Unanswered Questions

This page lists MaplePrimes questions that have not yet received an answer

When I print 2 matrix it always try to multiply them. How to force just to show?

Hi, i am trying to solve my PDEs with HPM method ,but i get strange errors.

first one is :Error, (in trig/reduce/reduce) Maple was unable to allocate enough memory to complete this computation.  Please see ?alloc,

but when i run my last function again,the error chages,let me show you.


restart;
lambda:=0.5;K[r]:=0.5;Sc:=0.5;Nb:=0.1;Nt:=0.1;Pr:=10;
                              0.5
                              0.5
                              0.5
                              0.1
                              0.1
                               10
> EQUATIONS;


equ1:=diff(f(eta),eta$4)-R*(diff(f(eta),eta)*diff(f(eta),eta$2)-f(eta)*diff(f(eta),eta$2))-2*K[r]*diff(g(eta),eta)=0;

equ2:=diff(g(eta),eta$2)-R*(diff(f(eta),eta)*g(eta)-f(eta)*diff(g(eta),eta))+2*K[r]*diff(f(eta),eta)=0;

equ3:=diff(theta(eta),eta$2)+Pr*R*f(eta)*diff(theta(eta),eta)+Nb*diff(phi(eta),eta)*diff(theta(eta),eta)+Nt*diff(theta(eta),eta)^2=0;

equ4:=diff(phi(eta),eta$2)+R*Sc*f(eta)*diff(phi(eta),eta)+diff(theta(eta),eta$2)*(Nt/Nb)=0;
/  d   /  d   /  d   /  d         \\\\     //  d         \ /  d  
|----- |----- |----- |----- f(eta)|||| - R ||----- f(eta)| |-----
\ deta \ deta \ deta \ deta       ////     \\ deta       / \ deta

   /  d         \\          /  d   /  d         \\\
   |----- f(eta)|| - f(eta) |----- |----- f(eta)|||
   \ deta       //          \ deta \ deta       ///

         /  d         \    
   - 1.0 |----- g(eta)| = 0
         \ deta       /    
     /  d   /  d         \\
     |----- |----- g(eta)||
     \ deta \ deta       //

            //  d         \                 /  d         \\
        - R ||----- f(eta)| g(eta) - f(eta) |----- g(eta)||
            \\ deta       /                 \ deta       //

              /  d         \    
        + 1.0 |----- f(eta)| = 0
              \ deta       /    
  /  d   /  d             \\               /  d             \
  |----- |----- theta(eta)|| + 10 R f(eta) |----- theta(eta)|
  \ deta \ deta           //               \ deta           /

           /  d           \ /  d             \
     + 0.1 |----- phi(eta)| |----- theta(eta)|
           \ deta         / \ deta           /

                             2    
           /  d             \     
     + 0.1 |----- theta(eta)|  = 0
           \ deta           /     
    /  d   /  d           \\                /  d           \
    |----- |----- phi(eta)|| + 0.5 R f(eta) |----- phi(eta)|
    \ deta \ deta         //                \ deta         /

                     /  d   /  d             \\    
       + 1.000000000 |----- |----- theta(eta)|| = 0
                     \ deta \ deta           //    
> BOUNDARY*CONDITIONS;


ics:=
f(0)=0,D(f)(0)=1,g(0)=0,theta(0)=1,phi(0)=1;
f(1)=lambda,D(f)(1)=0,g(1)=0,theta(1)=0,phi(1)=0;
   f(0) = 0, D(f)(0) = 1, g(0) = 0, theta(0) = 1, phi(0) = 1
  f(1) = 0.5, D(f)(1) = 0, g(1) = 0, theta(1) = 0, phi(1) = 0
> HPMs;


hpm1:=(1-p)*(diff(f(eta),eta$4)-2*K[r]*diff(g(eta),eta))+p*(diff(f(eta),eta$4)-R*(diff(f(eta),eta)*diff(f(eta),eta$2)-f(eta)*diff(f(eta),eta$2))-2*K[r]*diff(g(eta),eta))=0;

hpm2:=(1-p)*(diff(g(eta),eta$2)+2*K[r]*diff(f(eta),eta))+p*(diff(g(eta),eta$2)-R*(diff(f(eta),eta)*g(eta)-f(eta)*diff(g(eta),eta))+2*K[r]*diff(f(eta),eta))=0;

hpm3:=(1-p)*(diff(theta(eta),eta$2))+p*(diff(theta(eta),eta$2)+Pr*R*f(eta)*diff(theta(eta),eta)+Nb*diff(phi(eta),eta)*diff(theta(eta),eta)+Nt*diff(theta(eta),eta)^2)=0;

hpm4:=(1-p)*(diff(phi(eta),eta$2)+diff(theta(eta),eta$2)*(Nt/Nb))+p*(diff(phi(eta),eta$2)+R*Sc*f(eta)*diff(phi(eta),eta)+diff(theta(eta),eta$2)*(Nt/Nb))=0;

        //  d   /  d   /  d   /  d         \\\\
(1 - p) ||----- |----- |----- |----- f(eta)||||
        \\ deta \ deta \ deta \ deta       ////

         /  d         \\     //  d   /  d   /  d   /  d         \
   - 1.0 |----- g(eta)|| + p ||----- |----- |----- |----- f(eta)|
         \ deta       //     \\ deta \ deta \ deta \ deta       /

  \\\     //  d         \ /  d   /  d         \\
  ||| - R ||----- f(eta)| |----- |----- f(eta)||
  ///     \\ deta       / \ deta \ deta       //

