Unanswered Questions

This page lists MaplePrimes questions that have not yet received an answer

The nice addition added to Maple 2022 in this  post made it clear that c__1 and _C1 are the same under the cover.

But then why in Maple 2025.1 it does not give this?

I found this when I was trying to find constants of integrations in solution of an ode, and used 

                 indets(sol,And(symbol, suffixed(_C, nonnegint))); 

Which did not find the constants of integration, since I happened to have typed the solution using c__1 and not _C1, but I thought they are the same.

Did something change or I still dont understand well the difference between c__1 and _C1 ?

Worksheet below.

interface(version);

`Standard Worksheet Interface, Maple 2025.1, Linux, June 12 2025 Build ID 1932578`

SupportTools:-Version();

`The Customer Support Updates version in the MapleCloud is 29 and is the same as the version installed in this computer, created June 23, 2025, 10:25 hours Eastern Time.`

Physics:-Version();

`The "Physics Updates" version in the MapleCloud is 1881 and is the same as the version installed in this computer, created 2025, October 7, 16:4 hours Pacific Time.`

restart;

sol:= y(x)=-cos(x)/2+sin(x)/2+c__1*exp(-x);
indets(sol,And(symbol, suffixed(_C, nonnegint)));

y(x) = -(1/2)*cos(x)+(1/2)*sin(x)+c__1*exp(-x)

{}

sol:= y(x)=-cos(x)/2+sin(x)/2+c__1*exp(-x);
indets(sol,And(symbol, suffixed(c__, nonnegint)));

y(x) = -(1/2)*cos(x)+(1/2)*sin(x)+c__1*exp(-x)

{c__1}

sol:= y(x)=-cos(x)/2+sin(x)/2+_C1*exp(-x);
indets(sol,And(symbol, suffixed(c__, nonnegint)));

y(x) = -(1/2)*cos(x)+(1/2)*sin(x)+_C1*exp(-x)

{}

sol:= y(x)=-cos(x)/2+sin(x)/2+_C1*exp(-x);
indets(sol,And(symbol, suffixed(_C, nonnegint)));

y(x) = -(1/2)*cos(x)+(1/2)*sin(x)+_C1*exp(-x)

{_C1}

c__1 - _C1

c__1-_C1

addressof(c__1);

36893628553737883996

addressof(_C1);

36893628553623934140

 


 

Download why_c1_and_C1_not_same_oct_19_2025.mw

Update

Found out why. This only works if one calls dsolve() first.  Here is an example

sol:=dsolve(diff(y(x),x)=x)

y(x) = (1/2)*x^2+c__1

c__1 - _C1;

0

indets(sol,And(symbol, suffixed(_C, nonnegint)));

{c__1}

restart;

my_sol:=y(x)=(x^2)/2+c__1;

y(x) = (1/2)*x^2+c__1

c__1 - _C1;

c__1-_C1

indets(my_sol,And(symbol, suffixed(_C, nonnegint)));

{}

 

 

Download why_c1_and_C1_not_same_oct_19_2025_V1.mw

But this is really confusing. c__1 before calling dsolve is not the same as c__1 after calling dsolve.

It will be better if Maple is changed such that these work the same all the time without having to call dsolve() first.

 

 

 

With the new ribbon interface (and startup-page disabled) I need to open a new worksheet to make opening files by the recent document menu work.

Can someone reproduce this?

I am attempting to solve an optimization problem using the Karush–Kuhn–Tucker (KKT) conditions, where the objective function is to be maximized subject to a constraint that may or may not be binding. However, when solving the system, the KKT multiplier (μ1​) consistently evaluates to zero, even when the constraint appears to be active. I am unable to determine the optimal value of μ1​ and seek guidance on how to obtain the optimal values of Pn, Pr, and w, as well as the correct condition for μ1​.

``

restart

with(Optimization); with(plots); with(LinearAlgebra)

_local(Pi)

Pi

(1)

``

`π_m` := proc (Pn, Pr, w) options operator, arrow; (Pn-Cn)*(1-(Pn-Pr)/(1-delta))+(Pr-w-Crm)*alpha*(1/2+(1/2)*((Cr*Pn*i2-Cr*Pn*tau-Cr*Pr*i2+Cr*Pr*tau+Cr*delta*i2-Cr*delta*tau+2*delta*i2*tau-2*delta*tau^2+2*w*tau*delta-Cr*i2+Cr*tau-2*i2*tau+2*tau^2-2*w*tau)/(Cr*Pn-Cr*Pr+Cr*delta+4*tau*delta-Cr-4*tau)-i2)/tau)*(1-(Pn-Pr)/(1-delta))-Ce*rho0*(1-(Pn-Pr)/(1-delta)) end proc

proc (Pn, Pr, w) options operator, arrow; (Pn-Cn)*(1-(Pn-Pr)/(1-delta))+(Pr-w-Crm)*alpha*(1/2+(1/2)*((Cr*Pn*i2-Cr*Pn*tau-Cr*Pr*i2+Cr*Pr*tau+Cr*delta*i2-Cr*delta*tau+2*delta*i2*tau-2*delta*tau^2+2*w*tau*delta-Cr*i2+Cr*tau-2*i2*tau+2*tau^2-2*w*tau)/(Cr*Pn-Cr*Pr+Cr*delta+4*tau*delta-Cr-4*tau)-i2)/tau)*(1-(Pn-Pr)/(1-delta))-Ce*rho0*(1-(Pn-Pr)/(1-delta)) end proc

(2)

``

``

NULL

C1 := (((Cr+4*tau)*delta-4*tau+(Pn-Pr-1)*Cr)*rho0+(delta-1)*(i2-tau))/(delta-1) <= w

