C_R

2582 Reputation

19 Badges

4 years, 364 days

MaplePrimes Activity


These are questions asked by C_R

I am updating older files.

Executing with the attached code snippet from a worksheet created with Maple 16 outputs for an inert integral

instead of

Why is that and how can I fix my old worksheets to make them work with Maple 2023?

Maybe related: Execution with (or return) does not evaluate the document blocks. When all document blocks are expanded with "right click show command" the cursor does not advance to the next execution group. I can't remenber if this behaviour was allways like this or has changed.

A suggestion for Maplesoft: I have stopped using document blocks with hidden code since hiding and showing commands requires too much time (to many clicks and mouse movements). A simple double click on the marker of the document block could facilitate hiding and showing code allot.

Output_of_Int_not_in_2d.mw

alias(b = JacobiCN(sqrt(2)*sqrt(x), sqrt(2)*_Z/2)^2);
                          lessthan, b

I could not find an explanation on the help page.

I would have expected simply b as the return value.

Update:
A worksheet that generates the output


 

RootOf(JacobiCN(sqrt(2)*sqrt(x), (1/2)*sqrt(2)*_Z)^2*_Z^2+_Z^2-2)

RootOf(JacobiCN(2^(1/2)*x^(1/2), (1/2)*2^(1/2)*_Z)^2*_Z^2+_Z^2-2)

(1)

plot(RootOf(JacobiCN(2^(1/2)*x^(1/2), (1/2)*2^(1/2)*_Z)^2*_Z^2+_Z^2-2), x = 0 .. 5)

 

convert(JacobiCN(sqrt(2)*sqrt(x), (1/2)*sqrt(2)*_Z)^2, Elliptic_related)

1-JacobiSN(2^(1/2)*x^(1/2), (1/2)*2^(1/2)*_Z)^2

(2)

convert(RootOf(JacobiCN(2^(1/2)*x^(1/2), (1/2)*2^(1/2)*_Z)^2*_Z^2+_Z^2-2), Elliptic_related)

RootOf(JacobiSN(2^(1/2)*x^(1/2), (1/2)*2^(1/2)*_Z)^2*_Z^2-2*_Z^2+2)

(3)

alias(b = JacobiSN(sqrt(2)*sqrt(x), (1/2)*sqrt(2)*_Z))

lessthan, b

(4)

``

Download alias_with_lessthan_output.mw

Is there a way to determine the version of MapleSim used to create a model from the model file or within MapleSim when an older model was loaded?

[6600.0*theta(q)-17000.0*theta(q-1)+14400.0*theta(q-2)-4000.0*theta(q-3) = v(q)-.20*theta(q)+.20*theta(q-1)]

[6600.0*theta(q)-17000.0*theta(q-1)+14400.0*theta(q-2)-4000.0*theta(q-3) = v(q)-.20*theta(q)+.20*theta(q-1)]

(1)

isolate([6600.0*theta(q)-17000.0*theta(q-1)+14400.0*theta(q-2)-4000.0*theta(q-3) = v(q)-.20*theta(q)+.20*theta(q-1)], theta(q))

Error, (in isolate) invalid arguments for isolate

 

solve([6600.0*theta(q)-17000.0*theta(q-1)+14400.0*theta(q-2)-4000.0*theta(q-3) = v(q)-.20*theta(q)+.20*theta(q-1)], theta(q))[]

theta(q) = 0.1515105603e-3*v(q)+2.575709827*theta(q-1)-2.181752068*theta(q-2)+.6060422411*theta(q-3)

(2)

It works for h(x)  in help(isolate)


Download no_isolation.mw

Is it even possible to use a replacement list as attempted below to convert a z-transform to a finite difference expression?

z-transformed impulse response (`sampletime = 1/20`)

(10*exp(3/10)-7*exp(1/5)-3*exp(2/5))*exp(1/10)*U(z)/z+(exp(1/10)*(-3+10*exp(1/10)-7*exp(1/5))-(10*exp(3/10)-7*exp(1/5)-3*exp(2/5))*exp(1/10))*U(z)/z^2-(-3+10*exp(1/10)-7*exp(1/5))*exp(1/10)*U(z)/z^3 = 8*Y(z)*exp(1/10)*exp(3/10)*exp(1/5)+(8*((-exp(1/5)-exp(3/10))*exp(1/10)-exp(3/10)*exp(1/5)))*Y(z)/z+(8*(exp(1/10)+exp(1/5)+exp(3/10)))*Y(z)/z^2-8*Y(z)/z^3

(10*exp(3/10)-7*exp(1/5)-3*exp(2/5))*exp(1/10)*U(z)/z+(exp(1/10)*(-3+10*exp(1/10)-7*exp(1/5))-(10*exp(3/10)-7*exp(1/5)-3*exp(2/5))*exp(1/10))*U(z)/z^2-(-3+10*exp(1/10)-7*exp(1/5))*exp(1/10)*U(z)/z^3 = 8*Y(z)*exp(1/10)*exp(3/10)*exp(1/5)+8*((-exp(1/5)-exp(3/10))*exp(1/10)-exp(3/10)*exp(1/5))*Y(z)/z+8*(exp(1/10)+exp(1/5)+exp(3/10))*Y(z)/z^2-8*Y(z)/z^3

(1)

deg_mx := 3

3

(2)

Replacements to get finite difference equation

[seq(U(z)/z^i = U[q+1-i], i = deg_mx .. 0, -1), seq(Y(z)/z^i = Y[q+1-i], i = deg_mx .. 0, -1)]

[U(z)/z^3 = U[q-2], U(z)/z^2 = U[q-1], U(z)/z = U[q], U(z) = U[q+1], Y(z)/z^3 = Y[q-2], Y(z)/z^2 = Y[q-1], Y(z)/z = Y[q], Y(z) = Y[q+1]]

(3)

Attempt to replace

algsubs([U(z)/z^3 = U[q-2], U(z)/z^2 = U[q-1], U(z)/z = U[q], U(z) = U[q+1], Y(z)/z^3 = Y[q-2], Y(z)/z^2 = Y[q-1], Y(z)/z = Y[q], Y(z) = Y[q+1]][1], (10*exp(3/10)-7*exp(1/5)-3*exp(2/5))*exp(1/10)*U(z)/z+(exp(1/10)*(-3+10*exp(1/10)-7*exp(1/5))-(10*exp(3/10)-7*exp(1/5)-3*exp(2/5))*exp(1/10))*U(z)/z^2-(-3+10*exp(1/10)-7*exp(1/5))*exp(1/10)*U(z)/z^3 = 8*Y(z)*exp(1/10)*exp(3/10)*exp(1/5)+8*((-exp(1/5)-exp(3/10))*exp(1/10)-exp(3/10)*exp(1/5))*Y(z)/z+8*(exp(1/10)+exp(1/5)+exp(3/10))*Y(z)/z^2-8*Y(z)/z^3)

Error, (in algsubs) cannot compute degree of pattern in z

 

NULL

Download replace_Y_of_z_by_Y_of_q.mw

First 16 17 18 19 20 21 22 Last Page 18 of 33