            /  d   /  d         \\\       /  d         \\    
   - f(eta) |----- |----- f(eta)||| - 1.0 |----- g(eta)|| = 0
            \ deta \ deta       ///       \ deta       //    
        //  d   /  d         \\       /  d         \\     //  d  
(1 - p) ||----- |----- g(eta)|| + 1.0 |----- f(eta)|| + p ||-----
        \\ deta \ deta       //       \ deta       //     \\ deta

   /  d         \\
   |----- g(eta)||
   \ deta       //

       //  d         \                 /  d         \\
   - R ||----- f(eta)| g(eta) - f(eta) |----- g(eta)||
       \\ deta       /                 \ deta       //

         /  d         \\    
   + 1.0 |----- f(eta)|| = 0
         \ deta       //    
                                       /                         
        /  d   /  d             \\     |/  d   /  d             \
(1 - p) |----- |----- theta(eta)|| + p ||----- |----- theta(eta)|
        \ deta \ deta           //     \\ deta \ deta           /

  \               /  d             \
  | + 10 R f(eta) |----- theta(eta)|
  /               \ deta           /

         /  d           \ /  d             \
   + 0.1 |----- phi(eta)| |----- theta(eta)|
         \ deta         / \ deta           /

                           2\    
         /  d             \ |    
   + 0.1 |----- theta(eta)| | = 0
         \ deta           / /    
        //  d   /  d           \\
(1 - p) ||----- |----- phi(eta)||
        \\ deta \ deta         //

                 /  d   /  d             \\\     //  d   /  d   
   + 1.000000000 |----- |----- theta(eta)||| + p ||----- |-----
                 \ deta \ deta           ///     \\ deta \ deta

          \\                /  d           \
  phi(eta)|| + 0.5 R f(eta) |----- phi(eta)|
          //                \ deta         /

                 /  d   /  d             \\\    
   + 1.000000000 |----- |----- theta(eta)||| = 0
                 \ deta \ deta           ///    
f(eta)=sum(f[i](eta)*p^i,i=0..1);
                f(eta) = f[0](eta) + f[1](eta) p
g(eta)=sum(g[i](eta)*p^i,i=0..1);
                g(eta) = g[0](eta) + g[1](eta) p
theta(eta)=sum(theta[i](eta)*p^i,i=0..1);
          theta(eta) = theta[0](eta) + theta[1](eta) p
phi(eta)=sum(phi[i](eta)*p^i,i=0..1);
             phi(eta) = phi[0](eta) + phi[1](eta) p
> FORequ1;


A:=collect(expand(subs(f(eta)=f[0](eta)+f[1](eta)*p,g(eta)=g[0](eta)+g[1](eta)*p,hpm1)),p);
/      /  d            \ /  d   /  d            \\
|-1. R |----- f[1](eta)| |----- |----- f[1](eta)||
\      \ deta          / \ deta \ deta          //

                 /  d   /  d            \\\  3   /
   + R f[1](eta) |----- |----- f[1](eta)||| p  + |
                 \ deta \ deta          ///      \
      /  d            \ /  d   /  d            \\
-1. R |----- f[0](eta)| |----- |----- f[1](eta)||
      \ deta          / \ deta \ deta          //

          /  d            \ /  d   /  d            \\
   - 1. R |----- f[1](eta)| |----- |----- f[0](eta)||
          \ deta          / \ deta \ deta          //

                 /  d   /  d            \\
   + R f[0](eta) |----- |----- f[1](eta)||
                 \ deta \ deta          //

                 /  d   /  d            \\\  2   //  d   /  d   /
   + R f[1](eta) |----- |----- f[0](eta)||| p  + ||----- |----- |
                 \ deta \ deta          ///      \\ deta \ deta \

    d   /  d            \\\\       /  d            \
  ----- |----- f[1](eta)|||| - 1.0 |----- g[1](eta)|
   deta \ deta          ////       \ deta          /

          /  d            \ /  d   /  d            \\
   - 1. R |----- f[0](eta)| |----- |----- f[0](eta)||
          \ deta          / \ deta \ deta          //

                 /  d   /  d            \\\  
   + R f[0](eta) |----- |----- f[0](eta)||| p
                 \ deta \ deta          ///  

     /  d   /  d   /  d   /  d            \\\\
   + |----- |----- |----- |----- f[0](eta)||||
     \ deta \ deta \ deta \ deta          ////

         /  d            \    
   - 1.0 |----- g[0](eta)| = 0
         \ deta          /    
A1:=diff(f[0](eta),eta$4)-2*K[r]*(diff(g[0](eta),eta))=0;
A2:=diff(f[1](eta),eta$4)-2*K[r]*(diff(g[1](eta),eta))-R*(diff(f[0](eta),eta))*(diff(f[0](eta),eta$2))+R*f[0](eta)*(diff(f[0](eta),eta$2))=0;
/  d   /  d   /  d   /  d            \\\\       /  d            \   
|----- |----- |----- |----- f[0](eta)|||| - 1.0 |----- g[0](eta)| =
\ deta \ deta \ deta \ deta          ////       \ deta          /   

  0
/  d   /  d   /  d   /  d            \\\\       /  d            \
|----- |----- |----- |----- f[1](eta)|||| - 1.0 |----- g[1](eta)|
\ deta \ deta \ deta \ deta          ////       \ deta          /