(((Cr+4*tau)*delta-4*tau+(Pn-Pr-1)*Cr)*rho0+(delta-1)*(i2-tau))/(delta-1) <= w

(3)

NULL

# No equality constraints
 
      f[1] := (Pn,Pr,w) -> (((Cr + 4*tau)*delta - 4*tau + (Pn - Pr - 1)*Cr)*rho0 + (delta - 1)*(i2 - tau))/(delta - 1)-w:

 

# Lagrangian (we want to maximize `&pi;_m` so to minimize -`&pi;_m`

L := -`&pi;_m`(Pn,Pr,w) + add(f[i](Pn,Pr,w)*mu[i], i=1):

dLdPn := collect(diff(L, Pn), [Pn]):
dLdPr := collect(diff(L, w), [Pr]):
dLdw := collect(diff(L, w), [w]):

KKT_conditions := [
                    seq(mu[i] >= 0, i=1),         # Dual feasibility conditions
                    dLdPn = 0,  
dLdPr = 0,
dLdw = 0,                     # Stationarity condition
                    seq(``(f[i](Pn,Pr,w)) <= 0, i=1),  # Primal feasibility conditions
                    add(mu[i]*f[i](Pn,Pr,w) = 0, i=1)  # Complementary slackness
                  ]:

 print~(KKT_conditions):

0 <= mu[1]

 

-1+(Pn-Pr)/(1-delta)+(Pn-Cn)/(1-delta)-(1/2)*(Pr-w-Crm)*alpha*((Cr*i2-Cr*tau)/(Cr*Pn-Cr*Pr+Cr*delta+4*delta*tau-Cr-4*tau)-(Cr*Pn*i2-Cr*Pn*tau-Cr*Pr*i2+Cr*Pr*tau+Cr*delta*i2-Cr*delta*tau+2*delta*i2*tau-2*delta*tau^2+2*delta*tau*w-Cr*i2+Cr*tau-2*i2*tau+2*tau^2-2*tau*w)*Cr/(Cr*Pn-Cr*Pr+Cr*delta+4*delta*tau-Cr-4*tau)^2)*(1-(Pn-Pr)/(1-delta))/tau+(Pr-w-Crm)*alpha*(1/2+(1/2)*((Cr*Pn*i2-Cr*Pn*tau-Cr*Pr*i2+Cr*Pr*tau+Cr*delta*i2-Cr*delta*tau+2*delta*i2*tau-2*delta*tau^2+2*delta*tau*w-Cr*i2+Cr*tau-2*i2*tau+2*tau^2-2*tau*w)/(Cr*Pn-Cr*Pr+Cr*delta+4*delta*tau-Cr-4*tau)-i2)/tau)/(1-delta)-Ce*rho0/(1-delta)+Cr*rho0*mu[1]/(delta-1) = 0

 

alpha*(1/2+(1/2)*((Cr*Pn*i2-Cr*Pn*tau-Cr*Pr*i2+Cr*Pr*tau+Cr*delta*i2-Cr*delta*tau+2*delta*i2*tau-2*delta*tau^2+2*delta*tau*w-Cr*i2+Cr*tau-2*i2*tau+2*tau^2-2*tau*w)/(Cr*Pn-Cr*Pr+Cr*delta+4*delta*tau-Cr-4*tau)-i2)/tau)*(1-(Pn-Pr)/(1-delta))-(1/2)*(Pr-w-Crm)*alpha*(2*delta*tau-2*tau)*(1-(Pn-Pr)/(1-delta))/((Cr*Pn-Cr*Pr+Cr*delta+4*delta*tau-Cr-4*tau)*tau)-mu[1] = 0

 

alpha*(2*delta*tau-2*tau)*(1-(Pn-Pr)/(1-delta))*w/((Cr*Pn-Cr*Pr+Cr*delta+4*delta*tau-Cr-4*tau)*tau)+alpha*(1/2+(1/2)*((Cr*Pn*i2-Cr*Pn*tau-Cr*Pr*i2+Cr*Pr*tau+Cr*delta*i2-Cr*delta*tau+2*delta*i2*tau-2*delta*tau^2-Cr*i2+Cr*tau-2*i2*tau+2*tau^2)/(Cr*Pn-Cr*Pr+Cr*delta+4*delta*tau-Cr-4*tau)-i2)/tau)*(1-(Pn-Pr)/(1-delta))-(1/2)*(Pr-Crm)*alpha*(2*delta*tau-2*tau)*(1-(Pn-Pr)/(1-delta))/((Cr*Pn-Cr*Pr+Cr*delta+4*delta*tau-Cr-4*tau)*tau)-mu[1] = 0

 

``((((Cr+4*tau)*delta-4*tau+(Pn-Pr-1)*Cr)*rho0+(delta-1)*(i2-tau))/(delta-1)-w) <= 0

 

((((Cr+4*tau)*delta-4*tau+(Pn-Pr-1)*Cr)*rho0+(delta-1)*(i2-tau))/(delta-1)-w)*mu[1] = 0

(4)

 

NULL


Download Solve_mu1.mw

I have a Pascal program. I want to use a Maple program inside the Pascal program when calling it each time. I dont know how to interact Maple with Pascal. For this, could you give me over a small program? Yours Sincerely

How Maple 2023 displays new results with old results together

I use the tab key to control the formatting of lists. 

On my computer the tab key spacing under Maple 2025 is a little more than one inch which is too much. I have been through the Maple Help and cannot find how to change the tab key spacing.

Any help will be greatly appreciated.

My current account email is dead so I can only view answers here.

Hello everyone,

I am working on reproducing Fig. 12 (Isotherms) and Fig. 13 (Streamlines) from the attached paper, cacity_paper_work.pdf which deals with natural convection of GO–MgO/silicone oil hybrid nanofluid inside square and H-shaped cavities under a periodic magnetic field.

