Carl Love

Carl Love

27599 Reputation

25 Badges

12 years, 64 days
Himself
Wayland, Massachusetts, United States
My name was formerly Carl Devore.

MaplePrimes Activity


These are answers submitted by Carl Love

Your p can be factored as p = (6000 - w^4)*(z*g__u + f*g__z)/144000, so p=0 implies that w doesn't depend on any of the other variables. w = 6000^(1/4), which simplifies to 2*375^(1/4).

y is a name, not a string"y" is a string, not a name. They are not the same thing.

fx:= 3*x^2 - 9*y:
str:= String(fx);
                       str := "3*x^2-9*y"
has(fx, y);
                              true

evalb(SearchText("y", str) <> 0);
                              true

Why are you converting mathematical expressions to strings? I suspect that there is an easier way to achieve your ultimate goal.

There's no technical reason why those errors are untrappable; the reason is purely philosophical, and it's stated on help page ?try. Here is an excerpt from the 10th paragraph of Description:

  • The following exceptions are untrappable:
    - Computation timed out (this can only be caught by timelimit, which raises a "time expired" exception, which can be caught).
    - Computation interrupted (user pressed Ctrl+C, Break, or equivalent).
    - Internal system error (which indicates a bug in Maple itself).
    - ASSERT or return type or local variable type assertion failure (assertion failures are not trappable because they indicate a coding error, not an algorithmic failure).
    - Stack overflow (when that happens, generally stack space is insufficient for doing anything like running cleanup code). This includes the "too many levels of recursion" exception at the Maple language level.

Pick a value of x larger than the stated singularity, say xs. Reformulate the initial conditions to be at xs rather than 0. Call dsolve again. Plot from xs to 10 (or wherever). You may encounter new singularities and need to repeat this process.

orthopoly is an old package, created before modules existed. It is stored in a table. The A:-B syntax works for table-based packages, but apparently proc() uses A; B() end proc() does not.

You have 

for {w = 30..150}
    s:=
 
...;

How did you come up with that syntax? Change it to 

for w from 30 to 150 do
    s[w]:=
 
...
end do;  # "end do" can be abbreviated "od"

I used s[w] instead of so that the results will be saved for each w.

Error messages that are accompanied by a red dashed box result from very basic syntax errors in the command that is currently being entered. They can't possibly have anything to do with code already entered. Thus, this error has nothing to do with piecewise.

You could read the help page ?for. Also, nearly any freely available AI chat assistant will give a reasonable answer to "How do I write a for loop in Maple?"

Here is how I think chaotic IVP solutions should be plotted. Note the use of the options parametersrange, and refine. The differences between these plots and the plots shown in the paper are too categorical to possibly be explained by any accumulation of rounding errors or chaotic process. For example, the second plot below shows only positive values for x(t) whereas the corresponding plot in the paper shows only negative values for x(t).

I've tried several different numeric methods (rkf45, ck45, rosenbrock, dverk78) and different levels of error control (relerr= 5e-6, abserr= 5e-6relerr= 5e-9), but I got the same plots.

restart:

Digits:= 15:

local gamma:

Duffing:= {
    diff(x(t),t)= v(t),
    diff(v(t),t)=
       gamma*cos(omega*t) - delta*v(t) - x(t)*(alpha + beta*x(t)^2),
    (x, v)(0)=~ (0,0)
};

{diff(v(t), t) = -delta*v(t)-x(t)*(alpha+beta*x(t)^2)+gamma*cos(omega*t), diff(x(t), t) = v(t), v(0) = 0, x(0) = 0}

dsol:= dsolve(
    Duffing, numeric,
    parameters= [gamma, alpha, beta, delta, omega],    
    maxfun= 0, relerr= 5e-9, range= 0..3000, method= rkf45
);