       /  d            \ /  d   /  d            \\
   - R |----- f[0](eta)| |----- |----- f[0](eta)||
       \ deta          / \ deta \ deta          //

                 /  d   /  d            \\    
   + R f[0](eta) |----- |----- f[0](eta)|| = 0
                 \ deta \ deta          //    
icsA1:=f[0](0)=0,D(f[0])(0)=1,g[0](0)=0,f[0](1)=lambda,D(f[0])(1)=0,g[0](1)=0;
icsA2:=f[1](0)=0,D(f[1])(0)=0,g[1](0)=0,f[1](1)=0,D(f[1])(1)=0,g[1](1)=0;
   f[0](0) = 0, D(f[0])(0) = 1, g[0](0) = 0, f[0](1) = 0.5,

     D(f[0])(1) = 0, g[0](1) = 0
    f[1](0) = 0, D(f[1])(0) = 0, g[1](0) = 0, f[1](1) = 0,

      D(f[1])(1) = 0, g[1](1) = 0
>
FORequ2;


B:=collect(expand(subs(f(eta)=f[0](eta)+f[1](eta)*p,g(eta)=g[0](eta)+g[1](eta)*p,hpm2)),p);
/      /  d            \          
|-1. R |----- f[1](eta)| g[1](eta)
\      \ deta          /          

                 /  d            \\  3   /
   + R f[1](eta) |----- g[1](eta)|| p  + |
                 \ deta          //      \
      /  d            \          
-1. R |----- f[0](eta)| g[1](eta)
      \ deta          /          

          /  d            \          
   - 1. R |----- f[1](eta)| g[0](eta)
          \ deta          /          

                 /  d            \
   + R f[0](eta) |----- g[1](eta)|
                 \ deta          /

                 /  d            \\  2   //  d   /  d            
   + R f[1](eta) |----- g[0](eta)|| p  + ||----- |----- g[1](eta)
                 \ deta          //      \\ deta \ deta          

  \\       /  d            \        /  d            \          
  || + 1.0 |----- f[1](eta)| - 1. R |----- f[0](eta)| g[0](eta)
  //       \ deta          /        \ deta          /          

                 /  d            \\     /  d   /  d            \\
   + R f[0](eta) |----- g[0](eta)|| p + |----- |----- g[0](eta)||
                 \ deta          //     \ deta \ deta          //

         /  d            \    
   + 1.0 |----- f[0](eta)| = 0
         \ deta          /    
B1:=diff(g[0](eta),eta$2)+2*K[r]*(diff(f[0](eta),eta))=0;
B2:=diff(g[1](eta),eta$2)+2*K[r]*(diff(f[1](eta),eta))-R*(diff(f[0](eta),eta))*g[0](eta)+R*f[0](eta)*(diff(g[0](eta),eta))=0;
     /  d   /  d            \\       /  d            \    
     |----- |----- g[0](eta)|| + 1.0 |----- f[0](eta)| = 0
     \ deta \ deta          //       \ deta          /    
       /  d   /  d            \\       /  d            \
       |----- |----- g[1](eta)|| + 1.0 |----- f[1](eta)|
       \ deta \ deta          //       \ deta          /

              /  d            \          
          - R |----- f[0](eta)| g[0](eta)
              \ deta          /          

                        /  d            \    
          + R f[0](eta) |----- g[0](eta)| = 0
                        \ deta          /    
icsB1:=f[0](0)=0,D(f[0])(0)=1,g[0](0)=0,f[0](1)=lambda,D(f[0])(1)=0,g[0](1)=0;
icsB2:=f[1](0)=0,D(f[1])(0)=0,g[1](0)=0,f[1](1)=0,D(f[1])(1)=0,g[1](1)=0;
   f[0](0) = 0, D(f[0])(0) = 1, g[0](0) = 0, f[0](1) = 0.5,

     D(f[0])(1) = 0, g[0](1) = 0
    f[1](0) = 0, D(f[1])(0) = 0, g[1](0) = 0, f[1](1) = 0,

      D(f[1])(1) = 0, g[1](1) = 0
> FORequ3;


C:=collect(expand(subs(theta(eta)=theta[0](eta)+theta[1](eta)*p,phi(eta)=phi[0](eta)+phi[1](eta)*p,f(eta)=f[0](eta)+f[1](eta)*p,hpm3)),p);
 /                                     
 |                /  d                \
 |10. R f[1](eta) |----- theta[1](eta)|
 \                \ deta              /

          /  d              \ /  d                \
    + 0.1 |----- phi[1](eta)| |----- theta[1](eta)|
          \ deta            / \ deta              /

                               2\                              
          /  d                \ |  3   /                /  d   
    + 0.1 |----- theta[1](eta)| | p  + |10. R f[0](eta) |-----
          \ deta              / /      \                \ deta

                \                   /  d                \
   theta[1](eta)| + 10. R f[1](eta) |----- theta[0](eta)|
                /                   \ deta              /

          /  d              \ /  d                \
    + 0.1 |----- phi[0](eta)| |----- theta[1](eta)|
          \ deta            / \ deta              /

          /  d              \ /  d                \
    + 0.1 |----- phi[1](eta)| |----- theta[0](eta)|
          \ deta            / \ deta              /

                                                            /
          /  d                \ /  d                \\  2   |/
    + 0.2 |----- theta[0](eta)| |----- theta[1](eta)|| p  + ||
          \ deta              / \ deta              //      \\

     d   /  d                \\
   ----- |----- theta[1](eta)||
    deta \ deta              //

