changes, so this seems to be a Java issue.

Your MaplePrimes post The package ODECSplines - Description was deleted by a moderator for the following reason: 3. If you believe this was done in error, please contact Maplesoft customer service: https://www.maplesoft.com/contact.

Does anyone know what is ment by reason 3. ?

I want both Pc and r(Pc) to be greater than or equal to zero. The only constraint is that all parameters for which I’ve provided data must remain positive. Can we identify the key parameters that significantly affect Pc? Also, what condition ensures that Pc ≥ 0? Ideally, I’d like Pc to be less than or equal to Pu. Could you suggest what changes in the numerical values I should make to ensure Pc becomes a positive value?

Attaching file: Q2.mw

Can we include a graph that shows how Pc changes with respect to variations in the most sensitive parameters?

With the new GUI:
I get all files (*.*) listed by default.
Other file types to filter are not listed.

Is this the same on other machines?

Can I do something about it?

How do I make indents in Maple 2025 for more readable layout?

Haven't used that much in 2024, but according to help this should be in Format - Tab settings. I don't find that in 2025 unfortunately.

With the new Maple-2025 the GUI-fonts are tiny and more or less not readable on a 5K Monitor. The old solution using this options here:

JVM_OPTIONS="-Dsun.java2d.pmoffscreen=false -Djogamp.gluegen.UseTempJarCache=false -Dswing.plaf.metal.userFont=\"Tahoma-36\" -Dswing.plaf.metal.controlFont=\"Tahoma-36\" "

does not change the GUI fonts, as it has worked up to Maple 2024. 

Is there a single-source fractional calculus toolbox, or collection of tools, available for Maple ? There appears to be the odd routine for fractional derivatives or DE's, but nothing of a systemic nature.

A lot of time i finded but i have a dubt about this why this is happen each time number of equation for finding parameter a_12 is 4 but this time is 28 which i thoght some thing must be mistake also the author of paper use  u=2(ln(f))_xx which is wronge and not satisfy but i try to find R which is strange again is not number contain parameter but is satisfy also in equation 14 i don't know each i is 2 or 1 or it can be i remain itself?

thanks for any help ?

t1.mw

I encountered this bizarre inconsistency issue that Maple18 generates different outputs when executing the same command:

test_res2:= factor( simplify( expand( value( subs( Perturbation_Sol, EQ_PX2_order_7 ) ) ) ) )

'EQ_PX2_order_7' is a rational expression in sin(i0), cos(i0), sin(uL), and cos(uL) with rational coefficient terms. It also has inert differentiation terms Diff( * , uL ).

'Perturbation_Sol' is a set of 171 elements in the form of 'parameter_name = expression'.

My goal is to check if substituting 'Perturbation_Sol' into 'EQ_PX2_order_7' yields 0. Since 'EQ_PX2_order_7' has inert differentiation terms, I've applied 'value' after using 'subs'. Then I apply 'expand', 'simplify', and 'factor' to reduce the result to the simplest form.

However, Maple18 generates different outputs when I just execute this repeatedly. Please see the worksheet "test.mw" for details. Any insight will be greatly appreciated! Also, I wonder if the same issue would happen when the worksheet is executed with newer versions of Maple.

EQN_SOL_test1.mla

test.mw

 

 

I encountered the problem with .m files originally. But MaplePrimes doesn't allow uploading .m files, so I had to save the expressions into the file "EQN_SOL_test1.mla", which is included in this question. Below we load the expressions from the .mla file first, and then save them into a .m file in order to recreate the problem that I encountered.

restart;

>

 

read "EQN_SOL_test1.mla":

# Load 'EQ_PX2_order_7' and 'Perturbation_Sol'

 

save

EQ_PX2_order_7,
Perturbation_Sol,

"EQN_SOL_test1_m.m";

# Save the expressions into a .m file

 