proc (x_rkf45) local _res, _dat, _vars, _solnproc, _xout, _ndsol, _pars, _n, _i; option `Copyright (c) 2000 by Waterloo Maple Inc. All rights reserved.`; if 1 < nargs then error "invalid input: too many arguments" end if; _EnvDSNumericSaveDigits := Digits; Digits := 15; if _EnvInFsolve = true then _xout := evalf[_EnvDSNumericSaveDigits](x_rkf45) else _xout := evalf(x_rkf45) end if; _dat := Array(1..4, {(1) = proc (_xin) local _xout, _dtbl, _dat, _vmap, _x0, _y0, _val, _dig, _n, _ne, _nd, _nv, _pars, _ini, _par, _i, _j, _k, _src; option `Copyright (c) 2002 by Waterloo Maple Inc. All rights reserved.`; table( [( "complex" ) = false ] ) _xout := _xin; _pars := [gamma = gamma, alpha = alpha, beta = beta, delta = delta, omega = omega]; _dtbl := array( 1 .. 4, [( 1 ) = (array( 1 .. 28, [( 1 ) = (datatype = float[8], order = C_order, storage = rectangular), ( 2 ) = (datatype = float[8], order = C_order, storage = rectangular), ( 3 ) = ([0, 0, 0, Array(1..0, 1..2, {}, datatype = float[8], order = C_order)]), ( 4 ) = (Array(1..65, {(1) = 2, (2) = 2, (3) = 0, (4) = 0, (5) = 5, (6) = 0, (7) = 0, (8) = 0, (9) = 0, (10) = 1, (11) = 0, (12) = 0, (13) = 0, (14) = 0, (15) = 0, (16) = 0, (17) = 0, (18) = 0, (19) = 0, (20) = 0, (21) = 0, (22) = 1, (23) = 4, (24) = 0, (25) = 1, (26) = 15, (27) = 1, (28) = 0, (29) = 1, (30) = 3, (31) = 3, (32) = 0, (33) = 1, (34) = 0, (35) = 0, (36) = 0, (37) = 0, (38) = 0, (39) = 0, (40) = 0, (41) = 0, (42) = 0, (43) = 1, (44) = 0, (45) = 0, (46) = 0, (47) = 0, (48) = 0, (49) = 0, (50) = 50, (51) = 1, (52) = 0, (53) = 0, (54) = 0, (55) = 0, (56) = 0, (57) = 0, (58) = 0, (59) = 10000, (60) = 0, (61) = 1000, (62) = 0, (63) = 0, (64) = -1, (65) = 0}, datatype = integer[8])), ( 5 ) = (Array(1..28, {(1) = .0, (2) = 0.50e-8, (3) = .0, (4) = 0.500001e-14, (5) = .0, (6) = .0, (7) = .0, (8) = 0.50e-8, (9) = .0, (10) = .0, (11) = .0, (12) = .0, (13) = 1.0, (14) = .0, (15) = .49999999999999, (16) = .0, (17) = 1.0, (18) = 1.0, (19) = .0, (20) = .0, (21) = 1.0, (22) = 1.0, (23) = .0, (24) = .0, (25) = 0.10e-14, (26) = .0, (27) = .0, (28) = .0}, datatype = float[8], order = C_order)), ( 6 ) = (Array(1..7, {(1) = 0., (2) = 0., (3) = Float(undefined), (4) = Float(undefined), (5) = Float(undefined), (6) = Float(undefined), (7) = Float(undefined)})), ( 7 ) = ([Array(1..4, 1..7, {(1, 1) = .0, (1, 2) = .203125, (1, 3) = .3046875, (1, 4) = .75, (1, 5) = .8125, (1, 6) = .40625, (1, 7) = .8125, (2, 1) = 0.6378173828125e-1, (2, 2) = .0, (2, 3) = .279296875, (2, 4) = .27237892150878906, (2, 5) = -0.9686851501464844e-1, (2, 6) = 0.1956939697265625e-1, (2, 7) = .5381584167480469, (3, 1) = 0.31890869140625e-1, (3, 2) = .0, (3, 3) = -.34375, (3, 4) = -.335235595703125, (3, 5) = .2296142578125, (3, 6) = .41748046875, (3, 7) = 11.480712890625, (4, 1) = 0.9710520505905151e-1, (4, 2) = .0, (4, 3) = .40350341796875, (4, 4) = 0.20297467708587646e-1, (4, 5) = -0.6054282188415527e-2, (4, 6) = -0.4770040512084961e-1, (4, 7) = .77858567237854}, datatype = float[8], order = C_order), Array(1..6, 1..6, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (1, 6) = 1.0, (2, 1) = .25, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (2, 5) = .0, (2, 6) = 1.0, (3, 1) = .1875, (3, 2) = .5625, (3, 3) = .0, (3, 4) = .0, (3, 5) = .0, (3, 6) = 2.0, (4, 1) = .23583984375, (4, 2) = -.87890625, (4, 3) = .890625, (4, 4) = .0, (4, 5) = .0, (4, 6) = .2681884765625, (5, 1) = .1272735595703125, (5, 2) = -.5009765625, (5, 3) = .44921875, (5, 4) = -0.128936767578125e-1, (5, 5) = .0, (5, 6) = 0.626220703125e-1, (6, 1) = -0.927734375e-1, (6, 2) = .626220703125, (6, 3) = -.4326171875, (6, 4) = .1418304443359375, (6, 5) = -0.861053466796875e-1, (6, 6) = .3131103515625}, datatype = float[8], order = C_order), Array(1..6, {(1) = .0, (2) = .386, (3) = .21, (4) = .63, (5) = 1.0, (6) = 1.0}, datatype = float[8], order = C_order), Array(1..6, {(1) = .25, (2) = -.1043, (3) = .1035, (4) = -0.362e-1, (5) = .0, (6) = .0}, datatype = float[8], order = C_order), Array(1..6, 1..5, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (2, 1) = 1.544, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (2, 5) = .0, (3, 1) = .9466785280815533, (3, 2) = .25570116989825814, (3, 3) = .0, (3, 4) = .0, (3, 5) = .0, (4, 1) = 3.3148251870684886, (4, 2) = 2.896124015972123, (4, 3) = .9986419139977808, (4, 4) = .0, (4, 5) = .0, (5, 1) = 1.2212245092262748, (5, 2) = 6.019134481287752, (5, 3) = 12.537083329320874, (5, 4) = -.687886036105895, (5, 5) = .0, (6, 1) = 1.2212245092262748, (6, 2) = 6.019134481287752, (6, 3) = 12.537083329320874, (6, 4) = -.687886036105895, (6, 5) = 1.0}, datatype = float[8], order = C_order), Array(1..6, 1..5, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (2, 1) = -5.6688, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (2, 5) = .0, (3, 1) = -2.4300933568337584, (3, 2) = -.20635991570891224, (3, 3) = .0, (3, 4) = .0, (3, 5) = .0, (4, 1) = -.10735290581452621, (4, 2) = -9.594562251021896, (4, 3) = -20.470286148096154, (4, 4) = .0, (4, 5) = .0, (5, 1) = 7.496443313968615, (5, 2) = -10.246804314641219, (5, 3) = -33.99990352819906, (5, 4) = 11.708908932061595, (5, 5) = .0, (6, 1) = 8.083246795922411, (6, 2) = -7.981132988062785, (6, 3) = -31.52159432874373, (6, 4) = 16.319305431231363, (6, 5) = -6.0588182388340535}, datatype = float[8], order = C_order), Array(1..3, 1..5, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (2, 1) = 10.126235083446911, (2, 2) = -7.487995877607633, (2, 3) = -34.800918615557414, (2, 4) = -7.9927717075687275, (2, 5) = 1.0251377232956207, (3, 1) = -.6762803392806898, (3, 2) = 6.087714651678606, (3, 3) = 16.43084320892463, (3, 4) = 24.767225114183653, (3, 5) = -6.5943891257167815}, datatype = float[8], order = C_order)]), ( 9 ) = ([Array(1..2, {(1) = 20.0, (2) = 20.0}, datatype = float[8], order = C_order), Array(1..2, {(1) = .0, (2) = .0}, datatype = float[8], order = C_order), Array(1..2, {(1) = .0, (2) = .0}, datatype = float[8], order = C_order), Array(1..2, {(1) = .0, (2) = .0}, datatype = float[8], order = C_order), Array(1..2, {(1) = .0, (2) = .0}, datatype = float[8], order = C_order), Array(1..2, 1..2, {(1, 1) = .0, (1, 2) = .0, (2, 1) = .0, (2, 2) = .0}, datatype = float[8], order = C_order), Array(1..2, 1..2, {(1, 1) = .0, (1, 2) = .0, (2, 1) = .0, (2, 2) = .0}, datatype = float[8], order = C_order), Array(1..2, {(1) = .0, (2) = .0}, datatype = float[8], order = C_order), Array(1..2, 1..2, {(1, 1) = .0, (1, 2) = .0, (2, 1) = .0, (2, 2) = .0}, datatype = float[8], order = C_order), Array(1..2, 1..6, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (1, 6) = .0, (2, 1) = .0, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (2, 5) = .0, (2, 6) = .0}, datatype = float[8], order = C_order), Array(1..2, {(1) = 0, (2) = 0}, datatype = integer[8]), Array(1..7, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0}, datatype = float[8], order = C_order), Array(1..7, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0}, datatype = float[8], order = C_order), Array(1..7, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0}, datatype = float[8], order = C_order), Array(1..7, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0}, datatype = float[8], order = C_order), Array(1..2, {(1) = .0, (2) = .0}, datatype = float[8], order = C_order), Array(1..4, {(1) = .0, (2) = .0, (3) = .0, (4) = .0}, datatype = float[8], order = C_order), Array(1..2, {(1) = 0, (2) = 0}, datatype = integer[8])]), ( 8 ) = ([Array(1..7, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0}, datatype = float[8], order = C_order), Array(1..7, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0}, datatype = float[8], order = C_order), Array(1..2, {(1) = .0, (2) = .0}, datatype = float[8], order = C_order), 0, 0]), ( 11 ) = (Array(1..6, 0..2, {(1, 1) = .0, (1, 2) = .0, (2, 0) = .0, (2, 1) = .0, (2, 2) = .0, (3, 0) = .0, (3, 1) = .0, (3, 2) = .0, (4, 0) = .0, (4, 1) = .0, (4, 2) = .0, (5, 0) = .0, (5, 1) = .0, (5, 2) = .0, (6, 0) = .0, (6, 1) = .0, (6, 2) = .0}, datatype = float[8], order = C_order)), ( 10 ) = ([proc (N, X, Y, YP) option `[Y[1] = v(t), Y[2] = x(t)]`; YP[1] := -Y[6]*Y[1]-Y[2]*(Y[2]^2*Y[5]+Y[4])+Y[3]*cos(Y[7]*X); YP[2] := Y[1]; 0 end proc, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]), ( 13 ) = (), ( 12 ) = (), ( 15 ) = ("rkf45"), ( 14 ) = ([0, 0]), ( 18 ) = ([]), ( 19 ) = (0), ( 16 ) = ([0, 0, 0, 0, 0, []]), ( 17 ) = ([proc (N, X, Y, YP) option `[Y[1] = v(t), Y[2] = x(t)]`; YP[1] := -Y[6]*Y[1]-Y[2]*(Y[2]^2*Y[5]+Y[4])+Y[3]*cos(Y[7]*X); YP[2] := Y[1]; 0 end proc, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]), ( 22 ) = (0), ( 23 ) = (0), ( 20 ) = ([]), ( 21 ) = (0), ( 27 ) = (""), ( 26 ) = (Array(1..0, {})), ( 25 ) = (Array(1..0, {})), ( 24 ) = (0), ( 28 ) = (0)  ] ))  ] ); _y0 := Array(0..7, {(1) = 0., (2) = 0., (3) = 0., (4) = undefined, (5) = undefined, (6) = undefined, (7) = undefined}); _vmap := array( 1 .. 