Lenin Araujo Castillo

Prof. Lenin Araujo Castillo

1790 Reputation

15 Badges

14 years, 333 days
Physics Pure || Computer Science
Trujillo/La Libertad, Peru

Social Networks and Content at Maplesoft.com

Maple Application Center
Simulation Specialist for Dynamic Systems with Maple Classic and Modern Physics. Mathematical Modeling by Maple problems. Basic Science Teaching using ICT's. Business Data Analyst at Maple and MapleSim environment. Expertise in the development of mathematics with embedded components for mobile devices.

MaplePrimes Activity


These are Posts that have been published by Lenin Araujo Castillo

The equations of motion for a rigid body can be obtained from the principles governing the motion of a particle system. Now we will solve with Maple.

 

Dinamica_plana_de_cuerpos_rigidos.mw

(in spanish)

Atte.

Lenin Araujo Castillo

Corrección ejercico 4

 

4.- Cada una de las barras mostradas tiene una longitud de 1 m y una masa de 2 kg. Ambas giran en el plano horizontal. La barra AB gira con una velocidad angular constante de 4 rad/s en sentido contrario al de las manecillas del reloj. En el instante mostrado, la barra BC gira a 6 rad/s en sentido contrario al de las manecillas del reloj. ¿Cuál es la aceleración angular de la barra BC?

Solución:

restart; with(VectorCalculus)

NULL

NULL

m := 2

L := 1

theta := (1/4)*Pi

a[G] = x*alpha[BC]*r[G/B]-omega[BC]^2*r[G/B]+a[B]NULL

NULL

a[B] = x*alpha[AB]*r[B/A]-omega[AB]^2*r[B/A]+a[A]

NULL

aA := `<,>`(0, 0, 0)

`&alpha;AB` := `<,>`(0, 0, 0)

rBrA := `<,>`(1, 0, 0)

`&omega;AB` := `<,>`(0, 0, 4)

aB := aA+`&x`(`&alpha;AB`, rBrA)-4^2*rBrA

Vector[column](%id = 4411990810)

(1)

`&alpha;BC` := `<,>`(0, 0, `&alpha;bc`)

rGrB := `<,>`(.5*cos((1/4)*Pi), -.5*sin((1/4)*Pi), 0)

aG := evalf(aB+`&x`(`&alpha;BC`, rGrB)-6^2*rGrB, 5)

Vector[column](%id = 4412052178)

(2)

usando "(&sum;)M[G]=r[BC] x F[xy]"

rBC := `<,>`(.5*cos((1/4)*Pi), -.5*sin((1/4)*Pi), 0)

Fxy := `<,>`(Fx, -Fy, 0)

NULL

`&x`(rBC, Fxy) = (1/12*2)*1^2*`&alpha;bc`

(.2500000000*sqrt(2)*(-.70710*`&alpha;bc`-25.456)+(.2500000000*(57.456-.70710*`&alpha;bc`))*sqrt(2))*e[z] = (1/6)*`&alpha;bc`

(3)

 

"(&sum;)Fx:-Fx=m*ax"           y             "(&sum;)Fy:Fy=m*ay"

ax := -28.728+.35355*`&alpha;bc`

-28.728+.35355*`&alpha;bc`

(4)

ay := .35355*`&alpha;bc`+12.728

.35355*`&alpha;bc`+12.728

(5)

Fx := -2*ax

57.456-.70710*`&alpha;bc`

(6)

Fy := 2*ay

.70710*`&alpha;bc`+25.456

(7)

`&x`(rBC, Fxy) = (1/12*2)*1^2*`&alpha;bc`

(.2500000000*sqrt(2)*(-.70710*`&alpha;bc`-25.456)+(.2500000000*(57.456-.70710*`&alpha;bc`))*sqrt(2))*e[z] = (1/6)*`&alpha;bc`

(8)

.2500000000*sqrt(2)*(-.70710*`&alpha;bc`-25.456)+(.2500000000*(57.456-.70710*`&alpha;bc`))*sqrt(2) = (1/6)*`&alpha;bc`

.2500000000*2^(1/2)*(-.70710*`&alpha;bc`-25.456)+(14.36400000-.1767750000*`&alpha;bc`)*2^(1/2) = (1/6)*`&alpha;bc`

(9)

"(->)"

[[`&alpha;bc` = 16.97068481]]

(10)

NULL

 

Download ejercicio4.mw

The precise definition is that the distance between any two points of the rigid body remains constant. Although any body is deformed to move, if the deformation is small movement can be approximated by modeling it as a rigid body. Now let's see how Maple is part of the solution.

Cinematica_plana_de_cuerpos_rigidos.mw

(in spanish)

Atte.

Lenin Araujo C.

 

 

 

Currently calculations: equations, regression analysis, differential equations, etc; to mention a few of them; are developed using traditional methods ie even are proposed and solved by hand and on paper. In teaching our scientists and engineers use the chalkboard as a way to reach students and enable them to solve their calculation. To what extent Maple contributes to research on new mathematical models applied science and engineering ?. Maplesoft appears as a proposal to resolve problems with our traditional proposed intelligent algorithms, development process, embedded components, and not only them but also generates type applications for Apple ipad tablets signature. Based on the computer algebra system Maple Maplesoft gives us the package which works exactly like we were on our work. I will show how mathematics is developed from a purely basic to reach modeling differential equations applied to education and engineering. Also visualizare current techniques for developing applications for mobile devices.

link: https://www.youtube.com/watch?v=FdRUSgfPBoc

 

ECI_2015.pdf

Atte.

Lenin Araujo Castillo

Physics Pure

Computer Science

In this work we show you what to do with the programming of Embedded Components applied to graphics in the Cartesian plane; from the visualization of a point up to three-dimensional objects and also using the Maple language generare own interactive applications for touch screen technology in mobile devices techniques. Given that computers use multicore and designed algorithms that solve calculus problems with very good performance in time; this brings programming to more complex mathematical structures such as in the linear algebra, analytic geometry and advanced methods in numerical analysis. The graphics will show real-time results for the correct use of the parallel programming undertook to bear the procedural technique is well suited to the data structure, curves and surfaces. Interaction in a single graphical container allowing the teaching and / or research the rapid change of parameters; giving a quick interpretation of the results.

 

FAST_UNT_2015.pdf

Programming_Embedded_Components_for_Graphics_in_Maple.mw

Atte.

L.Araujo C.

Physics Pure

Computer Science

 

 

 

Today science professionals in engineering software used to only work on the desktop and even just looking to download and use mobile apps math; but they are not able to design their own applications.Maplesoft to set the solution to it through its Maple package; software supports desktop and mobile; solves problems of analysis and calculation with Embedded Components. To show this we have taken the area of different mathematical topics; fixed horizontally to a certain range of parameters and not just a constant as it is customary to develop. This paper shows how the Embedded Components allow us to develop mathematics in all areas. Achieving build applications that are interactive in mobile devices such as tablets; which are used at any time. Maple gives us design according to our university or research need, based on contemporary and modern mathematics.With this method we encourage students, teachers and researchers to use graphics algorithms.

 

CSMP_PUCP_2014.pdf

Coloquio_PUCP.mw

 

Lenin Araujo Castillo

Physics Pure

Computer Science

First 13 14 15 16 17 18 19 Page 15 of 21