Equations (9–11) in the paper describe the steady-state 2D flow and heat transfer in terms of u(x,y), v(x,y), and θ(x,y). I have already set up the full PDE system, parameters, and boundary conditions (BCs) in Maple.

Now, iusing pdsolve(..., numeric, method=fd), 

Solve these equations for both square and H-shaped cavities using the given ICs and BCs, and

Generate Isotherm and Streamline plots (similar to Figs. 12 and 13 in the paper).

I have attached:

The PDF (showing equations and figures), and

My Maple worksheet containing the PDE definitions and parameters.

I would really appreciate guidance on:

Whether dsolve can be used effectively for this PDE system,

How to define the BCs correctly for the H-shaped cavity (especially the partially heated wall, θ=1 for 0.4 < y < 0.6), and

How to extract and plot the temperature (θ) and streamfunction (ψ) fields similar to the paper’s plots.

error_in_cavity_work.mw

Hello,

I have full access on .../.../version.txt but Maple tells me I have no write access...

Sorry for the previous post, thank you.

If I try with the install command I get the same error.

Kind regards to all

Jean-Michel

PS: have a look on the two inserted screenshots

Given an ode with IC. When solution is explicit, Maple resolves the constant of integration as expected and returns solution with no c__1 in it.

But when asked for implicit solution, also with same IC, it now returns solution with c__1 still there.

Is this by design or a bug? Should not constant of integration be resolved using IC in both cases? If unable to solve for c__1 because solution is implicit, should it then not return solution all?

Does this happen in earlier versions of Maple?

 

restart;

interface(version);

`Standard Worksheet Interface, Maple 2025.1, Linux, June 12 2025 Build ID 1932578`

Physics:-Version();

`The "Physics Updates" version in the MapleCloud is 1878 and is the same as the version installed in this computer, created 2025, September 28, 11:35 hours Pacific Time.`

SupportTools:-Version();

`The Customer Support Updates version in the MapleCloud is 29 and is the same as the version installed in this computer, created June 23, 2025, 10:25 hours Eastern Time.`

restart;

IC:=D(y)(0)=0;
ode:=diff(y(x),x)^2+x*y(x)=0:
sol:=dsolve([ode,IC]);

 

(D(y))(0) = 0

y(x) = 0, y(x) = -(1/9)*x^3

sol:=dsolve(ode,'implicit');

y(x) = 0, -x^2/((x^3+9*y(x))*(x^2+3*(-x*y(x))^(1/2)))+3*(-x*y(x))^(1/2)/((x^3+9*y(x))*(x^2+3*(-x*y(x))^(1/2)))-c__1 = 0, x^2/((x^3+9*y(x))*(-x^2+3*(-x*y(x))^(1/2)))+3*(-x*y(x))^(1/2)/((x^3+9*y(x))*(-x^2+3*(-x*y(x))^(1/2)))-c__1 = 0

#WHY did not resolve constant of integration here??
sol:=dsolve([ode,IC],'implicit');

x^2/((x^3+9*y(x))*(-x^2+3*(-x*y(x))^(1/2)))+3*(-x*y(x))^(1/2)/((x^3+9*y(x))*(-x^2+3*(-x*y(x))^(1/2)))-c__1 = 0, -x^2/((x^3+9*y(x))*(x^2+3*(-x*y(x))^(1/2)))+3*(-x*y(x))^(1/2)/((x^3+9*y(x))*(x^2+3*(-x*y(x))^(1/2)))-c__1 = 0, y(x) = 0

 


 

Download why_C_still_in_solution_maple_2025_1_oct_4_2025.mw

Hello, I have a Maple Flow worksheet that is formatted with a basic style template using headings and sections so that I can auto generate the table of contents. All of the numbered sections are in order, top-to-bottom in the worksheet. However, when Maple Flow auto generates the table of contents, it consistently gets the sections out of order - see a screenshot below - note Section 2 is at the end of the table of contents. The page numbers appear to be correct, but the physical placement of Section 2 is not. 

If anybody has encountered this problem in Maple Flow, I would appreciate some suggestions.

Thanks

For some reason, solve() works Ok, but PDEtools:-Solve causes kernel crash.

 

Attached worksheet.

Anyone knows why and can someone try to reproduce this? I am using Linux CaucyOS (arch linux based) and Maple 2025.1

 

interface(version);

`Standard Worksheet Interface, Maple 2025.1, Linux, June 12 2025 Build ID 1932578`

Physics:-Version();

`The "Physics Updates" version in the MapleCloud is 1878 and is the same as the version installed in this computer, created 2025, September 28, 11:35 hours Pacific Time.`

SupportTools:-Version();

`The Customer Support Updates version in the MapleCloud is 29 and is the same as the version installed in this computer, created June 23, 2025, 10:25 hours Eastern Time.`

restart;

eq:=[-3/2*_C6^2+4*(60588*_C6^3+6659802*_C6^2-7113718800*_C6+168667884119)/(40392*_C6-971364)-1/8*(-6*_C6+1)^2-4*(1406664*_C6^2-1186536946*_C6+27728821045)/(26928*_C6-647576)+5*_C6-125/6+9*(-1/24*(-6*_C6+16)^2-4*(1406664*_C6^2-1186536946*_C6+27728821045)/(26928*_C6-647576)+(60588*_C6^3+6659802*_C6^2-7113718800*_C6+168667884119)/(40392*_C6-971364))*(-49/2+_C6) = 4, -1/24*(-6*_C6+49)^2+191*(1406664*_C6^2-1186536946*_C6+27728821045)/(26928*_C6-647576)-(60588*_C6^3+6659802*_C6^2-7113718800*_C6+168667884119)/(40392*_C6-971364)+1/12*(-6*_C6+9801)^2 = 0];
Cs:={_C6};