2, [( 1 ) = (1), ( 2 ) = (2)  ] ); _x0 := _dtbl[1][5][5]; _n := _dtbl[1][4][1]; _ne := _dtbl[1][4][3]; _nd := _dtbl[1][4][4]; _nv := _dtbl[1][4][16]; if not type(_xout, 'numeric') then if member(_xout, ["start", "left", "right"]) then if _Env_smart_dsolve_numeric = true or _dtbl[1][4][10] = 1 then if _xout = "left" then if type(_dtbl[2], 'table') then return _dtbl[2][5][1] end if elif _xout = "right" then if type(_dtbl[3], 'table') then return _dtbl[3][5][1] end if end if end if; return _dtbl[1][5][5] elif _xout = "method" then return _dtbl[1][15] elif _xout = "storage" then return evalb(_dtbl[1][4][10] = 1) elif _xout = "leftdata" then if not type(_dtbl[2], 'array') then return NULL else return eval(_dtbl[2]) end if elif _xout = "rightdata" then if not type(_dtbl[3], 'array') then return NULL else return eval(_dtbl[3]) end if elif _xout = "enginedata" then return eval(_dtbl[1]) elif _xout = "enginereset" then _dtbl[2] := evaln(_dtbl[2]); _dtbl[3] := evaln(_dtbl[3]); return NULL elif _xout = "initial" then return procname(_y0[0]) elif _xout = "laxtol" then return _dtbl[`if`(member(_dtbl[4], {2, 3}), _dtbl[4], 1)][5][18] elif _xout = "numfun" then return `if`(member(_dtbl[4], {2, 3}), _dtbl[_dtbl[4]][4][18], 0) elif _xout = "parameters" then return [seq(_y0[_n+_i], _i = 1 .. nops(_pars))] elif _xout = "initial_and_parameters" then return procname(_y0[0]), [seq(_y0[_n+_i], _i = 1 .. nops(_pars))] elif _xout = "last" then if _dtbl[4] <> 2 and _dtbl[4] <> 3 or _x0-_dtbl[_dtbl[4]][5][1] = 0. then error "no information is available on last computed point" else _xout := _dtbl[_dtbl[4]][5][1] end if elif _xout = "function" then if _dtbl[1][4][33]-2. = 0 then return eval(_dtbl[1][10], 1) else return eval(_dtbl[1][10][1], 1) end if elif _xout = "map" then return copy(_vmap) elif type(_xin, `=`) and type(rhs(_xin), 'list') and member(lhs(_xin), {"initial", "parameters", "initial_and_parameters"}) then _ini, _par := [], []; if lhs(_xin) = "initial" then _ini := rhs(_xin) elif lhs(_xin) = "parameters" then _par := rhs(_xin) elif select(type, rhs(_xin), `=`) <> [] then _par, _ini := selectremove(type, rhs(_xin), `=`) elif nops(rhs(_xin)) < nops(_pars)+1 then error "insufficient data for specification of initial and parameters" else _par := rhs(_xin)[-nops(_pars) .. -1]; _ini := rhs(_xin)[1 .. -nops(_pars)-1] end if; _xout := lhs(_xout); _i := false; if _par <> [] then _i := `dsolve/numeric/process_parameters`(_n, _pars, _par, _y0) end if; if _ini <> [] then _i := `dsolve/numeric/process_initial`(_n-_ne, _ini, _y0, _pars, _vmap) or _i end if; if _i then `dsolve/numeric/SC/reinitialize`(_dtbl, _y0, _n, procname, _pars); if _Env_smart_dsolve_numeric = true and type(_y0[0], 'numeric') and _dtbl[1][4][10] <> 1 then procname("right") := _y0[0]; procname("left") := _y0[0] end if end if; if _xout = "initial" then return [_y0[0], seq(_y0[_vmap[_i]], _i = 1 .. _n-_ne)] elif _xout = "parameters" then return [seq(_y0[_n+_i], _i = 1 .. nops(_pars))] else return [_y0[0], seq(_y0[_vmap[_i]], _i = 1 .. _n-_ne)], [seq(_y0[_n+_i], _i = 1 .. nops(_pars))] end if elif _xin = "eventstop" then if _nv = 0 then error "this solution has no events" end if; _i := _dtbl[4]; if _i <> 2 and _i <> 3 then return 0 end if; if _dtbl[_i][4][10] = 1 and assigned(_dtbl[5-_i]) and _dtbl[_i][4][9] < 100 and 100 <= _dtbl[5-_i][4][9] then _i := 5-_i; _dtbl[4] := _i; _j := round(_dtbl[_i][4][17]); return round(_dtbl[_i][3][1][_j, 1]) elif 100 <= _dtbl[_i][4][9] then _j := round(_dtbl[_i][4][17]); return round(_dtbl[_i][3][1][_j, 1]) else return 0 end if elif _xin = "eventstatus" then if _nv = 0 then error "this solution has no events" end if; _i := [selectremove(proc (a) options operator, arrow; _dtbl[1][3][1][a, 7] = 1 end proc, {seq(_j, _j = 1 .. round(_dtbl[1][3][1][_nv+1, 1]))})]; return ':-enabled' = _i[1], ':-disabled' = _i[2] elif _xin = "eventclear" then if _nv = 0 then error "this solution has no events" end if; _i := _dtbl[4]; if _i <> 2 and _i <> 3 then error "no events to clear" end if; if _dtbl[_i][4][10] = 1 and assigned(_dtbl[5-_i]) and _dtbl[_i][4][9] < 100 and 100 < _dtbl[5-_i][4][9] then _dtbl[4] := 5-_i; _i := 5-_i end if; if _dtbl[_i][4][9] < 100 then error "no events to clear" elif _nv < _dtbl[_i][4][9]-100 then error "event error condition cannot be cleared" else _j := _dtbl[_i][4][9]-100; if irem(round(_dtbl[_i][3][1][_j, 4]), 2) = 1 then error "retriggerable events cannot be cleared" end if; _j := round(_dtbl[_i][3][1][_j, 1]); for _k to _nv do if _dtbl[_i][3][1][_k, 1] = _j then if _dtbl[_i][3][1][_k, 2] = 3 then error "range events cannot be cleared" end if; _dtbl[_i][3][1][_k, 8] := _dtbl[_i][3][1][_nv+1, 8] end if end do; _dtbl[_i][4][17] := 0; _dtbl[_i][4][9] := 0; if _dtbl[1][4][10] = 1 then if _i = 2 then try procname(procname("left")) catch:  end try else try procname(procname("right")) catch:  end try end if end if end if; return  elif type(_xin, `=`) and member(lhs(_xin), {"eventdisable", "eventenable"}) then if _nv = 0 then error "this solution has no events" end if; if type(rhs(_xin), {('list')('posint'), ('set')('posint')}) then _i := {op(rhs(_xin))} elif type(rhs(_xin), 'posint') then _i := {rhs(_xin)} else error "event identifiers must be integers in the range 1..%1", round(_dtbl[1][3][1][_nv+1, 1]) end if; if select(proc (a) options operator, arrow; _nv < a end proc, _i) <> {} then error "event identifiers must be integers in the range 1..%1", round(_dtbl[1][3][1][_nv+1, 1]) end if; _k := {}; for _j to _nv do if member(round(_dtbl[1][3][1][_j, 1]), _i) then _k := `union`(_k, {_j}) end if end do; _i := _k; if lhs(_xin) = "eventdisable" then _dtbl[4] := 0; _j := [evalb(assigned(_dtbl[2]) and member(_dtbl[2][4][17], _i)), evalb(assigned(_dtbl[3]) and member(_dtbl[3][4][17], _i))]; for _k in _i do _dtbl[1][3][1][_k, 7] := 0; if assigned(_dtbl[2]) then _dtbl[2][3][1][_k, 7] := 0 end if; if assigned(_dtbl[3]) then _dtbl[3][3][1][_k, 7] := 0 end if end do; if _j[1] then for _k to _nv+1 do if _k <= _nv and not type(_dtbl[2][3][4][_k, 1], 'undefined') then userinfo(3, {'events', 'eventreset'}, `reinit #2, event code `, _k, ` to defined init `, _dtbl[2][3][4][_k, 1]); _dtbl[2][3][1][_k, 8] := _dtbl[2][3][4][_k, 1] elif _dtbl[2][3][1][_k, 2] = 0 and irem(iquo(round(_dtbl[2][3][1][_k, 4]), 32), 2) = 1 then userinfo(3, {'events', 'eventreset'}, `reinit #2, event code `, _k, ` to rate hysteresis init `, _dtbl[2][5][24]); _dtbl[2][3][1][_k, 8] := _dtbl[2][5][24] elif _dtbl[2][3][1][_k, 2] = 0 and irem(iquo(round(_dtbl[2][3][1][_k, 4]), 2), 2) = 0 then userinfo(3, {'events', 'eventreset'}, `reinit #2, event code `, _k, ` to initial init `, _x0); _dtbl[2][3][1][_k, 8] := _x0 else userinfo(3, {'events', 'eventreset'}, `reinit #2, event code `, _k, ` to fireinitial init `, _x0-1); _dtbl[2][3][1][_k, 8] := _x0-1 end if end do; _dtbl[2][4][17] := 0; _dtbl[2][4][9] := 0; if _dtbl[1][4][10] = 1 then procname(procname("left")) end if end if; if _j[2] then for _k to _nv+1 do if _k <= _nv and not type(_dtbl[3][3][4][_k, 2], 'undefined') then userinfo(3, {'events', 'eventreset'}, `reinit #3, event code `, _k, ` to defined init `, _dtbl[3][3][4][_k, 2]); _dtbl[3][3][1][_k, 8] := _dtbl[3][3][4][_k, 2] elif _dtbl[3][3][1][_k, 2] = 0 and irem(iquo(round(_dtbl[3][3][1][_k, 4]), 32), 2) = 1 then userinfo(3, {'events', 'eventreset'}, `reinit #3, event code `, _k, ` to rate hysteresis init `, _dtbl[3][5][24]); _dtbl[3][3][1][_k, 8] := _dtbl[3][5][24] elif _dtbl[3][3][1][_k, 2] = 0 and irem(iquo(round(_dtbl[3][3][1][_k, 4]), 2), 2) = 0 then userinfo(3, {'events', 'eventreset'}, `reinit #3, event code `, _k, ` to initial init `, _x0); _dtbl[3][3][1][_k, 8] := _x0 else userinfo(3, {'events', 'eventreset'}, `reinit #3, event code `, _k, ` to fireinitial init `, _x0+1); _dtbl[3][3][1][_k, 8] := _x0+1 end if end do; _dtbl[3][4][17] := 0; _dtbl[3][4][9] := 0; if _dtbl[1][4][10] = 1 then procname(procname("right")) end if end if else for _k in _i do _dtbl[1][3][1][_k, 7] := 1 end do; _dtbl[2] := evaln(_dtbl[2]); _dtbl[3] := evaln(_dtbl[3]); _dtbl[4] := 0; if _dtbl[1][4][10] = 1 then if _x0 <= procname("right") then try procname(procname("right")) catch:  end try end if; if procname("left") <= _x0 then try procname(procname("left")) catch:  end try end if end if end if; return  elif type(_xin, `=`) and lhs(_xin) = "eventfired" then if not type(rhs(_xin), 'list') then error "'eventfired' must be specified as a list" end if; if _nv = 0 then error "this solution has no events" end if; if _dtbl[4] <> 2 and _dtbl[4] <> 3 then error "'direction' must be set prior to calling/setting 'eventfired'" end if; _i := _dtbl[4]; _val := NULL; if not assigned(_EnvEventRetriggerWarned) then _EnvEventRetriggerWarned := false end if; for _k in rhs(_xin) do if type(_k, 'integer') then _src := _k elif type(_k, 'integer' = 'anything') and type(evalf(rhs(_k)), 'numeric') then _k := lhs(_k) = evalf[max(Digits, 18)](rhs(_k)); _src := lhs(_k) else error "'eventfired' entry is not valid: %1", _k end if; if _src < 1 or round(_dtbl[1][3][1][_nv+1, 1]) < _src then error "event identifiers must be integers in the range 1..%1", round(_dtbl[1][3][1][_nv+1, 1]) end if; _src := {seq(`if`(_dtbl[1][3][1][_j, 1]-_src = 0., _j, NULL), _j = 1 .. _nv)}; if nops(_src) <> 1 then error "'eventfired' can only be set/queried for root-finding events and time/interval events" end if; _src := _src[1]; if _dtbl[1][3][1][_src, 2] <> 0. and _dtbl[1][3][1][_src, 2]-2. <> 0. then error "'eventfired' can only be set/queried for root-finding events and time/interval events" elif irem(round(_dtbl[1][3][1][_src, 4]), 2) = 1 then if _EnvEventRetriggerWarned = false then WARNING(`'eventfired' has no effect on events that retrigger`) end if; _EnvEventRetriggerWarned := true end if; if _dtbl[_i][3][1][_src, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_src, 4]), 32), 2) = 1 then _val := _val, undefined elif type(_dtbl[_i][3][4][_src, _i-1], 'undefined') or _i = 2 and _dtbl[2][3][1][_src, 8] < _dtbl[2][3][4][_src, 1] or _i = 3 and _dtbl[3][3][4][_src, 2] < _dtbl[3][3][1][_src, 8] then _val := _val, _dtbl[_i][3][1][_src, 8] else _val := _val, _dtbl[_i][3][4][_src, _i-1] end if; if type(_k, `=`) then if _dtbl[_i][3][1][_src, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_src, 4]), 32), 2) = 1 then error "cannot set event code for a rate hysteresis event" end if; userinfo(3, {'events', 'eventreset'}, `manual set event code `, _src, ` to value `, rhs(_k)); _dtbl[_i][3][1][_src, 8] := rhs(_k); _dtbl[_i][3][4][_src, _i-1] := rhs(_k) end if end do; return [_val] elif type(_xin, `=`) and lhs(_xin) = "direction" then if not member(rhs(_xin), {-1, 1, ':-left', ':-right'}) then error "'direction' must be specified as either '1' or 'right' (positive) or '-1' or 'left' (negative)" end if; _src := `if`(_dtbl[4] = 2, -1, `if`(_dtbl[4] = 3, 1, undefined)); _i := `if`(member(rhs(_xin), {1, ':-right'}), 3, 2); _dtbl[4] := _i; _dtbl[_i] := `dsolve/numeric/SC/IVPdcopy`(_dtbl[1], `if`(assigned(_dtbl[_i]), _dtbl[_i], NULL)); if 0 < _nv then for _j to _nv+1 do if _j <= _nv and not type(_dtbl[_i][3][4][_j, _i-1], 'undefined') then userinfo(3, {'events', 'eventreset'}, `reinit #4, event code `, _j, ` to defined init `, _dtbl[_i][3][4][_j, _i-1]); _dtbl[_i][3][1][_j, 8] := _dtbl[_i][3][4][_j, _i-1] elif _dtbl[_i][3][1][_j, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_j, 4]), 32), 2) = 1 then userinfo(3, {'events', 'eventreset'}, `reinit #4, event code `, _j, ` to rate hysteresis init `, _dtbl[_i][5][24]); _dtbl[_i][3][1][_j, 8] := _dtbl[_i][5][24] elif _dtbl[_i][3][1][_j, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_j, 4]), 2), 2) = 0 then userinfo(3, {'events', 'eventreset'}, `reinit #4, event code `, _j, ` to initial init `, _x0); _dtbl[_i][3][1][_j, 8] := _x0 else userinfo(3, {'events', 'eventreset'}, `reinit #4, event code `, _j, ` to fireinitial init `, _x0-2*_i+5.0); _dtbl[_i][3][1][_j, 8] := _x0-2*_i+5.0 end if end do end if; return _src elif _xin = "eventcount" then if _dtbl[1][3][1] = 0 or _dtbl[4] <> 2 and _dtbl[4] <> 3 then return 0 else return round(_dtbl[_dtbl[4]][3][1][_nv+1, 12]) end if elif type(_xin, `=`) and lhs(_xin) = "setdatacallback" then if not type(rhs(_xin), 'nonegint') then error "data callback must be a nonnegative integer (address)" end if; _dtbl[1][28] := rhs(_xin) else return "procname" end if end if; if _xout = _x0 then return [_x0, seq(evalf(_dtbl[1][6][_vmap[_i]]), _i = 1 .. _n-_ne)] end if; _i := `if`(_x0 <= _xout, 3, 2); if _xin = "last" and 0 < _dtbl[_i][4][9] and _dtbl[_i][4][9] < 100 then _dat := eval(_dtbl[_i], 2); _j := _dat[4][20]; return [_dat[11][_j, 0], seq(_dat[11][_j, _vmap[_i]], _i = 1 .. _n-_ne-_nd), seq(_dat[8][1][_vmap[_i]], _i = _n-_ne-_nd+1 .. _n-_ne)] end if; if not type(_dtbl[_i], 'array') then _dtbl[_i] := `dsolve/numeric/SC/IVPdcopy`(_dtbl[1], `if`(assigned(_dtbl[_i]), _dtbl[_i], NULL)); if 0 < _nv then for _j to _nv+1 do if _j <= _nv and not type(_dtbl[_i][3][4][_j, _i-1], 'undefined') then userinfo(3, {'events', 'eventreset'}, `reinit #5, event code `, _j, ` to defined init `, _dtbl[_i][3][4][_j, _i-1]); _dtbl[_i][3][1][_j, 8] := _dtbl[_i][3][4][_j, _i-1] elif _dtbl[_i][3][1][_j, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_j, 4]), 32), 2) = 1 then userinfo(3, {'events', 'eventreset'}, `reinit #5, event code `, _j, ` to rate hysteresis init `, _dtbl[_i][5][24]); _dtbl[_i][3][1][_j, 8] := _dtbl[_i][5][24] elif _dtbl[_i][3][1][_j, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_j, 4]), 2), 2) = 0 then userinfo(3, {'events', 'eventreset'}, `reinit #5, event code `, _j, ` to initial init `, _x0); _dtbl[_i][3][1][_j, 8] := _x0 else userinfo(3, {'events', 'eventreset'}, `reinit #5, event code `, _j, ` to fireinitial init `, _x0-2*_i+5.0); _dtbl[_i][3][1][_j, 8] := _x0-2*_i+5.0 end if end do end if end if; if _xin <> "last" then if 0 < 0 then if `dsolve/numeric/checkglobals`(op(_dtbl[1][14]), _pars, _n, _y0) then `dsolve/numeric/SC/reinitialize`(_dtbl, _y0, _n, procname, _pars, _i) end if end if; if _dtbl[1][4][7] = 0 then error "parameters must be initialized before solution can be computed" end if end if; _dat := eval(_dtbl[_i], 2); _dtbl[4] := _i; try _src := `dsolve/numeric/SC/IVPrun`(_dat, _xout) catch: userinfo(2, `dsolve/debug`, print(`Exception in solnproc:`, [lastexception][2 .. -1])); error  end try; if _dat[17] <> _dtbl[1][17] then _dtbl[1][17] := _dat[17]; _dtbl[1][10] := _dat[10] end if; if _src = 0 and 100 < _dat[4][9] then _val := _dat[3][1][_nv+1, 8] else _val := _dat[11][_dat[4][20], 0] end if; if _src <> 0 or _dat[4][9] <= 0 then _dtbl[1][5][1] := _xout else _dtbl[1][5][1] := _val end if; if _i = 3 and _val < _xout then Rounding := -infinity; if _dat[4][9] = 1 then error "cannot evaluate the solution further right of %1, probably a singularity", evalf[8](_val) elif _dat[4][9] = 2 then error "cannot evaluate the solution further right of %1, maxfun limit exceeded (see ?dsolve,maxfun for details)", evalf[8](_val) elif _dat[4][9] = 3 then if _dat[4][25] = 3 then error "cannot evaluate the solution past the initial point, problem may be initially singular or improperly set up" else error "cannot evaluate the solution past the initial point, problem may be complex, initially singular or improperly set up" end if elif _dat[4][9] = 4 then error "cannot evaluate the solution further right of %1, accuracy goal cannot be achieved with specified 'minstep'", evalf[8](_val) elif _dat[4][9] = 5 then error "cannot evaluate the solution further right of %1, too many step failures, tolerances may be too loose for problem", evalf[8](_val) elif _dat[4][9] = 6 then error "cannot evaluate the solution further right of %1, cannot downgrade delay storage for problems with delay derivative order > 1, try increasing delaypts", evalf[8](_val) elif _dat[4][9] = 10 then error "cannot evaluate the solution further right of %1, interrupt requested", evalf[8](_val) elif 100 < _dat[4][9] then if _dat[4][9]-100 = _nv+1 then error "constraint projection failure on event at t=%1", evalf[8](_val) elif _dat[4][9]-100 = _nv+2 then error "index-1 and derivative evaluation failure on event at t=%1", evalf[8](_val) elif _dat[4][9]-100 = _nv+3 then error "maximum number of event iterations reached (%1) at t=%2", round(_dat[3][1][_nv+1, 3]), evalf[8](_val) else if _Env_dsolve_nowarnstop <> true then `dsolve/numeric/warning`(StringTools:-FormatMessage("cannot evaluate the solution further right of %1, event #%2 triggered a halt", evalf[8](_val), round(_dat[3][1][_dat[4][9]-100, 1]))) end if; Rounding := 'nearest'; _xout := _val end if else error "cannot evaluate the solution further right of %1", evalf[8](_val) end if elif _i = 2 and _xout < _val then Rounding := infinity; if _dat[4][9] = 1 then error "cannot evaluate the solution further left of %1, probably a singularity", evalf[8](_val) elif _dat[4][9] = 2 then error "cannot evaluate the solution further left of %1, maxfun limit exceeded (see ?dsolve,maxfun for details)", evalf[8](_val) elif _dat[4][9] = 3 then if _dat[4][25] = 3 then error "cannot evaluate the solution past the initial point, problem may be initially singular or improperly set up" else error "cannot evaluate the solution past the initial point, problem may be complex, initially singular or improperly set up" end if elif _dat[4][9] = 4 then error "cannot evaluate the solution further left of %1, accuracy goal cannot be achieved with specified 'minstep'", evalf[8](_val) elif _dat[4][9] = 5 then error "cannot evaluate the solution further left of %1, too many step failures, tolerances may be too loose for problem", evalf[8](_val) elif _dat[4][9] = 6 then error "cannot evaluate the solution further left of %1, cannot downgrade delay storage for problems with delay derivative order > 1, try increasing delaypts", evalf[8](_val) elif _dat[4][9] = 10 then error "cannot evaluate the solution further right of %1, interrupt requested", evalf[8](_val) elif 100 < _dat[4][9] then if _dat[4][9]-100 = _nv+1 then error "constraint projection failure on event at t=%1", evalf[8](_val) elif _dat[4][9]-100 = _nv+2 then error "index-1 and derivative evaluation failure on event at t=%1", evalf[8](_val) elif _dat[4][9]-100 = _nv+3 then error "maximum number of event iterations reached (%1) at t=%2", round(_dat[3][1][_nv+1, 3]), evalf[8](_val) else if _Env_dsolve_nowarnstop <> true then `dsolve/numeric/warning`(StringTools:-FormatMessage("cannot evaluate the solution further left of %1, event #%2 triggered a halt", evalf[8](_val), round(_dat[3][1][_dat[4][9]-100, 1]))) end if; Rounding := 'nearest'; _xout := _val end if else error "cannot evaluate the solution further left of %1", evalf[8](_val) end if end if; if _EnvInFsolve = true then _dig := _dat[4][26]; if type(_EnvDSNumericSaveDigits, 'posint') then _dat[4][26] := _EnvDSNumericSaveDigits else _dat[4][26] := Digits end if; _Env_dsolve_SC_native := true; if _dat[4][25] = 1 then _i := 1; _dat[4][25] := 2 else _i := _dat[4][25] end if; _val := `dsolve/numeric/SC/IVPval`(_dat, _xout, _src); _dat[4][25] := _i; _dat[4][26] := _dig; [_xout, seq(_val[_vmap[_i]], _i = 1 .. _n-_ne)] else Digits := _dat[4][26]; _val := `dsolve/numeric/SC/IVPval`(eval(_dat, 2), _xout, _src); [_xout, seq(_val[_vmap[_i]], _i = 1 .. _n-_ne)] end if end proc, (2) = Array(0..0, {}), (3) = [t, v(t), x(t)], (4) = [gamma = gamma, alpha = alpha, beta = beta, delta = delta, omega = omega]}); _vars := _dat[3]; _pars := map(rhs, _dat[4]); _n := nops(_vars)-1; _solnproc := _dat[1]; if not type(_xout, 'numeric') then if member(x_rkf45, ["start", 'start', "method", 'method', "left", 'left', "right", 'right', "leftdata", "rightdata", "enginedata", "eventstop", 'eventstop', "eventclear", 'eventclear', "eventstatus", 'eventstatus', "eventcount", 'eventcount', "laxtol", 'laxtol', "numfun", 'numfun', NULL]) then _res := _solnproc(convert(x_rkf45, 'string')); if 1 < nops([_res]) then return _res elif type(_res, 'array') then return eval(_res, 1) elif _res <> "procname" then return _res end if elif member(x_rkf45, ["last", 'last', "initial", 'initial', "parameters", 'parameters', "initial_and_parameters", 'initial_and_parameters', NULL]) then _xout := convert(x_rkf45, 'string'); _res := _solnproc(_xout); if _xout = "parameters" then return [seq(_pars[_i] = _res[_i], _i = 1 .. nops(_pars))] elif _xout = "initial_and_parameters" then return [seq(_vars[_i+1] = [_res][1][_i+1], _i = 0 .. _n), seq(_pars[_i] = [_res][2][_i], _i = 1 .. nops(_pars))] else return [seq(_vars[_i+1] = _res[_i+1], _i = 0 .. _n)] end if elif type(_xout, `=`) and member(lhs(_xout), ["initial", 'initial', "parameters", 'parameters', "initial_and_parameters", 'initial_and_parameters', NULL]) then _xout := convert(lhs(x_rkf45), 'string') = rhs(x_rkf45); if type(rhs(_xout), 'list') then _res := _solnproc(_xout) else error "initial and/or parameter values must be specified in a list" end if; if lhs(_xout) = "initial" then return [seq(_vars[_i+1] = _res[_i+1], _i = 0 .. _n)] elif lhs(_xout) = "parameters" then return [seq(_pars[_i] = _res[_i], _i = 1 .. nops(_pars))] else return [seq(_vars[_i+1] = [_res][1][_i+1], _i = 0 .. _n), seq(_pars[_i] = [_res][2][_i], _i = 1 .. nops(_pars))] end if elif type(_xout, `=`) and member(lhs(_xout), ["eventdisable", 'eventdisable', "eventenable", 'eventenable', "eventfired", 'eventfired', "direction", 'direction', NULL]) then return _solnproc(convert(lhs(x_rkf45), 'string') = rhs(x_rkf45)) elif _xout = "solnprocedure" then return eval(_solnproc) elif _xout = "sysvars" then return _vars end if; if procname <> unknown then return ('procname')(x_rkf45) else _ndsol := 1; _ndsol := _ndsol; _ndsol := pointto(_dat[2][0]); return ('_ndsol')(x_rkf45) end if end if; try _res := _solnproc(_xout); [seq(_vars[_i+1] = _res[_i+1], _i = 0 .. _n)] catch: error  end try end proc