Now we demonstrate the inconsistency problem with .m files. Notice that Maple generates 3 possible outputs:

test_res2 := 0

test_res2 := -(1/4)*rho0^2*a0^2*Be^2*cos(uL)*J2re*R_earth^2*(5*cos(i0)^2*cos(uL)^2-7*cos(i0)^2-5*cos(uL)^2+4)/sha

 

test_res2 := -(1/8)*rho0^2*a0^2*Be^2*cos(uL)*J2re*R_earth^2*(5*cos(i0)^2*cos(uL)^2-7*cos(i0)^2-5*cos(uL)^2+4)/sha

 

The last 2 outputs cannot be reduced to 0 since 5*cos(i0)^2*cos(uL)^2-7*cos(i0)^2-5*cos(uL)^2+4 is nonzero as shown below.

 

 

plot3d( 5*cos(i0)^2*cos(uL)^2-7*cos(i0)^2-5*cos(uL)^2+4 , uL=0..2*Pi, i0=0..2*Pi );

 
 

restart;

 

read "EQN_SOL_test1_m.m":

 

length( EQ_PX2_order_7 );

939346

(1)

length( Perturbation_Sol );

2082306

(2)

numelems( Perturbation_Sol );

171

(3)

Perturbation_Sol[1..5];

# Just to give an example of what the elements in 'Perturbation_Sol' look like

{PX1[1] = 0, PX1[2] = 0, PX1[3] = -(1/4)*rho0*a0*Be, PX1[4] = (1/2)*rho0*a0*Be*WEra*cos(i0)-(3/16)*R_earth^2*a0*rho0*(3*cos(i0)^2-1)*J2re*Be/sha+(1/4)*Be*a0*rho0*X10[3]/sha, PX1[5] = (1/4)*rho0*a0*X10[4]*Be/sha-(1/256)*R_earth^4*a0*rho0*(163*cos(i0)^4-110*cos(i0)^2+19)*J2re^2*Be/sha^2+(3/16)*R_earth^2*a0*rho0*(3*cos(i0)^2-1)*J2re*Be*X10[3]/sha^2+(3/8)*cos(i0)*R_earth^2*WEra*a0*rho0*(3*cos(i0)^2-1)*J2re*Be/sha-(1/48)*Be^3*a0^3*rho0^3*s1/sha^2-(1/8)*Be*a0*rho0*X10[3]^2/sha^2-(1/2)*cos(i0)*WEra*a0*rho0*Be*X10[3]/sha-(1/16)*rho0*a0*(3*cos(i0)^2+1)*Be*WEra^2-(1/32)*Be^2*J2re*R_earth^2*a0^2*rho0^2*sin(i0)^2*sin(2*uL)/sha^2}

(4)

 

 

for j from 1 to 50 do
    test_res2:= factor( simplify( expand( value( subs( Perturbation_Sol, EQ_PX2_order_7 ) ) ) ) );
end do;

-(1/4)*rho0^2*a0^2*Be^2*cos(uL)*R_earth^2*J2re*(5*cos(uL)^2*cos(i0)^2-5*cos(uL)^2-7*cos(i0)^2+4)/sha

 

0

 

-(1/4)*rho0^2*a0^2*Be^2*cos(uL)*R_earth^2*J2re*(5*cos(uL)^2*cos(i0)^2-5*cos(uL)^2-7*cos(i0)^2+4)/sha

 

-(1/4)*rho0^2*a0^2*Be^2*cos(uL)*R_earth^2*J2re*(5*cos(uL)^2*cos(i0)^2-5*cos(uL)^2-7*cos(i0)^2+4)/sha

 

-(1/4)*rho0^2*a0^2*Be^2*cos(uL)*R_earth^2*J2re*(5*cos(uL)^2*cos(i0)^2-5*cos(uL)^2-7*cos(i0)^2+4)/sha

 

-(1/4)*rho0^2*a0^2*Be^2*cos(uL)*R_earth^2*J2re*(5*cos(uL)^2*cos(i0)^2-5*cos(uL)^2-7*cos(i0)^2+4)/sha