[-(3/2)*_C6^2+4*(60588*_C6^3+6659802*_C6^2-7113718800*_C6+168667884119)/(40392*_C6-971364)-(1/8)*(-6*_C6+1)^2-4*(1406664*_C6^2-1186536946*_C6+27728821045)/(26928*_C6-647576)+5*_C6-125/6+9*(-(1/24)*(-6*_C6+16)^2-4*(1406664*_C6^2-1186536946*_C6+27728821045)/(26928*_C6-647576)+(60588*_C6^3+6659802*_C6^2-7113718800*_C6+168667884119)/(40392*_C6-971364))*(-49/2+_C6) = 4, -(1/24)*(-6*_C6+49)^2+191*(1406664*_C6^2-1186536946*_C6+27728821045)/(26928*_C6-647576)-(60588*_C6^3+6659802*_C6^2-7113718800*_C6+168667884119)/(40392*_C6-971364)+(1/12)*(-6*_C6+9801)^2 = 0]

{_C6}

solve(eq,Cs);

{_C6 = _C6}

PDEtools:-Solve(eq,Cs);


 

Download maple_crash_Solve_oct_3_2025.mw

Also reported to Maplesoft support.

 

I found very strange behaviour of Maple 2025.1 on Linux.

Same exact code.  Calling timelimit(sol,ode) twice on two different solutions. If I do not add 

         Physics:-Setup(assumingusesAssume = true)

At the start, then both timelimits finish OK. But once  Physics:-Setup(assumingusesAssume = true) is added at the start, the second timelimit hangs.

I waited 2 hrs and nothing happens. Maple just freezes. Can't even stop the server from worksheet by clicking on the red button at lower left corner. 

This is using latest Physics.  Does anyone know why this happens? It seems due to some memory cache issue?

Make sure to save all your work before trying this just in case you have to kill Maple application.

The strange thing, unable to stop the server by clicking on red button or clicking on RESTART KERNEL icon at top, or even clicking on the debuger icon at lower left corner. Only way was to kill Maple itself from Linux command line.

interface(version);

`Standard Worksheet Interface, Maple 2025.1, Linux, June 12 2025 Build ID 1932578`

Physics:-Version();

`The "Physics Updates" version in the MapleCloud is 1878 and is the same as the version installed in this computer, created 2025, September 28, 11:35 hours Pacific Time.`

SupportTools:-Version();

`The Customer Support Updates version in the MapleCloud is 29 and is the same as the version installed in this computer, created June 23, 2025, 10:25 hours Eastern Time.`

restart;

Example 1. Not using Physics:-Setup(assumingusesAssume = true): gives NO hang

 

sol_1:=y(x) = 1/2*(3*tan(RootOf(2*3^(1/2)*ln(2*3^(1/6)+(9*tan(_Z)*sec(_Z)^2+9*3^(1/2)*
sec(_Z)^2-8*3^(1/2))^(1/3))-3^(1/2)*ln(4*3^(1/3)-2*3^(1/6)*(9*tan(_Z)*sec(_Z)^2
+9*3^(1/2)*sec(_Z)^2-8*3^(1/2))^(1/3)+(9*tan(_Z)*sec(_Z)^2+9*3^(1/2)*sec(_Z)^2-\
8*3^(1/2))^(2/3))+12*_C2*3^(1/2)+12*3^(1/2)*x+36*I*_C2+36*I*x+6*_Z))^3*3^(1/2)+
9*tan(RootOf(2*3^(1/2)*ln(2*3^(1/6)+(9*tan(_Z)*sec(_Z)^2+9*3^(1/2)*sec(_Z)^2-8*
3^(1/2))^(1/3))-3^(1/2)*ln(4*3^(1/3)-2*3^(1/6)*(9*tan(_Z)*sec(_Z)^2+9*3^(1/2)*
sec(_Z)^2-8*3^(1/2))^(1/3)+(9*tan(_Z)*sec(_Z)^2+9*3^(1/2)*sec(_Z)^2-8*3^(1/2))^
(2/3))+12*_C2*3^(1/2)+12*3^(1/2)*x+36*I*_C2+36*I*x+6*_Z))^2+3*3^(1/2)*tan(
RootOf(2*3^(1/2)*ln((3*3^(1/2)*tan(_Z)*sec(_Z)^2-8+9*sec(_Z)^2)^(1/3)+2)-3^(1/2
)*ln((3*3^(1/2)*tan(_Z)*sec(_Z)^2-8+9*sec(_Z)^2)^(2/3)-2*(3*3^(1/2)*tan(_Z)*sec
(_Z)^2-8+9*sec(_Z)^2)^(1/3)+4)+36*I*_C2+36*I*x+12*_C2*3^(1/2)+12*3^(1/2)*x+6*_Z
))+1)^(1/3)*(I*3^(1/2)-1):
ode:=diff(y(x),x)-y(x)^3 = 8:
timelimit(30,odetest(sol_1,ode));