                      /  d                \
    + 10. R f[0](eta) |----- theta[0](eta)|
                      \ deta              /

          /  d              \ /  d                \
    + 0.1 |----- phi[0](eta)| |----- theta[0](eta)|
          \ deta            / \ deta              /

                               2\  
          /  d                \ |  
    + 0.1 |----- theta[0](eta)| | p
          \ deta              / /  

      /  d   /  d                \\    
    + |----- |----- theta[0](eta)|| = 0
      \ deta \ deta              //    
C1:=diff(theta[0](eta),eta$2)=0;
C2:=diff(theta[1](eta), eta, eta)+Pr*R*f[0](eta)*(diff(theta[0](eta), eta))+Nb*(diff(phi[0](eta), eta))*(diff(theta[0](eta), eta))+Nt*(diff(theta[0](eta), eta))^2=0;
                  d   /  d                \    
                ----- |----- theta[0](eta)| = 0
                 deta \ deta              /    
       /  d   /  d                \\
       |----- |----- theta[1](eta)||
       \ deta \ deta              //

                           /  d                \
          + 10 R f[0](eta) |----- theta[0](eta)|
                           \ deta              /

                /  d              \ /  d                \
          + 0.1 |----- phi[0](eta)| |----- theta[0](eta)|
                \ deta            / \ deta              /

                                     2    
                /  d                \     
          + 0.1 |----- theta[0](eta)|  = 0
                \ deta              /     
icsC1:=theta[0](0)=1,theta[0](1)=0;
icsC2:=theta[1](0)=0,theta[1](1)=0,phi[0](0)=0,phi[0](1)=0;
                theta[0](0) = 1, theta[0](1) = 0
 theta[1](0) = 0, theta[1](1) = 0, phi[0](0) = 0, phi[0](1) = 0
> FORequ4;


E:=collect(expand(subs(theta(eta)=theta[0](eta)+theta[1](eta)*p,phi(eta)=phi[0](eta)+phi[1](eta)*p,f(eta)=f[0](eta)+f[1](eta)*p,hpm4)),p);
                 3 /  d              \   /                /  d   
0.5 R f[1](eta) p  |----- phi[1](eta)| + |0.5 R f[0](eta) |-----
                   \ deta            /   \                \ deta

             \                   /  d              \\  2   //
  phi[1](eta)| + 0.5 R f[1](eta) |----- phi[0](eta)|| p  + ||
             /                   \ deta            //      \\

    d   /  d              \\
  ----- |----- phi[1](eta)||
   deta \ deta            //

                 /  d   /  d                \\
   + 1.000000000 |----- |----- theta[1](eta)||
                 \ deta \ deta              //

                     /  d              \\  
   + 0.5 R f[0](eta) |----- phi[0](eta)|| p
                     \ deta            //  

     /  d   /  d              \\
   + |----- |----- phi[0](eta)||
     \ deta \ deta            //

                 /  d   /  d                \\    
   + 1.000000000 |----- |----- theta[0](eta)|| = 0
                 \ deta \ deta              //    
E1:=diff(phi[0](eta),eta$2)+Nt*(diff(theta[0](eta),eta$2))/Nb=0;
E2:=diff(phi[1](eta),eta$2)+Nt*(diff(theta[1](eta),eta$2))/Nb+R*Sc*f[0](eta)*(diff(phi[0](eta),eta))=0;
       /  d   /  d              \\
       |----- |----- phi[0](eta)||
       \ deta \ deta            //

                        /  d   /  d                \\    
          + 1.000000000 |----- |----- theta[0](eta)|| = 0
                        \ deta \ deta              //    
         /  d   /  d              \\
         |----- |----- phi[1](eta)||
         \ deta \ deta            //

                          /  d   /  d                \\
            + 1.000000000 |----- |----- theta[1](eta)||
                          \ deta \ deta              //

                              /  d              \    
            + 0.5 R f[0](eta) |----- phi[0](eta)| = 0
                              \ deta            /    
icsE1:=theta[0](0)=1,theta[0](1)=0,phi[0](0)=1,phi[0](1)=0;
icsE2:=theta[1](0)=0,theta[1](1)=0,phi[1](0)=0,phi[1](1)=0;
 theta[0](0) = 1, theta[0](1) = 0, phi[0](0) = 1, phi[0](1) = 0
 theta[1](0) = 0, theta[1](1) = 0, phi[1](0) = 0, phi[1](1) = 0
       
theta[0](eta) = -(152675527/100000000)*eta+1;
                                152675527        
              theta[0](eta) = - --------- eta + 1
                                100000000        
U:=f[1](eta)=0;
                         f[1](eta) = 0
Dsolve(A1,B1,icsA1,icsB1);
                  Dsolve(A1, B1, icsA1, icsB1)


sys:={ diff(g[0](eta), eta, eta)+1.0*(diff(f[0](eta), eta)) = 0, diff(f[0](eta), eta, eta, eta, eta)-1.0*(diff(g[0](eta), eta)) = 0};
    //  d   /  d   /  d   /  d            \\\\
   { |----- |----- |----- |----- f[0](eta)||||
    \\ deta \ deta \ deta \ deta          ////

            /  d            \      
      - 1.0 |----- g[0](eta)| = 0,
            \ deta          /      

