489 Reputation

10 years, 316 days

g:=x->D(f)(x);

By using : and print...

By using : after end if and print when you want to display

An example

restart:x:=5:if x>0 then x^2; print(x^3):end if:

isolate...

restart:eq:=Vo= (1/((1/R2+1/(1.5*10^6))*(1/(1/R2+1/(1.5*10^6))+2.45*10^3-R2)));

isolate(eq,R2);

Look hrere...

Look here

http://www.mapleprimes.com/questions/130529-Subs-Command-Bug

As function...

A:=y-><3, y, 11-4*y>: seq(A(y),y=0..10);

Mauvaise connection...

Dés fois c'est une mauvaise connection des composants lors du dessin ou une mauvaise installation du logiciel.

Sinon, charge le fichier ici sur mapleprimes pour que nous puissions répondre avec précision.

one way...

with(plots):

F:=(r,theta)->piecewise(r<>0,sin(6*r)/(6*r),r=0,1);

# 3d plot

plot3d(F(r,theta),theta=0..2*Pi,r=-1..1, coords=cylindrical);

2d plot

polarplot(F(0,theta), theta=0..2*Pi);

One way...

sol := dsolve({bcs, sys}, numeric,range=0..e);

A:=seq([rhs(sol(t)[1]),rhs(sol(t)[2])],t=0..e,0.01):

Pke := Array(indets(plot([A]), listlist)[], datatype = float[8]);

ned := op([2, 1, 2], Pke); med := op([2, 2, 2], Pke);

fd := fopen("C:/Users/Kamel/Desktop/curve.txt", WRITE):

for i to ned do x := Pke[i, 1]; y := Pke[i, 2]; fprintf(fd, "%9.6f %9.6f    \n", x, y) end do:

fclose(fd):

In matlab,

plot(t,.......)

Trapezoid rule...

A simple way with a rule given by maple help:

restart: with(Student[Calculus1]):

ApproximateInt(f(x), x = a .. b, method = trapezoid, partition = n, output = sum); # to get rule of trapezoid

1/2*(b-a)/n*Sum(f(a+i*(b-a)/n)+f(a+(i+1)*(b-a)/n),i = 0 .. n-1)

From above formula, write your procedure.

Without writing a procedure example:

ApproximateInt(sin(x), x = 0 .. 5, method = trapezoid);

Separation of variables...

Use separation of varibles to get general solution with pdsolve as

pdsolve(pde[1], HINT = X(x)*Y(y), build);

Then using boundary conditions to get constants

You should also search documentation for sturn liouville differential equation which help in determining the constants of general solution of laplace equation

Comparing curves plot from Matlab and Ma...

Actually, I'm saving a plot in Array and then write it into a txt or data file with fprintf and for.

Pkr := Array(indets(plot(x^2,x=-1..1), listlist)[], datatype = float[8]); #this can be done with getdata

From Matlab, I load a txt file and plot it again with Matlab to compare. It is not simple.

Matlab figures have formats 'curve.fig'

I will try ImageTools package.

Function...

define A as function as:

A := (r,m)->r*sin(m);

Aval := proc (r, m)
evalf(A(r,m));

end proc;

Aval(1, Pi);

0

In your example, A is an expression

One way...

If I understand, you can do

R:=(n,m)->n*<a1,a2>+m*<b1,b2>;

R(2,1);

Constant current generator...

You should connect the constant current generator to ground

Extract solutions...

First solution:

vergelijking[1];

Second

vergelijking[2];

There are two solutions:

nops([vergelijking]);

2

 1 2 3 4 5 6 7 Last Page 1 of 9
﻿