 

0

 

0

 

-(1/4)*rho0^2*a0^2*Be^2*cos(uL)*R_earth^2*J2re*(5*cos(uL)^2*cos(i0)^2-5*cos(uL)^2-7*cos(i0)^2+4)/sha

 

-(1/4)*rho0^2*a0^2*Be^2*cos(uL)*R_earth^2*J2re*(5*cos(uL)^2*cos(i0)^2-5*cos(uL)^2-7*cos(i0)^2+4)/sha

 

0

 

0

 

0

 

0

 

-(1/8)*rho0^2*a0^2*Be^2*cos(uL)*R_earth^2*J2re*(5*cos(uL)^2*cos(i0)^2-5*cos(uL)^2-7*cos(i0)^2+4)/sha

 

-(1/8)*rho0^2*a0^2*Be^2*cos(uL)*R_earth^2*J2re*(5*cos(uL)^2*cos(i0)^2-5*cos(uL)^2-7*cos(i0)^2+4)/sha

 

0

 

-(1/4)*rho0^2*a0^2*Be^2*cos(uL)*R_earth^2*J2re*(5*cos(uL)^2*cos(i0)^2-5*cos(uL)^2-7*cos(i0)^2+4)/sha

 

-(1/4)*rho0^2*a0^2*Be^2*cos(uL)*R_earth^2*J2re*(5*cos(uL)^2*cos(i0)^2-5*cos(uL)^2-7*cos(i0)^2+4)/sha

 

0

 

0

 

-(1/4)*rho0^2*a0^2*Be^2*cos(uL)*R_earth^2*J2re*(5*cos(uL)^2*cos(i0)^2-5*cos(uL)^2-7*cos(i0)^2+4)/sha

 

-(1/4)*rho0^2*a0^2*Be^2*cos(uL)*R_earth^2*J2re*(5*cos(uL)^2*cos(i0)^2-5*cos(uL)^2-7*cos(i0)^2+4)/sha

 

0

 

0

 

0

 

0

 

0

 

0

 

0

 

0

 

0

 

-(1/4)*rho0^2*a0^2*Be^2*cos(uL)*R_earth^2*J2re*(5*cos(uL)^2*cos(i0)^2-5*cos(uL)^2-7*cos(i0)^2+4)/sha

 

-(1/4)*rho0^2*a0^2*Be^2*cos(uL)*R_earth^2*J2re*(5*cos(uL)^2*cos(i0)^2-5*cos(uL)^2-7*cos(i0)^2+4)/sha

 

-(1/4)*rho0^2*a0^2*Be^2*cos(uL)*R_earth^2*J2re*(5*cos(uL)^2*cos(i0)^2-5*cos(uL)^2-7*cos(i0)^2+4)/sha

 

-(1/4)*rho0^2*a0^2*Be^2*cos(uL)*R_earth^2*J2re*(5*cos(uL)^2*cos(i0)^2-5*cos(uL)^2-7*cos(i0)^2+4)/sha

 

-(1/4)*rho0^2*a0^2*Be^2*cos(uL)*R_earth^2*J2re*(5*cos(uL)^2*cos(i0)^2-5*cos(uL)^2-7*cos(i0)^2+4)/sha

 

-(1/4)*rho0^2*a0^2*Be^2*cos(uL)*R_earth^2*J2re*(5*cos(uL)^2*cos(i0)^2-5*cos(uL)^2-7*cos(i0)^2+4)/sha

 

-(1/4)*rho0^2*a0^2*Be^2*cos(uL)*R_earth^2*J2re*(5*cos(uL)^2*cos(i0)^2-5*cos(uL)^2-7*cos(i0)^2+4)/sha

 

-(1/4)*rho0^2*a0^2*Be^2*cos(uL)*R_earth^2*J2re*(5*cos(uL)^2*cos(i0)^2-5*cos(uL)^2-7*cos(i0)^2+4)/sha

 