     /  d   /  d            \\       /  d            \    \
     |----- |----- g[0](eta)|| + 1.0 |----- f[0](eta)| = 0 }
     \ deta \ deta          //       \ deta          /    /
IC_1:={ f[0](0) = 0, (D(f[0]))(0) = 1, g[0](0) = 0, f[0](1) = .5, (D(f[0]))(1) = 0, g[0](1) = 0,f[0](0) = 0, (D(f[0]))(0) = 1, g[0](0) = 0, f[0](1) = .5, (D(f[0]))(1) = 0, g[0](1) = 0};
    {f[0](0) = 0, f[0](1) = 0.5, g[0](0) = 0, g[0](1) = 0,

      D(f[0])(0) = 1, D(f[0])(1) = 0}
ans1 := combine(dsolve(sys union IC_1,{f[0](eta),g[0](eta)}),trig);
Error, (in dsolve) expecting an ODE or a set or list of ODEs. Received `union`(IC_1, sys)
>
 

using worksheet mode, is there a way to automatically color any comments after (#) with a different color than the default red?

I have been using Maple for years and did not need to significantly document or comment on my worksheets before because I only needed to share my worksheets with close collegues who have a lot of experience with Maple too. However, now I need to share my code with a general audience that might not be a Maple user. So I need to add enough comments after each line, and I have been manually changing the color of comments after the # to green to give the reader the indication that this is a comment and not part of the code, like this for example:

 

restart;

f:=(x,y)->sin(sqrt(x^2+y^2))/sqrt(x^2+y^2); # Define f as a function of the variables x and y

proc (x, y) options operator, arrow; sin(sqrt(x^2+y^2))/sqrt(x^2+y^2) end proc

(1)

df:=(x,y)->eval(diff(f(a,y),a),a=x); # Define df as the partial derivative of f with respect to x

proc (x, y) options operator, arrow; eval(diff(f(a, y), a), a = x) end proc

(2)

df(1,3); # Evaluate df at x=1, y=3

(1/10)*cos(10^(1/2))-(1/100)*sin(10^(1/2))*10^(1/2)

(3)

 

 

Download Worksheet-coloring-comments.mw



It would be great if Maple can automatically color comments like typical editors do. Is this possible? if not, does anyone have an advice for a nice easy way to add proper documentation to worksheets?

 

For many years I succesfully used the command:

Lambda := ImportMatrix(LambdaFile, delimiter = "", datatype = string);

 

but for some txt files I now got the following error in Maple 2016:
Error, (in ImportMatrix) cannot interpret file

The same code still runs without problems at all in previous versions of Maple.

The strange thing is that other txt files can be still be imported in Maple 2016 without problems.

I will upload two files:

ULSlx3.txt returns an error message

ULStd3.txt no problems

ULSlx3.txt

ULStd3.txt

complete code:

restart;
with(LinearAlgebra); with(Statistics);
interface(rtablesize = infinity);
with(Typesetting):
interface(typesetting=extended):

LambdaFile := "C:/path/ULSlx3.txt";
Lambda := Matrix(5, 1);

in the whatsnew there is no information on changes with respect to the ImportMatrix command, although there is some (unrelated) information on Importing Data:

Importing Data
By default, the Import command now returns a DataFrame when importing from Excel, CSV, DIF, and TSV file formats, and returns a DataSeries when importing from ODS, SXC, and TSV file formats. Use the output option to specify a different format. For example, Import(origin, output=Matrix).

 

I have no clue what is wrong with my code and why some text files can be imported as before whereas other files returns an error message.

greetings Harry

In using Maple there are many ways to complete a command on a function. Using shortcuts in the worksheet/document you can enter the command on the line rather than using the drop down menus or clickable math menu.  I would like to see what the shortcut command are for the packages in Maple.  There are so many, I am using the LinearAlgebra package and have seen Dr. Lopez use " ||A||2 to determine the Euclidean Norm of A.  But where does this use get described in the help or examples of other shortcut usage for Maple. I've seen the shortcut commands for Documents in General, but the use of shortcut commands for other packages  don't seem to discuss the usage of such shortcuts.

Is there a document that documents these shortcuts.

 

I am curious, can simplify/siderels be executed in mod p by some equivalent Maple function call?

 

With the following equation

eqn:=y=1/2+(1/2)*erf((1/2)*sqrt(2)*(x-mu)/sigma)-exp(-lambda*(x-mu)+(1/2)*lambda^2*sigma^2+ln(1/2-(1/2)*erf((1/2)*sqrt(2)*(lambda^2*sigma^2-lambda*(x-mu))/(lambda*sigma))));

and with

x:=solve(eqn,x) assuming sigma > 0, lambda > 0;

I got the following solution

x := -(1/2)*(-lambda^2*sigma^2-2*lambda*mu+2*RootOf(-exp(_Z)*erf((1/4)*sqrt(2)*(lambda^2*sigma^2+2*_Z)/(lambda*sigma))+exp(_Z)+erf((1/4)*sqrt(2)*(-lambda^2*sigma^2+2*_Z)/(lambda*sigma))+2*y-1))/lambda;

In order to get rid of RootOf I gave the command:

allvalues(%);

However, RootOf did not disappear. How should I proceed? 