Error, (in simplify/ln/relations) time expired

 

sol_2:=y(x) = -1/2*(3*tan(RootOf(2*3^(1/2)*ln(2*3^(1/6)+(9*tan(_Z)*sec(_Z)^2+9*3^(1/2)
*sec(_Z)^2-8*3^(1/2))^(1/3))-3^(1/2)*ln(4*3^(1/3)-2*3^(1/6)*(9*tan(_Z)*sec(_Z)^
2+9*3^(1/2)*sec(_Z)^2-8*3^(1/2))^(1/3)+(9*tan(_Z)*sec(_Z)^2+9*3^(1/2)*sec(_Z)^2
-8*3^(1/2))^(2/3))+12*_C3*3^(1/2)+12*3^(1/2)*x-36*I*_C3-36*I*x+6*_Z))^3*3^(1/2)
+9*tan(RootOf(2*3^(1/2)*ln(2*3^(1/6)+(9*tan(_Z)*sec(_Z)^2+9*3^(1/2)*sec(_Z)^2-8
*3^(1/2))^(1/3))-3^(1/2)*ln(4*3^(1/3)-2*3^(1/6)*(9*tan(_Z)*sec(_Z)^2+9*3^(1/2)*
sec(_Z)^2-8*3^(1/2))^(1/3)+(9*tan(_Z)*sec(_Z)^2+9*3^(1/2)*sec(_Z)^2-8*3^(1/2))^
(2/3))+12*_C3*3^(1/2)+12*3^(1/2)*x-36*I*_C3-36*I*x+6*_Z))^2+3*3^(1/2)*tan(
RootOf(2*3^(1/2)*ln((3*3^(1/2)*tan(_Z)*sec(_Z)^2-8+9*sec(_Z)^2)^(1/3)+2)-3^(1/2
)*ln((3*3^(1/2)*tan(_Z)*sec(_Z)^2-8+9*sec(_Z)^2)^(2/3)-2*(3*3^(1/2)*tan(_Z)*sec
(_Z)^2-8+9*sec(_Z)^2)^(1/3)+4)-36*I*_C3-36*I*x+12*_C3*3^(1/2)+12*3^(1/2)*x+6*_Z
))+1)^(1/3)*(1+I*3^(1/2)):
timelimit(30,odetest(sol_2,ode));

Error, (in collect) time expired

 

Example 2. using Physics:-Setup(assumingusesAssume = true): second timelimit always hangs

 

restart;

Physics:-Setup(assumingusesAssume = true):

sol_1:=y(x) = 1/2*(3*tan(RootOf(2*3^(1/2)*ln(2*3^(1/6)+(9*tan(_Z)*sec(_Z)^2+9*3^(1/2)*
sec(_Z)^2-8*3^(1/2))^(1/3))-3^(1/2)*ln(4*3^(1/3)-2*3^(1/6)*(9*tan(_Z)*sec(_Z)^2
+9*3^(1/2)*sec(_Z)^2-8*3^(1/2))^(1/3)+(9*tan(_Z)*sec(_Z)^2+9*3^(1/2)*sec(_Z)^2-\
8*3^(1/2))^(2/3))+12*_C2*3^(1/2)+12*3^(1/2)*x+36*I*_C2+36*I*x+6*_Z))^3*3^(1/2)+
9*tan(RootOf(2*3^(1/2)*ln(2*3^(1/6)+(9*tan(_Z)*sec(_Z)^2+9*3^(1/2)*sec(_Z)^2-8*
3^(1/2))^(1/3))-3^(1/2)*ln(4*3^(1/3)-2*3^(1/6)*(9*tan(_Z)*sec(_Z)^2+9*3^(1/2)*
sec(_Z)^2-8*3^(1/2))^(1/3)+(9*tan(_Z)*sec(_Z)^2+9*3^(1/2)*sec(_Z)^2-8*3^(1/2))^
(2/3))+12*_C2*3^(1/2)+12*3^(1/2)*x+36*I*_C2+36*I*x+6*_Z))^2+3*3^(1/2)*tan(
RootOf(2*3^(1/2)*ln((3*3^(1/2)*tan(_Z)*sec(_Z)^2-8+9*sec(_Z)^2)^(1/3)+2)-3^(1/2
)*ln((3*3^(1/2)*tan(_Z)*sec(_Z)^2-8+9*sec(_Z)^2)^(2/3)-2*(3*3^(1/2)*tan(_Z)*sec
(_Z)^2-8+9*sec(_Z)^2)^(1/3)+4)+36*I*_C2+36*I*x+12*_C2*3^(1/2)+12*3^(1/2)*x+6*_Z
))+1)^(1/3)*(I*3^(1/2)-1):
ode:=diff(y(x),x)-y(x)^3 = 8:
timelimit(30,odetest(sol_1,ode));

Error, (in expand) time expired

 

#this below will now hang

sol_2:=y(x) = -1/2*(3*tan(RootOf(2*3^(1/2)*ln(2*3^(1/6)+(9*tan(_Z)*sec(_Z)^2+9*3^(1/2)
*sec(_Z)^2-8*3^(1/2))^(1/3))-3^(1/2)*ln(4*3^(1/3)-2*3^(1/6)*(9*tan(_Z)*sec(_Z)^
2+9*3^(1/2)*sec(_Z)^2-8*3^(1/2))^(1/3)+(9*tan(_Z)*sec(_Z)^2+9*3^(1/2)*sec(_Z)^2
-8*3^(1/2))^(2/3))+12*_C3*3^(1/2)+12*3^(1/2)*x-36*I*_C3-36*I*x+6*_Z))^3*3^(1/2)
+9*tan(RootOf(2*3^(1/2)*ln(2*3^(1/6)+(9*tan(_Z)*sec(_Z)^2+9*3^(1/2)*sec(_Z)^2-8
*3^(1/2))^(1/3))-3^(1/2)*ln(4*3^(1/3)-2*3^(1/6)*(9*tan(_Z)*sec(_Z)^2+9*3^(1/2)*
sec(_Z)^2-8*3^(1/2))^(1/3)+(9*tan(_Z)*sec(_Z)^2+9*3^(1/2)*sec(_Z)^2-8*3^(1/2))^
(2/3))+12*_C3*3^(1/2)+12*3^(1/2)*x-36*I*_C3-36*I*x+6*_Z))^2+3*3^(1/2)*tan(
RootOf(2*3^(1/2)*ln((3*3^(1/2)*tan(_Z)*sec(_Z)^2-8+9*sec(_Z)^2)^(1/3)+2)-3^(1/2
)*ln((3*3^(1/2)*tan(_Z)*sec(_Z)^2-8+9*sec(_Z)^2)^(2/3)-2*(3*3^(1/2)*tan(_Z)*sec
(_Z)^2-8+9*sec(_Z)^2)^(1/3)+4)-36*I*_C3-36*I*x+12*_C3*3^(1/2)+12*3^(1/2)*x+6*_Z
))+1)^(1/3)*(1+I*3^(1/2)):
timelimit(30,odetest(sol_2,ode));


Download hangs_timelimit_with_physics_maple_2025_1_oct_2_2025.mw

Could someone try to reproduce this on their Maple? If so, I will send bug report.