-(1/4)*rho0^2*a0^2*Be^2*cos(uL)*R_earth^2*J2re*(5*cos(uL)^2*cos(i0)^2-5*cos(uL)^2-7*cos(i0)^2+4)/sha

 

-(1/4)*rho0^2*a0^2*Be^2*cos(uL)*R_earth^2*J2re*(5*cos(uL)^2*cos(i0)^2-5*cos(uL)^2-7*cos(i0)^2+4)/sha

 

-(1/4)*rho0^2*a0^2*Be^2*cos(uL)*R_earth^2*J2re*(5*cos(uL)^2*cos(i0)^2-5*cos(uL)^2-7*cos(i0)^2+4)/sha

 

-(1/4)*rho0^2*a0^2*Be^2*cos(uL)*R_earth^2*J2re*(5*cos(uL)^2*cos(i0)^2-5*cos(uL)^2-7*cos(i0)^2+4)/sha

 

-(1/4)*rho0^2*a0^2*Be^2*cos(uL)*R_earth^2*J2re*(5*cos(uL)^2*cos(i0)^2-5*cos(uL)^2-7*cos(i0)^2+4)/sha

 

-(1/4)*rho0^2*a0^2*Be^2*cos(uL)*R_earth^2*J2re*(5*cos(uL)^2*cos(i0)^2-5*cos(uL)^2-7*cos(i0)^2+4)/sha

 

0

 

0

 

-(1/4)*rho0^2*a0^2*Be^2*cos(uL)*R_earth^2*J2re*(5*cos(uL)^2*cos(i0)^2-5*cos(uL)^2-7*cos(i0)^2+4)/sha

 

0

(5)

 

 

It seems that with .mla files the problem occurs in a different way! With "EQN_SOL_test1.mla", the outputs for all 50 iterations stay the same as

test_res2 := -(1/4)*rho0^2*a0^2*Be^2*cos(uL)*J2re*R_earth^2*(5*cos(i0)^2*cos(uL)^2-7*cos(i0)^2-5*cos(uL)^2+4)/sha               (A)

 

but they may all change to the following different result after retarting many times:

test_res2 := -(1/8)*rho0^2*a0^2*Be^2*cos(uL)*J2re*R_earth^2*(5*cos(i0)^2*cos(uL)^2-7*cos(i0)^2-5*cos(uL)^2+4)/sha               (B)

 

In particular, after a large number of test runs (i.e., open the file "test.mw", execute the worksheet, close the file, and repeat), the result (B) has only occured twice. The second appearance is saved here for you to view. Once you re-execute this worksheet, most likely all outputs below will change back to (A), and (B) will only reappear after a large number of reruns.

 

restart;

 

read "EQN_SOL_test1.mla":

# Load 'EQ_PX2_order_7' and 'Perturbation_Sol'

 

 

for j from 1 to 50 do
    test_res2:= factor( simplify( expand( value( subs( Perturbation_Sol, EQ_PX2_order_7 ) ) ) ) );
end do;

-(1/8)*rho0^2*a0^2*Be^2*cos(uL)*R_earth^2*J2re*(5*cos(uL)^2*cos(i0)^2-5*cos(uL)^2-7*cos(i0)^2+4)/sha

 

-(1/8)*rho0^2*a0^2*Be^2*cos(uL)*R_earth^2*J2re*(5*cos(uL)^2*cos(i0)^2-5*cos(uL)^2-7*cos(i0)^2+4)/sha

 

-(1/8)*rho0^2*a0^2*Be^2*cos(uL)*R_earth^2*J2re*(5*cos(uL)^2*cos(i0)^2-5*cos(uL)^2-7*cos(i0)^2+4)/sha

 

-(1/8)*rho0^2*a0^2*Be^2*cos(uL)*R_earth^2*J2re*(5*cos(uL)^2*cos(i0)^2-5*cos(uL)^2-7*cos(i0)^2+4)/sha

 

