MDD

317 Reputation

7 Badges

9 years, 19 days

MaplePrimes Activity


These are questions asked by MDD

Hi 

I have a question concerning the matrix. Is there any Maple command or function for counting the nonzero elements in any row of a matrix?

Thanks for your help.

Let us consider the following assumptions:

Any set of binomials $B \in R=K[x_1, \cdots, x_n]$ induces an equivalence relation on the set of monomials in $R$ under which $m_1∼m_2$ if and only if $m_1−tm_2\in \langle B \rangle$ for some non-zero $t\in K$. As a k-vector space, the quotient ring $R/B$ s spanned by the equivalence classes of monomials. Now let $f =x^2−y^2$ be a binomial in $K[x, y]$. Among monomials of total degree three, $x^3$ and $xy^2$, as well as $x^2y$ and $y^3$ become equal in $K[x, y] / \langle f\rangle$.

Why the degree three part in the quotient is two-dimensional with one basis vector per equivalence class?

Also, why does the polynomial $f=x^3+xy^2+y^3$ map to a binomial with a coefficient matrix [2, 1]? I think this matrix arises from the matrix [1, 1, 1, 0] by summing the columns corresponding to $x^3$ and $xy^2$ and those for $x^2y$ and $y^3$. 

How can I implement a simple code to obtain these results in {\tt Maple}?

I am looking forward to hearing any help and guidance.

Thank you in advance

On a Windows machine, I want to install a library in Maple? 

Could you please help me?

Thank you in advance.

Sincerely yours

 Could you please help me to resolve my problem?

Let us consider A=[a,-b,c, d, -a,b, -d]. Is there any command or function to remove negative element from A? For this example I want to obtain [a,b,c,d]. It is worth noting that not different "a" belong in the output list or "-a".

Thank you in advance.

Could you please help me at the solution of my problem?

Let us consider the following list:

A := [x[1, 1]*(a*x[1, 1] + E[1, 1]) + x[2, 1]*(a*x[1, 2] + E[1, 2]) + x[3, 1]*(a*x[1, 3] + E[1, 3]), x[1, 2]*(a*x[1, 1] + E[1, 1]) + x[2, 2]*(a*x[1, 2] + E[1, 2]) + x[3, 2]*(a*x[1, 3] + E[1, 3]), x[1, 3]*(a*x[1, 1] + E[1, 1]) + x[2, 3]*(a*x[1, 2] + E[1, 2]) + x[3, 3]*(a*x[1, 3] + E[1, 3]), x[1, 1]*(a*x[2, 1] + E[2, 1]) + x[2, 1]*(a*x[2, 2] + E[2, 2]) + x[3, 1]*(a*x[2, 3] + E[2, 3]), x[1, 2]*(a*x[2, 1] + E[2, 1]) + x[2, 2]*(a*x[2, 2] + E[2, 2]) + x[3, 2]*(a*x[2, 3] + E[2, 3]), x[1, 3]*(a*x[2, 1] + E[2, 1]) + x[2, 3]*(a*x[2, 2] + E[2, 2]) + x[3, 3]*(a*x[2, 3] + E[2, 3]), x[1, 1]*(a*x[3, 1] + E[3, 1]) + x[2, 1]*(a*x[3, 2] + E[3, 2]) + x[3, 1]*(a*x[3, 3] + E[3, 3]), x[1, 2]*(a*x[3, 1] + E[3, 1]) + x[2, 2]*(a*x[3, 2] + E[3, 2]) + x[3, 2]*(a*x[3, 3] + E[3, 3]), x[1, 3]*(a*x[3, 1] + E[3, 1]) + x[2, 3]*(a*x[3, 2] + E[3, 2]) + x[3, 3]*(a*x[3, 3] + E[3, 3])]

I want to subs E[k,k]=1 when there is "a*x[k,k]+E[k,k]" as a part of polynomial in the above list.

Thank you so much in advance

1 2 3 4 5 6 7 Last Page 3 of 11