Never seen such a message before

Here is MWE, Trace shows it comes from (SolveTools:-PolynomialSystemSolvers:-PseudoResultant:-AttemptFactorization,2)

 

restart;

interface(version);

`Standard Worksheet Interface, Maple 2025.1, Linux, June 12 2025 Build ID 1932578`

Physics:-Version();

`The "Physics Updates" version in the MapleCloud is 1878 and is the same as the version installed in this computer, created 2025, September 28, 11:35 hours Pacific Time.`

SupportTools:-Version();

`The Customer Support Updates version in the MapleCloud is 29 and is the same as the version installed in this computer, created June 23, 2025, 10:25 hours Eastern Time.`

ode:=diff(y(x),x$2)+3*y(x)+D(y)(3)=0;
IC:=y(1)+4*y(2)+y(4)=0;

diff(diff(y(x), x), x)+3*y(x)+(D(y))(3) = 0

y(1)+4*y(2)+y(4) = 0

dsolve(ode)

x+(1/3)*3^(1/2)*(tan(3^(1/2)*x)-arctan(tan(3^(1/2)*x)))-((1/3)*(D(y(x)))(3)*(1+tan(3^(1/2)*x)^2)^(1/2)+(1+tan(3^(1/2)*x)^2)^(1/2)*y(x))*c__1-c__2 = 0

dsolve([ode,IC])

Error, (in dsolve) this is a bug

tracelast

 dsolve called with arguments: [diff(diff(y(x), x), x)+3*y(x)+(D(y))(3) = 0, y(1)+4*y(2)+y(4) = 0], arbitraryconstants = subscripted, atomizenames = true, build = false, numeric = false, type = none
 #(dsolve,80): error

 \`dsolve/IC\` called with arguments: [diff(diff(y(x), x), x)+3*y(x)+(D(y))(3) = 0, y(1)+4*y(2)+y(4) = 0], {y(x)}, skipimplicit = false, skippparticularsolforlinearODEs = true, solution = {}, usesolutions = particular and general
 #(\`dsolve/IC\`,53): return procname(_passed,':-usesolutions' =  "general and particular")

 \`dsolve/IC\` called with arguments: [diff(diff(y(x), x), x)+3*y(x)+(D(y))(3) = 0, y(1)+4*y(2)+y(4) = 0], {y(x)}, skipimplicit = false, skippparticularsolforlinearODEs = true, solution = {}, usesolutions = general and particular
 #(\`dsolve/IC\`,57): ans := procname(_passed,':-usesolutions = "general"');

 \`dsolve/IC\` called with arguments: [diff(diff(y(x), x), x)+3*y(x)+(D(y))(3) = 0, y(1)+4*y(2)+y(4) = 0], {y(x)}, skipimplicit = false, skippparticularsolforlinearODEs = true, solution = {}, usesolutions = general
 #(\`dsolve/IC\`,277): zz := map(op,{\`dsolve/IC/_C\`({ANS[i]},funcs,x,ics)});

 \`dsolve/IC/_C\` called with arguments: {y(x) = -(1/3)*(_C[1]*(D(_Z))(3)*(1+tan(3^(1/2)*x)^2)^(1/2)-3^(1/2)*tan(3^(1/2)*x)+3^(1/2)*arctan(tan(3^(1/2)*x))+3*_C[2]-3*x)/((1+tan(3^(1/2)*x)^2)^(1/2)*_C[1])}, {y(x)}, x, [y(1) = _C1, y(2) = _C2, y(4) = -_C1-4*_C2]
 #(\`dsolve/IC/_C\`,1): ans := \`dsolve/IC/_C/do\`(solns,depvars,t,inits,'evaluated_ans', "default",':-giveup = giveup');

 \`dsolve/IC/_C/do\` called with arguments: {y(x) = -(1/3)*(_C[1]*(D(_Z))(3)*(1+tan(3^(1/2)*x)^2)^(1/2)-3^(1/2)*tan(3^(1/2)*x)+3^(1/2)*arctan(tan(3^(1/2)*x))+3*_C[2]-3*x)/((1+tan(3^(1/2)*x)^2)^(1/2)*_C[1])}, {y(x)}, x, [y(1) = _C1, y(2) = _C2, y(4) = -_C1-4*_C2], evaluated_ans, default, giveup = giveup, usecansolve = false
 #(\`dsolve/IC/_C/do\`,103): csol := [\`ODEtools/Solve/EnvDropMultiplicity\`(eqns,consts)];