-(1/8)*rho0^2*a0^2*Be^2*cos(uL)*R_earth^2*J2re*(5*cos(uL)^2*cos(i0)^2-5*cos(uL)^2-7*cos(i0)^2+4)/sha

 

-(1/8)*rho0^2*a0^2*Be^2*cos(uL)*R_earth^2*J2re*(5*cos(uL)^2*cos(i0)^2-5*cos(uL)^2-7*cos(i0)^2+4)/sha

 

-(1/8)*rho0^2*a0^2*Be^2*cos(uL)*R_earth^2*J2re*(5*cos(uL)^2*cos(i0)^2-5*cos(uL)^2-7*cos(i0)^2+4)/sha

 

-(1/8)*rho0^2*a0^2*Be^2*cos(uL)*R_earth^2*J2re*(5*cos(uL)^2*cos(i0)^2-5*cos(uL)^2-7*cos(i0)^2+4)/sha

 

-(1/8)*rho0^2*a0^2*Be^2*cos(uL)*R_earth^2*J2re*(5*cos(uL)^2*cos(i0)^2-5*cos(uL)^2-7*cos(i0)^2+4)/sha

 

-(1/8)*rho0^2*a0^2*Be^2*cos(uL)*R_earth^2*J2re*(5*cos(uL)^2*cos(i0)^2-5*cos(uL)^2-7*cos(i0)^2+4)/sha

 

-(1/8)*rho0^2*a0^2*Be^2*cos(uL)*R_earth^2*J2re*(5*cos(uL)^2*cos(i0)^2-5*cos(uL)^2-7*cos(i0)^2+4)/sha

 

-(1/8)*rho0^2*a0^2*Be^2*cos(uL)*R_earth^2*J2re*(5*cos(uL)^2*cos(i0)^2-5*cos(uL)^2-7*cos(i0)^2+4)/sha

 

-(1/8)*rho0^2*a0^2*Be^2*cos(uL)*R_earth^2*J2re*(5*cos(uL)^2*cos(i0)^2-5*cos(uL)^2-7*cos(i0)^2+4)/sha

 

-(1/8)*rho0^2*a0^2*Be^2*cos(uL)*R_earth^2*J2re*(5*cos(uL)^2*cos(i0)^2-5*cos(uL)^2-7*cos(i0)^2+4)/sha

 

-(1/8)*rho0^2*a0^2*Be^2*cos(uL)*R_earth^2*J2re*(5*cos(uL)^2*cos(i0)^2-5*cos(uL)^2-7*cos(i0)^2+4)/sha

 

-(1/8)*rho0^2*a0^2*Be^2*cos(uL)*R_earth^2*J2re*(5*cos(uL)^2*cos(i0)^2-5*cos(uL)^2-7*cos(i0)^2+4)/sha

 

-(1/8)*rho0^2*a0^2*Be^2*cos(uL)*R_earth^2*J2re*(5*cos(uL)^2*cos(i0)^2-5*cos(uL)^2-7*cos(i0)^2+4)/sha

 

-(1/8)*rho0^2*a0^2*Be^2*cos(uL)*R_earth^2*J2re*(5*cos(uL)^2*cos(i0)^2-5*cos(uL)^2-7*cos(i0)^2+4)/sha

 

-(1/8)*rho0^2*a0^2*Be^2*cos(uL)*R_earth^2*J2re*(5*cos(uL)^2*cos(i0)^2-5*cos(uL)^2-7*cos(i0)^2+4)/sha

 

-(1/8)*rho0^2*a0^2*Be^2*cos(uL)*R_earth^2*J2re*(5*cos(uL)^2*cos(i0)^2-5*cos(uL)^2-7*cos(i0)^2+4)/sha

 

-(1/8)*rho0^2*a0^2*Be^2*cos(uL)*R_earth^2*J2re*(5*cos(uL)^2*cos(i0)^2-5*cos(uL)^2-7*cos(i0)^2+4)/sha

 