 

hi

if possible to convert matlab file in to maple fie program??convert_to_maple_program.txt

thanks

 

this is the matlab is it possible to rewrite it in simple maple code

J = rand()+1e-10;

function [M, num, E] = ising(N,J)

B = 0;

M = []; % The total magnetic field of the system

E = []; % The total energy of the system

randTol = 0.1; % The tolerance, dampens the spin flip process

% First we generate a random initial configuration

spin = (-1).^(round(rand(N)));

% Then we let the system evolve for a fixed number of steps

for i=1:1000,

% Calculating the total spin of neighbouring cells

neighbours = circshift(spin, [ 0 1]) + ...

circshift(spin, [ 0 -1]) + ...

circshift(spin, [ 1 0]) + ...

circshift(spin, [-1 0]);

% Calculate the change in energy of flipping a spin

DeltaE = 2 * (J*(spin .* neighbours) + B*spin);

% Calculate the transition probabilities

p_trans = exp(-DeltaE);

% Decide which transitions will occur

transitions = (rand(N) < p_trans ).*(rand(N) < randTol) * -2 + 1;

% Perform the transitions

spin = spin .* transitions;

% Sum up our variables of interest

M = sum(sum(spin));

E = -sum(sum(DeltaE))/2; % Divide by two because of double counting

% Display the current state of the system (optional)

image((spin+1)*128);

xlabel(sprintf('J = %0.2f, M = %0.2f, E = %0.2f', J, M/N^2, E/N^2));

set(gca,'YTickLabel',[],'XTickLabel',[]);

axis square; colormap bone; drawnow;

end

% Count the number of clusters of 'spin up' states

[L, num] = bwlabel(spin == 1, 4);

############################# 

hi.please help me for remove error'' 

Error, illegal use of an object as a name''

 

thanks

PLATE.mw

   

Parse:-ConvertTo1D, "first argument to _Inert_ASSIGN must be assignable"

Error, illegal use of an object as a name

"restart:Digits :=15: beta:=10:alpha:=100: xi:=.5: upsilon:=0.2841945289:n:=3: aa:=1:b:=1:N_x:=0.4:N_y:=0.4:N_xy:=0: hl2:=1:mu:=65.8e9:E:=169e9: delta0:=1:delta1:=1: mus:=3:D1:=2;h:=1: lambda:=0.1: D2:=5:A1:=-2:A2:=-2:A3:=-6:A4:=7:A5:=7:A6:=7:A7:=7:A8:=8:A9:=7:A10:=7:A11:=1: A12:=1:tau:=4.730040745:t:=0: g2:=sin(theta):g3:=cos(theta):g1:=cos(theta):a:=0.0:with(Student[Calculus1]): a1:=evalf((A1*ApproximateInt(g3^2,theta=a..1,method=simpson)  ) ) : a2:= evalf(A2*ApproximateInt(g3*((&DifferentialD;)^2)/((&DifferentialD;theta)^2)g3,theta=a..1,method=simpson)): a3:=evalf(A3*ApproximateInt(g3*g3,theta=a..1,method=simpson)) : a4:=evalf(A4*ApproximateInt(g3*g3,theta=a..1,method=simpson)) :a5:=evalf(A5*ApproximateInt(g3^2,theta=a..1,method=simpson)) : a6:=evalf(A6*ApproximateInt(((&DifferentialD;)^2)/((&DifferentialD;theta)^2)g3*g3,theta=a..1,method=simpson)) :a7:=evalf(A7*ApproximateInt(g3*g3,theta=a..1,method=simpson)): a8:=evalf(A8*ApproximateInt(g3^2,theta=a..1,method=simpson)):a9:=evalf(ApproximateInt(A9*(g3*g3 )     ,theta=a..1,method=simpson)) :a10:=evalf(A10*ApproximateInt(g3*g3,theta=a..1,method=simpson)):a11:=evalf(ApproximateInt(1,theta=a..1,method=simpson)):a12:=evalf(ApproximateInt(1*(1-1/2 (1)),theta=a..1,method=simpson)):dsys3 := { f3(x)*(a1)+ f3(x)*(a2)  +((&DifferentialD;)^2)/((&DifferentialD;x)^2) f3(x)*(a3) +f3(x)*a4+ f3(x)*(a5) +((&DifferentialD;)^2)/((&DifferentialD;x)^2) f3(x)*(a6) +f3(x)*a7= ((&DifferentialD;)^2)/((&DifferentialD;x)^2) f3(x) *(a8)   + a9*(&DifferentialD;)/(&DifferentialD;x) f3(x) +f3(x)*a10+ a11+a12  , f3(1) =0,f3(0) =0 , D^(1)(f3)(1) = 0, D^(1)(f3)(0)=0,D^(3)(f3)(1) = 0, D^(3)(f3)(0)=0}    :dsol5 := dsolve(dsys3, 'maxmesh'=2024, numeric,abserr=.0001, range=0..1, output=listprocedure):fy3:= eval(f3(x),dsol5):with(CurveFitting):fy33:=PolynomialInterpolation([[0,fy3(0)],[.1,fy3(0.1)],[.2,fy3(0.2)],[0.3,fy3(0.3)],[.4,fy3(0.4)],[.5,fy3(0.5)],[0.6,fy3(0.6)],[0.7,fy3(0.7)],[0.8,fy3(0.8)],[0.9,fy3(0.9)],[1,fy3(1)]],x): d1:=A1*ApproximateInt(((&DifferentialD;)^6)/((&DifferentialD;x)^6)fy33*fy33,x=a..1,method=simpson)   :d2:= A2*ApproximateInt(((&DifferentialD;)^4)/((&DifferentialD;x)^4)fy33*fy33 ,x=a..1,method=simpson)   :d3:=A3*ApproximateInt(((&DifferentialD;)^2)/((&DifferentialD;x)^2)fy33*fy33,x=a..1,method=simpson): d4:= A4*ApproximateInt(fy33*fy33,x=a..1,method=simpson):d5:=A5*ApproximateInt(((&DifferentialD;)^4)/((&DifferentialD;x)^4)fy33*fy33,x=a..1,method=simpson)  : d6:=A6*ApproximateInt(((&DifferentialD;)^2)/((&DifferentialD;x)^2)fy33*fy33,x=a..1,method=simpson)    :d7:=A7*ApproximateInt(fy33*fy33,x=a..1,method=simpson)  :d8:=A8*ApproximateInt(((&DifferentialD;)^2)/((&DifferentialD;x)^2)fy33*fy33,x=a..1,method=simpson)      :d9:=ApproximateInt(A9*(((&DifferentialD;)^1)/((&DifferentialD;x)^1)fy33*fy33 )   ,x=a..1,method=simpson) :d10:=A10*ApproximateInt(fy33*fy33,x=a..1,method=simpson)    :d11:=evalf(ApproximateInt(1,theta=a..1,method=simpson)):d12:=evalf(ApproximateInt(1*(1-1/2 (1)),theta=a..1,method=simpson))  : d sys4 := { h3(theta)*(d1)+((&DifferentialD;)^2)/((&DifferentialD;theta)^2) h3(theta)*(d2)+((&DifferentialD;)^4)/((&DifferentialD;theta)^4) h3(theta)*(d3)+ ((&DifferentialD;)^6)/((&DifferentialD;theta)^6) h3(theta)*(d4)+h3(theta) *(d5)+ h3(theta) *(d6) +((&DifferentialD;)^4)/((&DifferentialD;theta)^4) h3(theta)*(d7)= h3(theta)*(d8)  +d9*(&DifferentialD;)/(&DifferentialD;theta) h3(theta)  +((&DifferentialD;)^2)/((&DifferentialD;theta)^2) h3(theta)*(d10)  +d11+d12   ,h3(1) = 0,h3(0) = 0 , D^(1)(h3)(1) = 0, D^(1)(h3)(0)=0,D^(3)(h3)(1) = 0, D^(3)(h3)(0)=0}  :dsol6 := dsolve(dsys4, 'maxmesh'=2024, abserr=.0001, range=0..1, numeric, output=listprocedure):g33:= eval(h3(theta),dsol6):with(CurveFitting):g3:=PolynomialInterpolation([[0,g33(0)],[.1,g33(0.1)],[.2,g33(0.2)],[0.3,g33(0.3)],[.4,g33(0.4)],[.5,g33(0.5)],[0.6,g33(0.6)],[0.7,g33(0.7)],[0.8,g33(0.8)],[0.9,g33(0.9)],[1,g33(1)]],theta):"