 \`ODEtools/Solve/EnvDropMultiplicity\` called with arguments: {-(1/3)*(_C[1]*(D(_Z))(3)*(1+tan(3^(1/2))^2)^(1/2)-3^(1/2)*tan(3^(1/2))+3^(1/2)*(3^(1/2)-Pi)+3*_C[2]-3)/((1+tan(3^(1/2))^2)^(1/2)*_C[1]) = _C1, -(1/3)*(_C[1]*(D(_Z))(3)*(1+tan(2*3^(1/2))^2)^(1/2)-3^(1/2)*tan(2*3^(1/2))+3^(1/2)*(2*3^(1/2)-Pi)+3*_C[2]-6)/((1+tan(2*3^(1/2))^2)^(1/2)*_C[1]) = _C2, -(1/3)*(_C[1]*(D(_Z))(3)*(1+tan(4*3^(1/2))^2)^(1/2)-3^(1/2)*tan(4*3^(1/2))+3^(1/2)*(4*3^(1/2)-2*Pi)+3*_C[2]-12)/((1+tan(4*3^(1/2))^2)^(1/2)*_C[1]) = -_C1-4*_C2}, {_C1, _C2, _C[1], _C[2]}, keepalreadysolveduntouched = false, removelabel = false
 #(\`ODEtools/Solve/EnvDropMultiplicity\`,29): sol := :-solve(ee,X,_rest)

 solve called with arguments: {-(1/3)*(_C[1]*(D(_Z))(3)*(1+tan(3^(1/2))^2)^(1/2)-3^(1/2)*tan(3^(1/2))+3^(1/2)*(3^(1/2)-Pi)+3*_C[2]-3)/((1+tan(3^(1/2))^2)^(1/2)*_C[1]) = _C1, -(1/3)*(_C[1]*(D(_Z))(3)*(1+tan(2*3^(1/2))^2)^(1/2)-3^(1/2)*tan(2*3^(1/2))+3^(1/2)*(2*3^(1/2)-Pi)+3*_C[2]-6)/((1+tan(2*3^(1/2))^2)^(1/2)*_C[1]) = _C2, -(1/3)*(_C[1]*(D(_Z))(3)*(1+tan(4*3^(1/2))^2)^(1/2)-3^(1/2)*tan(4*3^(1/2))+3^(1/2)*(4*3^(1/2)-2*Pi)+3*_C[2]-12)/((1+tan(4*3^(1/2))^2)^(1/2)*_C[1]) = -_C1-4*_C2}, {_C1, _C2, _C[1], _C[2]}, AllSolutions = FAIL, ConditionalSolutions = FAIL, DropMultiplicity = FAIL, Explicit = FAIL, MaxSols = FAIL, SolveOverReals = FAIL, SymbolicSolutions = true, TryHard = FAIL, UseAssumptions = false, domain = default, parameters = {}, parametric = false, split = false, useunits = FAIL
 #(solve,133): _MaxSols := oldmaxsols

 Engine:-Main called with arguments: {-(1/3)*(_C[1]*(D(_Z))(3)*(1+tan(3^(1/2))^2)^(1/2)-3^(1/2)*tan(3^(1/2))+3^(1/2)*(3^(1/2)-Pi)+3*_C[2]-3)/((1+tan(3^(1/2))^2)^(1/2)*_C[1]) = _C1, -(1/3)*(_C[1]*(D(_Z))(3)*(1+tan(2*3^(1/2))^2)^(1/2)-3^(1/2)*tan(2*3^(1/2))+3^(1/2)*(2*3^(1/2)-Pi)+3*_C[2]-6)/((1+tan(2*3^(1/2))^2)^(1/2)*_C[1]) = _C2, -(1/3)*(_C[1]*(D(_Z))(3)*(1+tan(4*3^(1/2))^2)^(1/2)-3^(1/2)*tan(4*3^(1/2))+3^(1/2)*(4*3^(1/2)-2*Pi)+3*_C[2]-12)/((1+tan(4*3^(1/2))^2)^(1/2)*_C[1]) = -_C1-4*_C2}, {}, {_C1, _C2, _C[1], _C[2]}
 #(SolveTools:-Engine:-Main,37): sol := [SolveTools:-PolynomialSystem(eqns,vars,ineqs,':- maxsols' = \`if\`(type([_MaxSols],[{integer, infinity}]) and 0 < _MaxSols,_MaxSols,100))]

 PolynomialSystem:-ModuleApply called with arguments: {-(1/3)*(_X000003*(D(_Z))(3)*(1+tan(3^(1/2))^2)^(1/2)-3^(1/2)*tan(3^(1/2))+3^(1/2)*(3^(1/2)-Pi)+3*_X000004-3)/((1+tan(3^(1/2))^2)^(1/2)*_X000003) = _X000001, -(1/3)*(_X000003*(D(_Z))(3)*(1+tan(2*3^(1/2))^2)^(1/2)-3^(1/2)*tan(2*3^(1/2))+3^(1/2)*(2*3^(1/2)-Pi)+3*_X000004-6)/((1+tan(2*3^(1/2))^2)^(1/2)*_X000003) = _X000002, -(1/3)*(_X000003*(D(_Z))(3)*(1+tan(4*3^(1/2))^2)^(1/2)-3^(1/2)*tan(4*3^(1/2))+3^(1/2)*(4*3^(1/2)-2*Pi)+3*_X000004-12)/((1+tan(4*3^(1/2))^2)^(1/2)*_X000003) = -_X000001-4*_X000002}, {_X000001, _X000002, _X000003, _X000004}, {}, FAIL, backsubstitute = true, domain = absolute, engine = default, explicit = false, maxsols = 100, preprocess = true, preservelabels = false, tryhard = true
 #(SolveTools:-PolynomialSystem:-ModuleApply,15): sol := SolveTools:-PolynomialSystem:-Main(SolveTools:-Utilities:-New( equations,notz,SolveTools:-Utilities:-Intersect(vars,indets(equations ))),':-backsub' = reallybacksub,':-domain' = domain,':-maxsols' =  realmaxsols,':-engine' = engine,':-preprocess' = preprocess,':- tryhard' = tryhard);