-(1/8)*rho0^2*a0^2*Be^2*cos(uL)*R_earth^2*J2re*(5*cos(uL)^2*cos(i0)^2-5*cos(uL)^2-7*cos(i0)^2+4)/sha

 

-(1/8)*rho0^2*a0^2*Be^2*cos(uL)*R_earth^2*J2re*(5*cos(uL)^2*cos(i0)^2-5*cos(uL)^2-7*cos(i0)^2+4)/sha

 

-(1/8)*rho0^2*a0^2*Be^2*cos(uL)*R_earth^2*J2re*(5*cos(uL)^2*cos(i0)^2-5*cos(uL)^2-7*cos(i0)^2+4)/sha

 

-(1/8)*rho0^2*a0^2*Be^2*cos(uL)*R_earth^2*J2re*(5*cos(uL)^2*cos(i0)^2-5*cos(uL)^2-7*cos(i0)^2+4)/sha

 

-(1/8)*rho0^2*a0^2*Be^2*cos(uL)*R_earth^2*J2re*(5*cos(uL)^2*cos(i0)^2-5*cos(uL)^2-7*cos(i0)^2+4)/sha

 

-(1/8)*rho0^2*a0^2*Be^2*cos(uL)*R_earth^2*J2re*(5*cos(uL)^2*cos(i0)^2-5*cos(uL)^2-7*cos(i0)^2+4)/sha

 

-(1/8)*rho0^2*a0^2*Be^2*cos(uL)*R_earth^2*J2re*(5*cos(uL)^2*cos(i0)^2-5*cos(uL)^2-7*cos(i0)^2+4)/sha

 

-(1/8)*rho0^2*a0^2*Be^2*cos(uL)*R_earth^2*J2re*(5*cos(uL)^2*cos(i0)^2-5*cos(uL)^2-7*cos(i0)^2+4)/sha

 

-(1/8)*rho0^2*a0^2*Be^2*cos(uL)*R_earth^2*J2re*(5*cos(uL)^2*cos(i0)^2-5*cos(uL)^2-7*cos(i0)^2+4)/sha

 

-(1/8)*rho0^2*a0^2*Be^2*cos(uL)*R_earth^2*J2re*(5*cos(uL)^2*cos(i0)^2-5*cos(uL)^2-7*cos(i0)^2+4)/sha

 

-(1/8)*rho0^2*a0^2*Be^2*cos(uL)*R_earth^2*J2re*(5*cos(uL)^2*cos(i0)^2-5*cos(uL)^2-7*cos(i0)^2+4)/sha

 

-(1/8)*rho0^2*a0^2*Be^2*cos(uL)*R_earth^2*J2re*(5*cos(uL)^2*cos(i0)^2-5*cos(uL)^2-7*cos(i0)^2+4)/sha

 

-(1/8)*rho0^2*a0^2*Be^2*cos(uL)*R_earth^2*J2re*(5*cos(uL)^2*cos(i0)^2-5*cos(uL)^2-7*cos(i0)^2+4)/sha

 

-(1/8)*rho0^2*a0^2*Be^2*cos(uL)*R_earth^2*J2re*(5*cos(uL)^2*cos(i0)^2-5*cos(uL)^2-7*cos(i0)^2+4)/sha

 

-(1/8)*rho0^2*a0^2*Be^2*cos(uL)*R_earth^2*J2re*(5*cos(uL)^2*cos(i0)^2-5*cos(uL)^2-7*cos(i0)^2+4)/sha

 

-(1/8)*rho0^2*a0^2*Be^2*cos(uL)*R_earth^2*J2re*(5*cos(uL)^2*cos(i0)^2-5*cos(uL)^2-7*cos(i0)^2+4)/sha

 

-(1/8)*rho0^2*a0^2*Be^2*cos(uL)*R_earth^2*J2re*(5*cos(uL)^2*cos(i0)^2-5*cos(uL)^2-7*cos(i0)^2+4)/sha