MyPlot:= proc(Params, trange)
    dsol('parameters'= Params);
    plots:-odeplot(
        dsol, [x,v](t), t= trange, refine= 1, thickness= 0.2, axes= boxed,
        labels= [x,v](t), scaling= constrained,
        title= typeset(
            ``((gamma, alpha, beta, delta, omega)=~ Params[], t= trange)
        ),
        titlefont= [helvetica, bold, 14],
        _rest
    )
end proc
:

MyPlot([0.1, -1, 1, 0.1, 1.4], 0..200);

MyPlot([0.1, -1, 1, 0.1, 1.4], 150..200);

MyPlot([0.318, -1, 1, 0.1, 1.4], 0..800);

MyPlot([0.318, -1, 1, 0.1, 1.4], 750..800);

MyPlot([0.338, -1, 1, 0.1, 1.4], 0..2000);

MyPlot([0.338, -1, 1, 0.1, 1.4], 1950..2000);

MyPlot([0.35, -1, 1, 0.1, 1.4], 0..3000, refine= 1/2);

MyPlot([0.35, -1, 1, 0.1, 1.4], 2950..3000);

 

Download DuffingEq.mw

 As always, plots look much crisper in the actual worksheet than they do when the worksheet is uploaded to MaplePrimes.

The command you need is convert(f(x), fullparfrac, x), possibly with added options. See the help page ?convert,fullparfrac.

Maple has a "sum over all roots of a polynomial" feature that usually makes seeing the individual factors unnecessary. However, if that's not useful for you, try including the factor option.

You get much better simplifications by calling dsolve for each numeric instantiation rather than getting a generic solution and then substituting parameter values,

K:= diff(F(xi), xi) = A + B*F(xi) + C*F(xi)^2;

diff(F(xi), xi) = A+B*F(xi)+C*F(xi)^2

V:= [seq](-1..1, 1/2);

[-1, -1/2, 0, 1/2, 1]

interface(rtablesize= nops(V)^3):

DataFrame(
    <seq(seq(seq(<a | b | c | rhs(dsolve(eval(K, [A,B,C]=~ [a,b,c])))>, a= V), b= V), c= V)>,
    columns= [A, B, C, F]
);