 PolynomialSystem:-Main called with arguments: [{-(1/3)*(_X000003*(D(_Z))(3)*(1+tan(3^(1/2))^2)^(1/2)-3^(1/2)*tan(3^(1/2))+3^(1/2)*(3^(1/2)-Pi)+3*_X000004-3)/((1+tan(3^(1/2))^2)^(1/2)*_X000003)-_X000001, -(1/3)*(_X000003*(D(_Z))(3)*(1+tan(2*3^(1/2))^2)^(1/2)-3^(1/2)*tan(2*3^(1/2))+3^(1/2)*(2*3^(1/2)-Pi)+3*_X000004-6)/((1+tan(2*3^(1/2))^2)^(1/2)*_X000003)-_X000002, -(1/3)*(_X000003*(D(_Z))(3)*(1+tan(4*3^(1/2))^2)^(1/2)-3^(1/2)*tan(4*3^(1/2))+3^(1/2)*(4*3^(1/2)-2*Pi)+3*_X000004-12)/((1+tan(4*3^(1/2))^2)^(1/2)*_X000003)+_X000001+4*_X000002}, {3*(1+tan(3^(1/2))^2)^(1/2)*_X000003 <> 0, 3*(1+tan(2*3^(1/2))^2)^(1/2)*_X000003 <> 0, 3*(1+tan(4*3^(1/2))^2)^(1/2)*_X000003 <> 0}, {_X000001, _X000002, _X000003, _X000004}, {}, true, false, 1, {_X000001, _X000002, _X000003, _X000004}], backsub = true, domain = absolute, engine = default, maxsols = 100, preprocess = true, tryhard = true
 #(SolveTools:-PolynomialSystem:-Main,86): sol := [SolveTools:-PolynomialSystemSolvers:- PseudoResultant(SolveTools:-Utilities:- GetEquations(sys),SolveTools:-Utilities:- GetVariables(sys),SolveTools:-Utilities:- GetInequations(sys),':-maxsols' = maxsols,':- tryhard' = tryhard)];

 PseudoResultant:-ModuleApply called with arguments: {(_X000003*(D(_Z))(3)*(-2*cos(3^(1/2))+1+sec(3^(1/2)))+3*_X000001*_X000003*(-2*cos(3^(1/2))+sec(3^(1/2)))+3*_X000002*_X000003+3^(1/2)*tan(3^(1/2)))/cos(2*3^(1/2)), -(sec(4*3^(1/2))+sec(3^(1/2)))*_X000003*(D(_Z))(3)+3*(sec(4*3^(1/2))-sec(3^(1/2)))*_X000001*_X000003+12*_X000002*sec(4*3^(1/2))*_X000003+3^(1/2)*Pi+3^(1/2)*tan(4*3^(1/2))-3^(1/2)*tan(3^(1/2))}, {_X000001, _X000002, _X000003}, {_X000003 <> 0}, backsub = true, maxsols = 100, tryhard = true
 #(SolveTools:-PolynomialSystemSolvers:-PseudoResultant:-ModuleApply,25): SolveTools:-PolynomialSystemSolvers:-PseudoResultant:-ApplySubstitution ({},[],numer(tm1),notzero union map(xx -> denom(xx) <> 0,tm1), unknowns);

 ApplySubstitution called with arguments: {}, [], {_X000003*(D(_Z))(3)*sec(3^(1/2))+3*_X000001*sec(3^(1/2))*_X000003-2*_X000003*(D(_Z))(3)*cos(3^(1/2))-6*_X000001*_X000003*cos(3^(1/2))+3^(1/2)*tan(3^(1/2))+_X000003*(D(_Z))(3)+3*_X000002*_X000003, -_X000003*(D(_Z))(3)*sec(4*3^(1/2))+3*_X000001*sec(4*3^(1/2))*_X000003+12*_X000002*sec(4*3^(1/2))*_X000003+3^(1/2)*Pi+3^(1/2)*tan(4*3^(1/2))-_X000003*(D(_Z))(3)*sec(3^(1/2))-3*_X000001*sec(3^(1/2))*_X000003-3^(1/2)*tan(3^(1/2))}, {1 <> 0, _X000003 <> 0, cos(2*3^(1/2)) <> 0}, {_X000001, _X000002, _X000003}
 #(SolveTools:-PolynomialSystemSolvers:-PseudoResultant:-ApplySubstitution,48): eqns := map(SolveTools:-PolynomialSystemSolvers:-PseudoResultant:- AttemptFactorization,eqns,not0,unknowns);

 AttemptFactorization called with arguments: _X000003*(D(_Z))(3)*sec(3^(1/2))+3*_X000001*sec(3^(1/2))*_X000003-2*_X000003*(D(_Z))(3)*cos(3^(1/2))-6*_X000001*_X000003*cos(3^(1/2))+3^(1/2)*tan(3^(1/2))+_X000003*(D(_Z))(3)+3*_X000002*_X000003, {_X000003 <> 0, cos(2*3^(1/2)) <> 0}, {_X000001, _X000002, _X000003}
 #(SolveTools:-PolynomialSystemSolvers:-PseudoResultant:-AttemptFactorization,2): error \`this is a bug\`

Error, (in dsolve) this is a bug

 locals defined as: e = e

 


 

Download dsolve_error_this_is_bug_2025_1_oct_2_2025.mw

Note that changing the IC to IC:=y(1)+4*y(2)=0; makes it work with no error.

It is only when adding y(4) does the error shows up.

update Bug report emailed to Maplesoft.

 

 

Hi! how I install Maple 2025 and Mathematica in my laptop?
Provide me Complete Set-up.

I feel that it is increasingly common for answers to generate no reaction from their authors.

Perhaps the author simply voted up... but in that case, would it be possible to indicate this (something like "XXX voted up")? 

This would avoid wasting time responding to the same author in the future, as it doesn't seem to care about commenting the answer.

1 2 3 4 5 6 7 Last Page 1 of 363