 

-(1/8)*rho0^2*a0^2*Be^2*cos(uL)*R_earth^2*J2re*(5*cos(uL)^2*cos(i0)^2-5*cos(uL)^2-7*cos(i0)^2+4)/sha

 

-(1/8)*rho0^2*a0^2*Be^2*cos(uL)*R_earth^2*J2re*(5*cos(uL)^2*cos(i0)^2-5*cos(uL)^2-7*cos(i0)^2+4)/sha

 

-(1/8)*rho0^2*a0^2*Be^2*cos(uL)*R_earth^2*J2re*(5*cos(uL)^2*cos(i0)^2-5*cos(uL)^2-7*cos(i0)^2+4)/sha

 

-(1/8)*rho0^2*a0^2*Be^2*cos(uL)*R_earth^2*J2re*(5*cos(uL)^2*cos(i0)^2-5*cos(uL)^2-7*cos(i0)^2+4)/sha

 

-(1/8)*rho0^2*a0^2*Be^2*cos(uL)*R_earth^2*J2re*(5*cos(uL)^2*cos(i0)^2-5*cos(uL)^2-7*cos(i0)^2+4)/sha

 

-(1/8)*rho0^2*a0^2*Be^2*cos(uL)*R_earth^2*J2re*(5*cos(uL)^2*cos(i0)^2-5*cos(uL)^2-7*cos(i0)^2+4)/sha

 

-(1/8)*rho0^2*a0^2*Be^2*cos(uL)*R_earth^2*J2re*(5*cos(uL)^2*cos(i0)^2-5*cos(uL)^2-7*cos(i0)^2+4)/sha

 

-(1/8)*rho0^2*a0^2*Be^2*cos(uL)*R_earth^2*J2re*(5*cos(uL)^2*cos(i0)^2-5*cos(uL)^2-7*cos(i0)^2+4)/sha

 

-(1/8)*rho0^2*a0^2*Be^2*cos(uL)*R_earth^2*J2re*(5*cos(uL)^2*cos(i0)^2-5*cos(uL)^2-7*cos(i0)^2+4)/sha

 

-(1/8)*rho0^2*a0^2*Be^2*cos(uL)*R_earth^2*J2re*(5*cos(uL)^2*cos(i0)^2-5*cos(uL)^2-7*cos(i0)^2+4)/sha

 

-(1/8)*rho0^2*a0^2*Be^2*cos(uL)*R_earth^2*J2re*(5*cos(uL)^2*cos(i0)^2-5*cos(uL)^2-7*cos(i0)^2+4)/sha

 

-(1/8)*rho0^2*a0^2*Be^2*cos(uL)*R_earth^2*J2re*(5*cos(uL)^2*cos(i0)^2-5*cos(uL)^2-7*cos(i0)^2+4)/sha

(6)

 

Download test.mw

Hello

I am looking for an efficient code that calculates all partitions of a positive integer n into parts >1. Example:

for n=8 the program should return

[2,6],[3,5],[4,4],[2,2,4],[2,3,3],[[2,2,2,2].

The program should be able to calculate these partitions for n=1..10000 in reasonable time

Who can help me?

Thanks.

In this example by applying the substitution i can get half of paicewise function but how get another  half ? i am looking for B_rs as Piecewise function ?

restart

eij := ((-3*k[i]*(k[i]-k[j])*l[j]+beta)*l[i]^2-(2*(-3*k[j]*(k[i]-k[j])*l[j]*(1/2)+beta))*l[j]*l[i]+beta*l[j]^2)/((-3*k[i]*(k[i]+k[j])*l[j]+beta)*l[i]^2-(2*(3*k[j]*(k[i]+k[j])*l[j]*(1/2)+beta))*l[j]*l[i]+beta*l[j]^2)