DataFrame(Matrix(125, 4, {(1, 1) = -1, (1, 2) = -1, (1, 3) = -1, (1, 4) = -((1/6)*sqrt(3)+(1/2)*tan((1/2)*sqrt(3)*(_C1+xi)))*sqrt(3), (2, 1) = -1/2, (2, 2) = -1, (2, 3) = -1, (2, 4) = -1/2-(1/2)*tan((1/2)*_C1+(1/2)*xi), (3, 1) = 0, (3, 2) = -1, (3, 3) = -1, (3, 4) = 1/(-1+exp(xi)*_C1), (4, 1) = 1/2, (4, 2) = -1, (4, 3) = -1, (4, 4) = -((1/6)*sqrt(3)-(1/2)*tanh((1/2)*sqrt(3)*(_C1+xi)))*sqrt(3), (5, 1) = 1, (5, 2) = -1, (5, 3) = -1, (5, 4) = -((1/10)*sqrt(5)-(1/2)*tanh((1/2)*sqrt(5)*(_C1+xi)))*sqrt(5), (6, 1) = -1, (6, 2) = -1/2, (6, 3) = -1, (6, 4) = -((1/60)*sqrt(15)+(1/4)*tan((1/4)*sqrt(15)*(_C1+xi)))*sqrt(15), (7, 1) = -1/2, (7, 2) = -1/2, (7, 3) = -1, (7, 4) = -((1/28)*sqrt(7)+(1/4)*tan((1/4)*sqrt(7)*(_C1+xi)))*sqrt(7), (8, 1) = 0, (8, 2) = -1/2, (8, 3) = -1, (8, 4) = 1/(-2+exp((1/2)*xi)*_C1), (9, 1) = 1/2, (9, 2) = -1/2, (9, 3) = -1, (9, 4) = (exp((3/2)*xi)*_C1+1)/(-1+2*exp((3/2)*xi)*_C1), (10, 1) = 1, (10, 2) = -1/2, (10, 3) = -1, (10, 4) = -((1/68)*sqrt(17)-(1/4)*tanh(((1/4)*_C1+(1/4)*xi)*sqrt(17)))*sqrt(17), (11, 1) = -1, (11, 2) = 0, (11, 3) = -1, (11, 4) = -tan(_C1+xi), (12, 1) = -1/2, (12, 2) = 0, (12, 3) = -1, (12, 4) = -(1/2)*tan((1/2)*sqrt(2)*(_C1+xi))*sqrt(2), (13, 1) = 0, (13, 2) = 0, (13, 3) = -1, (13, 4) = 1/(_C1+xi), (14, 1) = 1/2, (14, 2) = 0, (14, 3) = -1, (14, 4) = (1/2)*sqrt(2)*tanh((1/2)*sqrt(2)*(_C1+xi)), (15, 1) = 1, (15, 2) = 0, (15, 3) = -1, (15, 4) = tanh(_C1+xi), (16, 1) = -1, (16, 2) = 1/2, (16, 3) = -1, (16, 4) = ((1/60)*sqrt(15)-(1/4)*tan((1/4)*sqrt(15)*(_C1+xi)))*sqrt(15), (17, 1) = -1/2, (17, 2) = 1/2, (17, 3) = -1, (17, 4) = ((1/28)*sqrt(7)-(1/4)*tan((1/4)*sqrt(7)*(_C1+xi)))*sqrt(7), (18, 1) = 0, (18, 2) = 1/2, (18, 3) = -1, (18, 4) = 1/(2+exp(-(1/2)*xi)*_C1), (19, 1) = 1/2, (19, 2) = 1/2, (19, 3) = -1, (19, 4) = (exp((3/2)*xi)*_C1+1)/(exp((3/2)*xi)*_C1-2), (20, 1) = 1, (20, 2) = 1/2, (20, 3) = -1, (20, 4) = ((1/68)*sqrt(17)+(1/4)*tanh(((1/4)*_C1+(1/4)*xi)*sqrt(17)))*sqrt(17), (21, 1) = -1, (21, 2) = 1, (21, 3) = -1, (21, 4) = ((1/6)*sqrt(3)-(1/2)*tan((1/2)*sqrt(3)*(_C1+xi)))*sqrt(3), (22, 1) = -1/2, (22, 2) = 1, (22, 3) = -1, (22, 4) = 1/2-(1/2)*tan((1/2)*_C1+(1/2)*xi), (23, 1) = 0, (23, 2) = 1, (23, 3) = -1, (23, 4) = 1/(1+exp(-xi)*_C1), (24, 1) = 1/2, (24, 2) = 1, (24, 3) = -1, (24, 4) = ((1/6)*sqrt(3)+(1/2)*tanh((1/2)*sqrt(3)*(_C1+xi)))*sqrt(3), (25, 1) = 1, (25, 2) = 1, (25, 3) = -1, (25, 4) = ((1/10)*sqrt(5)+(1/2)*tanh((1/2)*sqrt(5)*(_C1+xi)))*sqrt(5), (26, 1) = -1, (26, 2) = -1, (26, 3) = -1/2, (26, 4) = -1-tan((1/2)*_C1+(1/2)*xi), (27, 1) = -1/2, (27, 2) = -1, (27, 3) = -1/2, (27, 4) = -(_C1+xi-2)/(_C1+xi), (28, 1) = 0, (28, 2) = -1, (28, 3) = -1/2, (28, 4) = 2/(-1+2*exp(xi)*_C1), (29, 1) = 1/2, (29, 2) = -1, (29, 3) = -1/2, (29, 4) = -((1/2)*sqrt(2)-tanh((1/2)*sqrt(2)*(_C1+xi)))*sqrt(2), (30, 1) = 1, (30, 2) = -1, (30, 3) = -1/2, (30, 4) = -((1/3)*sqrt(3)-tanh((1/2)*sqrt(3)*(_C1+xi)))*sqrt(3), (31, 1) = -1, (31, 2) = -1/2, (31, 3) = -1/2, (31, 4) = -((1/14)*sqrt(7)+(1/2)*tan((1/4)*sqrt(7)*(_C1+xi)))*sqrt(7), (32, 1) = -1/2, (32, 2) = -1/2, (32, 3) = -1/2, (32, 4) = -((1/6)*sqrt(3)+(1/2)*tan((1/4)*sqrt(3)*(_C1+xi)))*sqrt(3), (33, 1) = 0, (33, 2) = -1/2, (33, 3) = -1/2, (33, 4) = 1/(-1+exp((1/2)*xi)*_C1), (34, 1) = 1/2, (34, 2) = -1/2, (34, 3) = -1/2, (34, 4) = -((1/10)*sqrt(5)-(1/2)*tanh((1/4)*sqrt(5)*(_C1+xi)))*sqrt(5), (35, 1) = 1, (35, 2) = -1/2, (35, 3) = -1/2, (35, 4) = (2+exp((3/2)*xi)*_C1)/(exp((3/2)*xi)*_C1-1), (36, 1) = -1, (36, 2) = 0, (36, 3) = -1/2, (36, 4) = -tan((1/2)*sqrt(2)*(_C1+xi))*sqrt(2), (37, 1) = -1/2, (37, 2) = 0, (37, 3) = -1/2, (37, 4) = -tan((1/2)*_C1+(1/2)*xi), (38, 1) = 0, (38, 2) = 0, (38, 3) = -1/2, (38, 4) = 2/(2*_C1+xi), (39, 1) = 1/2, (39, 2) = 0, (39, 3) = -1/2, (39, 4) = tanh((1/2)*_C1+(1/2)*xi), (40, 1) = 1, (40, 2) = 0, (40, 3) = -1/2, (40, 4) = sqrt(2)*tanh((1/2)*sqrt(2)*(_C1+xi)), (41, 1) = -1, (41, 2) = 1/2, (41, 3) = -1/2, (41, 4) = ((1/14)*sqrt(7)-(1/2)*tan((1/4)*sqrt(7)*(_C1+xi)))*sqrt(7), (42, 1) = -1/2, (42, 2) = 1/2, (42, 3) = -1/2, (42, 4) = ((1/6)*sqrt(3)-(1/2)*tan((1/4)*sqrt(3)*(_C1+xi)))*sqrt(3), (43, 1) = 0, (43, 2) = 1/2, (43, 3) = -1/2, (43, 4) = 1/(1+exp(-(1/2)*xi)*_C1), (44, 1) = 1/2, (44, 2) = 1/2, (44, 3) = -1/2, (44, 4) = ((1/10)*sqrt(5)+(1/2)*tanh((1/4)*sqrt(5)*(_C1+xi)))*sqrt(5), (45, 1) = 1, (45, 2) = 1/2, (45, 3) = -1/2, (45, 4) = (1+2*exp((3/2)*xi)*_C1)/(exp((3/2)*xi)*_C1-1), (46, 1) = -1, (46, 2) = 1, (46, 3) = -1/2, (46, 4) = 1-tan((1/2)*_C1+(1/2)*xi), (47, 1) = -1/2, (47, 2) = 1, (47, 3) = -1/2, (47, 4) = (_C1+xi+2)/(_C1+xi), (48, 1) = 0, (48, 2) = 1, (48, 3) = -1/2, (48, 4) = 2/(1+2*exp(-xi)*_C1), (49, 1) = 1/2, (49, 2) = 1, (49, 3) = -1/2, (49, 4) = ((1/2)*sqrt(2)+tanh((1/2)*sqrt(2)*(_C1+xi)))*sqrt(2), (50, 1) = 1, (50, 2) = 1, (50, 3) = -1/2, (50, 4) = ((1/3)*sqrt(3)+tanh((1/2)*sqrt(3)*(_C1+xi)))*sqrt(3), (51, 1) = -1, (51, 2) = -1, (51, 3) = 0, (51, 4) = -1+exp(-xi)*_C1, (52, 1) = -1/2, (52, 2) = -1, (52, 3) = 0, (52, 4) = -1/2+exp(-xi)*_C1, (53, 1) = 0, (53, 2) = -1, (53, 3) = 0, (53, 4) = exp(-xi)*_C1, (54, 1) = 1/2, (54, 2) = -1, (54, 3) = 0, (54, 4) = exp(-xi)*_C1+1/2, (55, 1) = 1, (55, 2) = -1, (55, 3) = 0, (55, 4) = 1+exp(-xi)*_C1, (56, 1) = -1, (56, 2) = -1/2, (56, 3) = 0, (56, 4) = -2+exp(-(1/2)*xi)*_C1, (57, 1) = -1/2, (57, 2) = -1/2, (57, 3) = 0, (57, 4) = -1+exp(-(1/2)*xi)*_C1, (58, 1) = 0, (58, 2) = -1/2, (58, 3) = 0, (58, 4) = exp(-(1/2)*xi)*_C1, (59, 1) = 1/2, (59, 2) = -1/2, (59, 3) = 0, (59, 4) = 1+exp(-(1/2)*xi)*_C1, (60, 1) = 1, (60, 2) = -1/2, (60, 3) = 0, (60, 4) = 2+exp(-(1/2)*xi)*_C1, (61, 1) = -1, (61, 2) = 0, (61, 3) = 0, (61, 4) = _C1-xi, (62, 1) = -1/2, (62, 2) = 0, (62, 3) = 0, (62, 4) = -(1/2)*xi+_C1, (63, 1) = 0, (63, 2) = 0, (63, 3) = 0, (63, 4) = _C1, (64, 1) = 1/2, (64, 2) = 0, (64, 3) = 0, (64, 4) = (1/2)*xi+_C1, (65, 1) = 1, (65, 2) = 0, (65, 3) = 0, (65, 4) = _C1+xi, (66, 1) = -1, (66, 2) = 1/2, (66, 3) = 0, (66, 4) = 2+exp((1/2)*xi)*_C1, (67, 1) = -1/2, (67, 2) = 1/2, (67, 3) = 0, (67, 4) = 1+exp((1/2)*xi)*_C1, (68, 1) = 0, (68, 2) = 1/2, (68, 3) = 0, (68, 4) = exp((1/2)*xi)*_C1, (69, 1) = 1/2, (69, 2) = 1/2, (69, 3) = 0, (69, 4) = -1+exp((1/2)*xi)*_C1, (70, 1) = 1, (70, 2) = 1/2, (70, 3) = 0, (70, 4) = -2+exp((1/2)*xi)*_C1, (71, 1) = -1, (71, 2) = 1, (71, 3) = 0, (71, 4) = 1+exp(xi)*_C1, (72, 1) = -1/2, (72, 2) = 1, (72, 3) = 0, (72, 4) = 1/2+exp(xi)*_C1, (73, 1) = 0, (73, 2) = 1, (73, 3) = 0, (73, 4) = exp(xi)*_C1, (74, 1) = 1/2, (74, 2) = 1, (74, 3) = 0, (74, 4) = exp(xi)*_C1-1/2, (75, 1) = 1, (75, 2) = 1, (75, 3) = 0, (75, 4) = -1+exp(xi)*_C1, (76, 1) = -1, (76, 2) = -1, (76, 3) = 1/2, (76, 4) = ((1/3)*sqrt(3)-tanh((1/2)*sqrt(3)*(_C1+xi)))*sqrt(3), (77, 1) = -1/2, (77, 2) = -1, (77, 3) = 1/2, (77, 4) = ((1/2)*sqrt(2)-tanh((1/2)*sqrt(2)*(_C1+xi)))*sqrt(2), (78, 1) = 0, (78, 2) = -1, (78, 3) = 1/2, (78, 4) = 2/(1+2*exp(xi)*_C1), (79, 1) = 1/2, (79, 2) = -1, (79, 3) = 1/2, (79, 4) = (_C1+xi-2)/(_C1+xi), (80, 1) = 1, (80, 2) = -1, (80, 3) = 1/2, (80, 4) = 1+tan((1/2)*_C1+(1/2)*xi), (81, 1) = -1, (81, 2) = -1/2, (81, 3) = 1/2, (81, 4) = -(2+exp((3/2)*xi)*_C1)/(exp((3/2)*xi)*_C1-1), (82, 1) = -1/2, (82, 2) = -1/2, (82, 3) = 1/2, (82, 4) = ((1/10)*sqrt(5)-(1/2)*tanh((1/4)*sqrt(5)*(_C1+xi)))*sqrt(5), (83, 1) = 0, (83, 2) = -1/2, (83, 3) = 1/2, (83, 4) = 1/(1+exp((1/2)*xi)*_C1), (84, 1) = 1/2, (84, 2) = -1/2, (84, 3) = 1/2, (84, 4) = ((1/6)*sqrt(3)+(1/2)*tan((1/4)*sqrt(3)*(_C1+xi)))*sqrt(3), (85, 1) = 1, (85, 2) = -1/2, (85, 3) = 1/2, (85, 4) = ((1/14)*sqrt(7)+(1/2)*tan((1/4)*sqrt(7)*(_C1+xi)))*sqrt(7), (86, 1) = -1, (86, 2) = 0, (86, 3) = 1/2, (86, 4) = -sqrt(2)*tanh((1/2)*sqrt(2)*(_C1+xi)), (87, 1) = -1/2, (87, 2) = 0, (87, 3) = 1/2, (87, 4) = -tanh((1/2)*_C1+(1/2)*xi), (88, 1) = 0, (88, 2) = 0, (88, 3) = 1/2, (88, 4) = 2/(2*_C1-xi), (89, 1) = 1/2, (89, 2) = 0, (89, 3) = 1/2, (89, 4) = tan((1/2)*_C1+(1/2)*xi), (90, 1) = 1, (90, 2) = 0, (90, 3) = 1/2, (90, 4) = tan((1/2)*sqrt(2)*(_C1+xi))*sqrt(2), (91, 1) = -1, (91, 2) = 1/2, (91, 3) = 1/2, (91, 4) = -(1+2*exp((3/2)*xi)*_C1)/(exp((3/2)*xi)*_C1-1), (92, 1) = -1/2, (92, 2) = 1/2, (92, 3) = 1/2, (92, 4) = -((1/10)*sqrt(5)+(1/2)*tanh((1/4)*sqrt(5)*(_C1+xi)))*sqrt(5), (93, 1) = 0, (93, 2) = 1/2, (93, 3) = 1/2, (93, 4) = 1/(-1+exp(-(1/2)*xi)*_C1), (94, 1) = 1/2, (94, 2) = 1/2, (94, 3) = 1/2, (94, 4) = -((1/6)*sqrt(3)-(1/2)*tan((1/4)*sqrt(3)*(_C1+xi)))*sqrt(3), (95, 1) = 1, (95, 2) = 1/2, (95, 3) = 1/2, (95, 4) = -((1/14)*sqrt(7)-(1/2)*tan((1/4)*sqrt(7)*(_C1+xi)))*sqrt(7), (96, 1) = -1, (96, 2) = 1, (96, 3) = 1/2, (96, 4) = -((1/3)*sqrt(3)+tanh((1/2)*sqrt(3)*(_C1+xi)))*sqrt(3), (97, 1) = -1/2, (97, 2) = 1, (97, 3) = 1/2, (97, 4) = -((1/2)*sqrt(2)+tanh((1/2)*sqrt(2)*(_C1+xi)))*sqrt(2), (98, 1) = 0, (98, 2) = 1, (98, 3) = 1/2, (98, 4) = 2/(-1+2*exp(-xi)*_C1), (99, 1) = 1/2, (99, 2) = 1, (99, 3) = 1/2, (99, 4) = -(_C1+xi+2)/(_C1+xi), (100, 1) = 1, (100, 2) = 1, (100, 3) = 1/2, (100, 4) = -1+tan((1/2)*_C1+(1/2)*xi), (101, 1) = -1, (101, 2) = -1, (101, 3) = 1, (101, 4) = ((1/10)*sqrt(5)-(1/2)*tanh((1/2)*sqrt(5)*(_C1+xi)))*sqrt(5), (102, 1) = -1/2, (102, 2) = -1, (102, 3) = 1, (102, 4) = ((1/6)*sqrt(3)-(1/2)*tanh((1/2)*sqrt(3)*(_C1+xi)))*sqrt(3), (103, 1) = 0, (103, 2) = -1, (103, 3) = 1, (103, 4) = 1/(1+exp(xi)*_C1), (104, 1) = 1/2, (104, 2) = -1, (104, 3) = 1, (104, 4) = 1/2+(1/2)*tan((1/2)*_C1+(1/2)*xi), (105, 1) = 1, (105, 2) = -1, (105, 3) = 1, (105, 4) = ((1/6)*sqrt(3)+(1/2)*tan((1/2)*sqrt(3)*(_C1+xi)))*sqrt(3), (106, 1) = -1, (106, 2) = -1/2, (106, 3) = 1, (106, 4) = ((1/68)*sqrt(17)-(1/4)*tanh(((1/4)*_C1+(1/4)*xi)*sqrt(17)))*sqrt(17), (107, 1) = -1/2, (107, 2) = -1/2, (107, 3) = 1, (107, 4) = -(exp((3/2)*xi)*_C1+1)/(-1+2*exp((3/2)*xi)*_C1), (108, 1) = 0, (108, 2) = -1/2, (108, 3) = 1, (108, 4) = 1/(2+exp((1/2)*xi)*_C1), (109, 1) = 1/2, (109, 2) = -1/2, (109, 3) = 1, (109, 4) = ((1/28)*sqrt(7)+(1/4)*tan((1/4)*sqrt(7)*(_C1+xi)))*sqrt(7), (110, 1) = 1, (110, 2) = -1/2, (110, 3) = 1, (110, 4) = ((1/60)*sqrt(15)+(1/4)*tan((1/4)*sqrt(15)*(_C1+xi)))*sqrt(15), (111, 1) = -1, (111, 2) = 0, (111, 3) = 1, (111, 4) = -tanh(_C1+xi), (112, 1) = -1/2, (112, 2) = 0, (112, 3) = 1, (112, 4) = -(1/2)*sqrt(2)*tanh((1/2)*sqrt(2)*(_C1+xi)), (113, 1) = 0, (113, 2) = 0, (113, 3) = 1, (113, 4) = 1/(_C1-xi), (114, 1) = 1/2, (114, 2) = 0, (114, 3) = 1, (114, 4) = (1/2)*tan((1/2)*sqrt(2)*(_C1+xi))*sqrt(2), (115, 1) = 1, (115, 2) = 0, (115, 3) = 1, (115, 4) = tan(_C1+xi), (116, 1) = -1, (116, 2) = 1/2, (116, 3) = 1, (116, 4) = -((1/68)*sqrt(17)+(1/4)*tanh(((1/4)*_C1+(1/4)*xi)*sqrt(17)))*sqrt(17), (117, 1) = -1/2, (117, 2) = 1/2, (117, 3) = 1, (117, 4) = -(exp((3/2)*xi)*_C1+1)/(exp((3/2)*xi)*_C1-2), (118, 1) = 0, (118, 2) = 1/2, (118, 3) = 1, (118, 4) = 1/(-2+exp(-(1/2)*xi)*_C1), (119, 1) = 1/2, (119, 2) = 1/2, (119, 3) = 1, (119, 4) = -((1/28)*sqrt(7)-(1/4)*tan((1/4)*sqrt(7)*(_C1+xi)))*sqrt(7), (120, 1) = 1, (120, 2) = 1/2, (120, 3) = 1, (120, 4) = -((1/60)*sqrt(15)-(1/4)*tan((1/4)*sqrt(15)*(_C1+xi)))*sqrt(15), (121, 1) = -1, (121, 2) = 1, (121, 3) = 1, (121, 4) = -((1/10)*sqrt(5)+(1/2)*tanh((1/2)*sqrt(5)*(_C1+xi)))*sqrt(5), (122, 1) = -1/2, (122, 2) = 1, (122, 3) = 1, (122, 4) = -((1/6)*sqrt(3)+(1/2)*tanh((1/2)*sqrt(3)*(_C1+xi)))*sqrt(3), (123, 1) = 0, (123, 2) = 1, (123, 3) = 1, (123, 4) = 1/(-1+exp(-xi)*_C1), (124, 1) = 1/2, (124, 2) = 1, (124, 3) = 1, (124, 4) = -1/2+(1/2)*tan((1/2)*_C1+(1/2)*xi), (125, 1) = 1, (125, 2) = 1, (125, 3) = 1, (125, 4) = -((1/6)*sqrt(3)-(1/2)*tan((1/2)*sqrt(3)*(_C1+xi)))*sqrt(3)}), rows = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125], columns = [A, B, C, F])