 

 

``

 

Download PLATE.mw

Hi

Hope a nice day for all

restart;

#  *%   define the product of between two operators, and q real number
a*%b = q*b*%a+1;

# First I would like to give a simple for

 a^n*%b;
# and                                    
a*%b^n;

them deduce a general for                                      

b^n*%a^k*%b^N*%a^K-q^(k*N-n*K)*b^N*%a^K*%b^n*%a^k;

 where n, k and k greater than 1 and  n geater than k

Simplification.mw

 

Thanks for your help


 


How can i over come convergence error, i am unable to apply approxsoln appropriately and continouation as well. regards

N := 5;

-(1/2)*Pr*n*x*(diff(f(x), x))*(diff(theta(x), x))-(1/2)*Pr*(n+1)*f(x)*(diff(theta(x), x))-(1/2)*(n+1)*(diff(diff(theta(x), x), x))+Pr*gamma*((1/4)*(n^2-3*n+3)*x^2*(diff(f(x), x))*(diff(diff(f(x), x), x))*(diff(theta(x), x))+(1/4)*(2*n^2+5*n+3)*f(x)*(diff(f(x), x))*(diff(theta(x), x))+(1/4)*n(n+1)*x*f(x)*(diff(diff(f(x), x), x))*(diff(theta(x), x))+(1/4)*(2*n^2+3*n-3)*x*(diff(f(x), x))^2*(diff(theta(x), x))+(1/4)*(n-1)*x^2*(diff(diff(f(x), x), x))*(diff(theta(x), x))+(1/2)*n*(n+1)*x*f(x)*(diff(f(x), x))*(diff(diff(theta(x), x), x))+(1/4)*(n^2-1)*(diff(f(x), x))^2*(diff(theta(x), x))+(1/4)*(n+1)^2*f(x)^2*(diff(diff(theta(x), x), x))+(1/4)*(n-1)^2*x^2*(diff(f(x), x))^2*(diff(diff(theta(x), x), x))) = 0

(1)

bc := (D(theta))(0) = -Bi*(1-theta(0)), theta(N) = 0, f(0) = 0, (D(f))(0) = 0, (D(f))(N) = 1;

(D(theta))(0) = -Bi*(1-theta(0)), theta(5) = 0, f(0) = 0, (D(f))(0) = 0, (D(f))(5) = 1

(2)

a1 := dsolve(subs(beta = .1, n = .5, Pr = 10, gamma = .1, Bi = 50, {bc, eq1, eq2}), numeric, method = bvp[midrich], abserr = 10^(-8), output = array([seq(.1*i, i = 0 .. 10*N)]))

Error, (in dsolve/numeric/BVPSolve) initial Newton iteration is not converging

 

``

 

Download ehtasham.mwehtasham.mw

Dear All

Using Lie algebra package in Maple we can easily find nilradical for given abstract algebra, but how we can find all the ideal in lower central series by taking new basis as nilradical itself?