((-3*k[i]*(k[i]-k[j])*l[j]+beta)*l[i]^2-2*(-(3/2)*k[j]*(k[i]-k[j])*l[j]+beta)*l[j]*l[i]+beta*l[j]^2)/((-3*k[i]*(k[i]+k[j])*l[j]+beta)*l[i]^2-2*((3/2)*k[j]*(k[i]+k[j])*l[j]+beta)*l[j]*l[i]+beta*l[j]^2)

(1)

eval(eij, k[j] = b*k[i]); series(%, k[i], 3); convert(%, polynom); eval(%, b = k[j]/k[i]); Bij := (%-1)/(k[i]*k[j])

((-3*k[i]*(-b*k[i]+k[i])*l[j]+beta)*l[i]^2-2*(-(3/2)*b*k[i]*(-b*k[i]+k[i])*l[j]+beta)*l[j]*l[i]+beta*l[j]^2)/((-3*k[i]*(b*k[i]+k[i])*l[j]+beta)*l[i]^2-2*((3/2)*b*k[i]*(b*k[i]+k[i])*l[j]+beta)*l[j]*l[i]+beta*l[j]^2)

 

series(1+((-3*(-b+1)*l[j]*l[i]^2+3*b*(-b+1)*l[j]^2*l[i]+3*(b+1)*l[j]*l[i]^2+3*b*(b+1)*l[j]^2*l[i])/(beta*l[i]^2-2*beta*l[i]*l[j]+beta*l[j]^2))*k[i]^2+O(k[i]^4),k[i],4)

 

1+(-3*(-b+1)*l[j]*l[i]^2+3*b*(-b+1)*l[j]^2*l[i]+3*(b+1)*l[j]*l[i]^2+3*b*(b+1)*l[j]^2*l[i])*k[i]^2/(beta*l[i]^2-2*beta*l[i]*l[j]+beta*l[j]^2)

 

1+(-3*(-k[j]/k[i]+1)*l[j]*l[i]^2+3*k[j]*(-k[j]/k[i]+1)*l[j]^2*l[i]/k[i]+3*(k[j]/k[i]+1)*l[j]*l[i]^2+3*k[j]*(k[j]/k[i]+1)*l[j]^2*l[i]/k[i])*k[i]^2/(beta*l[i]^2-2*beta*l[i]*l[j]+beta*l[j]^2)

 

(-3*(-k[j]/k[i]+1)*l[j]*l[i]^2+3*k[j]*(-k[j]/k[i]+1)*l[j]^2*l[i]/k[i]+3*(k[j]/k[i]+1)*l[j]*l[i]^2+3*k[j]*(k[j]/k[i]+1)*l[j]^2*l[i]/k[i])*k[i]/((beta*l[i]^2-2*beta*l[i]*l[j]+beta*l[j]^2)*k[j])

(2)

simplify((-3*(-k[j]/k[i]+1)*l[j]*l[i]^2+3*k[j]*(-k[j]/k[i]+1)*l[j]^2*l[i]/k[i]+3*(k[j]/k[i]+1)*l[j]*l[i]^2+3*k[j]*(k[j]/k[i]+1)*l[j]^2*l[i]/k[i])*k[i]/((beta*l[i]^2-2*beta*l[i]*l[j]+beta*l[j]^2)*k[j]))

6*l[j]*l[i]*(l[i]+l[j])/((l[i]-l[j])^2*beta)

(3)


Download Lim.mw

I want to run Maple Linux builds under Windows. I know that this can be done with a virtual machine but that's it.

Are there other options to do that?

I would go for an easy installation with the possibilty to save and load files from the Windows file system and ideally to copy/paste screen content from and to Windows applications.

Any recommendations and/or references?

I tried the following procedure in a worksheet; Maple did not like it and claimed there was an error. However, I cannot even copy this to a Maple prompt; it jumps to another type of region. Any ideas? If I retype the command there is no problem with an error.

It reminds me of Maple 2 and the letter t which sometimes had to be retyped to get Maple to respond-a very strange bug which was eliminated years ago.

2 3 4 5 6 7 8 Last Page 4 of 360