 

Download DataFRame.mw

If you want to use Dimension, you just need to change uses RationalTriigonometry to uses LinearAlgebra. If you want to use type, you need to put 'Matrix' like that, with unevaluation quotes. That's because Matrix(1,3) is an executable command, not just a type.

(f,g):= <<a|b|c>>, <<d,e,h>>:
type(f, 'Matrix'(1,3)), type(g, 'Matrix'(1,3)), type(g, 'Matrix'(3,1));

                       
true, false, true

Unevaluation quotes are not needed for types used in a procedure header:

f:= proc(p::Matrix(1,3)) ... end proc:

To get a Crout decomposition, first get a standard LUDecomposition of the transpose of the coefficient matrix, then transpose each of the returned matrices, then reverse the order that they are multiplied. Although that may seem like a lot of steps, it can all be done in one short command in Maple:

restart:

Eqs:= [4*x+y+z=4, x+4*y-2*z=4, 3*x+2*y-4*z=6]:

(A,B):= LinearAlgebra:-GenerateMatrix(Eqs, [x,y,z]):

(P,L,U):= LinearAlgebra:-LUDecomposition(A^%T, output= ['P','U','L'])^~%T;

P, L, U := Matrix(3, 3, {(1, 1) = 1, (1, 2) = 0, (1, 3) = 0, (2, 1) = 0, (2, 2) = 1, (2, 3) = 0, (3, 1) = 0, (3, 2) = 0, (3, 3) = 1}), Matrix(3, 3, {(1, 1) = 4, (1, 2) = 0, (1, 3) = 0, (2, 1) = 1, (2, 2) = 15/4, (2, 3) = 0, (3, 1) = 3, (3, 2) = 5/4, (3, 3) = -4}), Matrix(3, 3, {(1, 1) = 1, (1, 2) = 1/4, (1, 3) = 1/4, (2, 1) = 0, (2, 2) = 1, (2, 3) = -3/5, (3, 1) = 0, (3, 2) = 0, (3, 3) = 1})

L.U.P - A;

Matrix(3, 3, {(1, 1) = 0, (1, 2) = 0, (1, 3) = 0, (2, 1) = 0, (2, 2) = 0, (2, 3) = 0, (3, 1) = 0, (3, 2) = 0, (3, 3) = 0})

 

Download Crout.mw

Note the order specified in the output option: ['P', 'U', 'L'] rather than the usual ['P', 'L', 'U'].