Please see following;

 

with(DifferentialGeometry); with(LieAlgebras)

DGsetup([x, y, t, u, v])

`frame name: Euc`

(1)
Euc > 

VectorFields := evalDG([D_v, D_v*x+D_y*t, 2*D_t*t-2*D_u*u-D_v*v+D_y*y, t*D_v, D_v*y+D_u, D_t, D_x, D_x*t+D_u, 2*D_v*x+D_x*y, -D_t*t+2*D_u*u+2*D_v*v+D_x*x, D_y])

[_DG([["vector", "Euc", []], [[[5], 1]]]), _DG([["vector", "Euc", []], [[[2], t], [[5], x]]]), _DG([["vector", "Euc", []], [[[2], y], [[3], 2*t], [[4], -2*u], [[5], -v]]]), _DG([["vector", "Euc", []], [[[5], t]]]), _DG([["vector", "Euc", []], [[[4], 1], [[5], y]]]), _DG([["vector", "Euc", []], [[[3], 1]]]), _DG([["vector", "Euc", []], [[[1], 1]]]), _DG([["vector", "Euc", []], [[[1], t], [[4], 1]]]), _DG([["vector", "Euc", []], [[[1], y], [[5], 2*x]]]), _DG([["vector", "Euc", []], [[[1], x], [[3], -t], [[4], 2*u], [[5], 2*v]]]), _DG([["vector", "Euc", []], [[[2], 1]]])]

(2)
Euc > 

L1 := LieAlgebraData(VectorFields)

_DG([["LieAlgebra", "L1", [11]], [[[1, 3, 1], -1], [[1, 10, 1], 2], [[2, 3, 2], -1], [[2, 5, 4], 1], [[2, 6, 11], -1], [[2, 7, 1], -1], [[2, 8, 4], -1], [[2, 9, 5], -1], [[2, 9, 8], 1], [[2, 10, 2], 1], [[3, 4, 4], 3], [[3, 5, 5], 2], [[3, 6, 6], -2], [[3, 8, 8], 2], [[3, 9, 9], 1], [[3, 11, 11], -1], [[4, 6, 1], -1], [[4, 10, 4], 3], [[5, 10, 5], 2], [[5, 11, 1], -1], [[6, 8, 7], 1], [[6, 10, 6], -1], [[7, 9, 1], 2], [[7, 10, 7], 1], [[8, 9, 4], 2], [[8, 10, 8], 2], [[9, 10, 9], 1], [[9, 11, 7], -1]]])

(3)
Euc > 

DGsetup(L1)

`Lie algebra: L1`

(4)
L1 > 

MultiplicationTable("LieTable"):

L1 > 

N := Nilradical(L1)

[_DG([["vector", "L1", []], [[[1], 1]]]), _DG([["vector", "L1", []], [[[2], 1]]]), _DG([["vector", "L1", []], [[[4], 1]]]), _DG([["vector", "L1", []], [[[5], 1]]]), _DG([["vector", "L1", []], [[[6], 1]]]), _DG([["vector", "L1", []], [[[7], 1]]]), _DG([["vector", "L1", []], [[[8], 1]]]), _DG([["vector", "L1", []], [[[9], 1]]]), _DG([["vector", "L1", []], [[[11], 1]]])]

(5)
L1 > 

Query(N, "Nilpotent")

true

(6)
L1 > 

Query(N, "Solvable")

true

(7)

Taking N as new basis , how we can find all ideals in lower central series of this solvable ideal N?

 

Download [944]_Structure_of_Lie_algebra.mw

Regards

I have Maple 2016 on Ubuntu 16.04.  I get an error message when attempting to plot with an x11 device, that means I have missing fonts.

I do not get this error message on Ubuntu14.04, so, I think the difference is in fonts installed.

plotsetup(x11)

> plot([sin(x),cos(x)],x=-Pi..Pi);
> Maple X driver failure:BadName (named color or font does not exist)Warning: Cannot convert string "-adobe-helvetica-bold-r-normal--14-*" to type FontStruct
Warning: Cannot convert string "-adobe-helvetica-medium-r-normal--14-*" to type FontStruct

I have xfonts-100dpi and xfonts-75dpi installed.

Any idea what fonts I need to fix this?

 

Tom Dean

i'm using maple in a research but i want to add a recursive function h_m(t) in 2 case : if m is integer positive and not, 
la formule est donnée comme suit :  if (mod(m,1) = 0  and m>0) then  h:=proc(m,t)  local  t ;  h[0,t]:=t ;   for  i from -4 to  m  by  2 do  h [m,t]:= h[0, t]-(GAMMA(i/(2)))/(2*GAMMA((i+1)/(2)))*cos(Pi*t)*sin(Pi*t)  od:  fi:  end; 
  if (mod(m,1) = 0  and m>0) then  h:=proc(m,t)  local  t ;  h[0,t]:=t ;   for  i from -4 to  m  by  2 do  h [m,t]:= h[0, t]-(GAMMA(i/(2)))/(2*GAMMA((i+1)/(2)))*cos(Pi*t)*sin(Pi*t)  od:  fi:  end;
and i wanna to know how to programmate a Gaus Hypegeometric function. Thank You

 

First 189 190 191 192 193 194 195 Last Page 191 of 362