You are trying to solve 2 equations for 1 variable. It's not usually possible to get an unconditional solution when there are more equations than variables being solved for. Here are 2 options:

  • Add a 2nd variable (of your choice) to solve for,
  • Accept a conditional solution.

To add a second variable (for example, Clm):

solve({tau = `&tau;opt`, lambda = `&lambda;opt`}, {w, Clm})

To get a possibly conditional solution, use eliminate instead of solve:

eliminate({tau = `&tau;opt`, `&lambda;opt` = lambdaopt}, {w})

The return will be a list of two sets. The first set is the solution(s) for w (only one in this case). The second set is expressions (only one in this case) that must equal 0 in order for the first set to be valid.

You've made a quite interesting discovery (Vote up): Overloads in modules don't explicitly have option overload, although they do otherwise contain the correct programmatic structure of an overload. So, the workaround for your procedure Isee is to explicily insert option overload when that's needed, like this:

Isee:= proc(a::procedure)
local vp:= interface('verboseproc'= 3), p:= eval(a);
    if op([5,1], ToInert(eval(a)))::specfunc(_Inert_OVERLOADLIST) then
        p:= subsop(3= overload, eval(a))  #op(3,a) is the explicit options
    fi;
    printf("%P", eval(p));
    interface('verboseproc'= vp);
    return
end proc:

 

There are several things that I did to make your double and quadruple summations faster. The most important and the most obvious is that any factor in a sum that doesn't depend on the summation variable should be factored out. Otherwise, those binomials (and other things) get recomputed many times,. Some other tricks:

  1. GAMMA(s1+h+1)/(GAMMA(s1+1)*h!) = binomial(s1+h, h), even when s1 isn't an integer.
  2. All necessary binomials can be pre-computed once, via very simple recursive formulae:
    [1, seq[scan= `*`]((n+1)/k - 1, k= 1..n)] generates the sequence binomial(n,k) $ k= 0..n (i.e., the entire (n+1)st row of Pascal's triangle). By changing the order of subtraction to 1 - (n+1)/k, we generate (-1)^k*binomial(n,k).
    [1, seq[scan= `*`](1 + s/k, k= 1..upto)] generates binomial(s+k, k) $ k= 0..upto.
  3. (beta1 - 1)^h*(-1)^h = (1 - beta1)^h, and of course this is trivial to generate recursively.
  4. The additions of fixed terms in the denominators can be pre-computed:
    e.g.DL:= x+y + b1*(s1+h) + b2*(s2+v).
  5. The undocumented command inner(A, B) computes the inner (or "dot") product of two lists of equal length; i.e.inner(A,B) = add(A*~B) = sum(A[k]*B[k], k= 1..nops(A)).
  6. The updating assignment operators +=*=, and ++ work exactly the same as they do in the numerous other languages that have them:
    S+= a  <=>  S:= S+a
    B*= k  <=>  B:= B*k
    d++  
    <=>  (d+= 1) - 1, i.e., it increments d and returns the pre-incremented value,

Here is my worksheet with all my improvements and verifications that my methods give the same results as @dharr.

 

restart:

n1:= 423: x:= 16: n2:= 81: y:= 35: s1:= 1/10: b1:= 7: beta1:= 21/10: s2:= 1/10: b2:= 7:
beta2 := 21/10:

First I verify that my simplifications produce the same results as @dharr:

A:= proc(h,v,r)
local
    L, j, S:= 0, n1x:= n1-x+1, n2y:= n2-y+1, Ls:= [$0..n2y-1],
    Dj:= r + x + b1*(s1+v), DL:= x+y + b1*(s1+h) + b2*(s2+v),
    BL:= [1, seq['scan'= `*`](1-n2y/L, L= 1..n2y-1)], Bj:= 1
;
    for j to n1x do
        S+= inner(BL, 1/~(DL++ +~ Ls))*Bj/Dj++;
        Bj*= 1 - n1x/j
    od;
    S*binomial(s1+h, h)*binomial(s2+v, v)*(1-beta1)^h*(1-beta2)^v
end proc
:

CodeTools:-Usage(A(2,2,0));

memory used=7.72MiB, alloc change=0 bytes, cpu time=0ns, real time=33.00ms, gc time=0ns

11727199469241514779864393729287999595266717038898384405454822453889989726964576758757729551099323484694782170822448350244634045448648056150840927233527350118380124119264858615283201523602923810903830006171445640638533014964609388484372553536841310967853824558690932280088151544584971199415788181111551306532754880119508566210291084045598562471540440317095151211911113829813243986384020095260781211101363284506805774438303489939264952762167438202379620004245323297602579179457497328410039101743209644168235298998961095392278935981336337925654946855818892100272459692432824817768478928223155226897063053135874218725475831316965225841532156062303907670391646481346412180543470550738955412983380825233032396184376956505282354537912590976013025195012646732190615857238658037431378033943474292755126953125/6382265268317256219633710058998499818340873590563036702803822950484199699636302738462052037083809489945501654638778705432982835407262106422716055822223400225220629848888603203921980303115472012139298206087469920885254016501522878034151924440738350864243996392880003254552368644323922787997879524243559004914030851003740366052093558872264913393738584398643237741388376227019971696955206515106578177861348809414199987981935214749218771677333981945489142846776730080142869549055976924435701756372241817375336920507491648219754129346141714754707551648893025832772408084923821700316568058764587634659823042662378587917652228685077432247136823506786967161644710468316981814899035776299987989971099597861998466613316946045883428522261542320902882571202585668513207901611181230727412654811333329187224660577277205763279177427978308304241574151519438327049907892296647014672715620294656

evalf(%);

0.1837466632e-77

f:= (r, upto)->
local
    h, v, j, L, n1x:= n1-x+1, n2y:= n2-y+1, Ls:= [$0..n2y-1], js:= [$0..n1x-1],
    BL:= [1, seq['scan'= `*`](1-n2y/L, L= 1..n2y-1)],
    Bj:= [1, seq['scan'= `*`](1-n1x/j, j= 1..n1x-1)],
    Beta1:= 1-beta1, Beta2:= 1-beta2,
    Bs1:= [1, seq['scan'= `*`](1+s1/h, h= 1..upto)],
    Bs2:= [1, seq['scan'= `*`](1+s2/h, h= 1..upto)],
    B1:= [1, seq['scan'= `*`](Beta1, h= 1..upto)],
    B2:= [1, seq['scan'= `*`](Beta2, h= 1..upto)],
    A0:= (h,v,r)->
    local j, Dj:= r + x + b1*(s1+v), DL:= x+y + b1*(s1+h) + b2*(s2+v);
        add(inner(BL, 1/~(DL++ +~ Ls))*Bj[j]/Dj++, j= 1..n1x),
    B0:= (h,v,r)->
    local L, DL:= y - r + b2*(s2+h), Dj:= x+y + b2*(s2+h) + b1*(s1+v);
        add(inner(Bj, 1/~(Dj++ +~ js))*BL[L]/DL++, L= 1..n2y)
;
    add(Bs1[h]*B1[h]*add(A0(h-1,v-1,r)*Bs2[v]*B2[v], v= 1..upto+1), h= 1..upto+1)
    +
    add(Bs1[v]*B1[v]*add(B0(h-1,v-1,r)*Bs2[h]*B2[h], h= 1..upto+1), v= 1..upto+1)
:

CodeTools:-Usage(f(0,12));

memory used=3.80GiB, alloc change=0 bytes, cpu time=1.92s, real time=6.81s, gc time=531.25ms

114249022902597666588491400529505235216742049616231180869631619194167698464302221521109360278934161699249264126826236228253701293270492644550135177145016349814982113455183820820735876815796463679992519208283503642450130209375877055834771405738601458875577451563602032933837943025767731232207854934759236939341322568521090401156938484109405395425106996068885180201446511126644125409694777192264543924174126949778005106553840262917702653247531868774015140088404720078587672388076732410686714770939922375245824000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000/4478112673625161634402912271274057087521425782459964471363322850631457597742398047074088546911131451856756368982860023346654177624065136219112870362974132591633772922976976016146648645581986021657025573763585023497503972196876316120665545360282282680322522472194461718178716824852465782992306776138047404097571796261065850414338472933710797700189622470162561730240651195333635833352277583626670180879730361251512986788399320104862652482661166302364468264845833967133426250993316566352774199352462247496894848151055424852777184106477710417868463737767180212637570654326336497085984319988974445914462490654328034321182352155451367268612522705340661230039301539950445376032066380305314154637436491880112866704742279027028488977660000585169277423676424285496535951865146024850581707926633898571343437487693846692653268159361127272552016275556640003360341921899571661034103268149587939236207824679329125781964757872174171342424591595209864084608515982176191174973912465653082613424079377178453298484585210385316658608895204147668705453968995722653400843313999068483592478297363991

evalf(%);

0.2551276201e-55

CodeTools:-Usage(f(0,30)):

memory used=22.50GiB, alloc change=0 bytes, cpu time=9.80s, real time=40.99s, gc time=3.25s

evalf(%);

0.2551276201e-55

 

The terms from 13 to 30 were too small to make any difference.

Download FasterQuadrupleSum.mw

You wrote:

  • The combine function applies transformations which combine terms in sums,...

Unfortunately, that is just the most simplistic purpose of combine. In my mind, the primary purpose of combine is to make function arguments more complicated (such as changing func1(x) to func2(2*x)); expand does the reverse, changing 2*x to x. The could be replaced by any integer.

This has always seemed intuitively clear to me, and I never use a menu to do something that can be done with a typed command. Perhaps those two things are related to each other.

4 5 6 7 8 9 10 Last Page 6 of 392