## One Badge

0 years, 289 days

## remove RootOf, after solving...

Maple

Hy

How I solved it accurately,and remove "'rootoff

eq1 := alpha + beta*r[c] - d*n[c] - Upsilon*n[c]*(n[r] + r[c]) - n[r]*(alpha - d*n[c] - b*(n[r] + r[c]));
q2 := `e&Upsi;`*n[c]*(n[r] + r[c]) - mu*n[r] + d*n[c]*n[r] + b*n[c]*n[r] - alpha*n[r];
eq3 := b*n[c]*n[r] + d*n[c]*n[r] - alpha*n[r] - beta*r[c] + mu*n[r];
eq1 := alpha + beta r[c] - d n[c] - Upsilon n[c] (n[r] + r[c])

- n[r] (alpha - d n[c] - b (n[r] + r[c]))
eq2 := Upsilon n[c] (n[r] + r[c]) - mu n[r] + d n[c] n[r]

+ b n[c] n[r] - alpha n[r]
eq3 := b n[c] n[r] + d n[c] n[r] - alpha n[r] - beta r[c]

+ mu n[r]
solve({eq1, eq2, eq3}, {n[c], n[r], r[c]});
/       alpha                    \    /             /
{ n[c] = -----, n[r] = 0, r[c] = 0 }, { n[c] = RootOf\(Upsilon b
\         d                      /    \

2
+ Upsilon d) _Z  + (-Upsilon alpha + Upsilon beta + Upsilon mu

\               //
+ b beta + beta d) _Z - alpha beta - mu beta/, n[r] = RootOf\\

2           2                         \   2   /
b  beta + 2 b  mu + b beta d + 2 b d mu/ _Z  + \
/                          2
-RootOf\(Upsilon b + Upsilon d) _Z  + (-Upsilon alpha

+ Upsilon beta + Upsilon mu + b beta + beta d) _Z - alpha beta

\                           /
- mu beta/ Upsilon alpha b - 2 RootOf\(Upsilon b + Upsilon d)

2
_Z  + (-Upsilon alpha + Upsilon beta + Upsilon mu + b beta

\                          /
+ beta d) _Z - alpha beta - mu beta/ Upsilon b beta - 2 RootOf\

2
(Upsilon b + Upsilon d) _Z  + (-Upsilon alpha + Upsilon beta

\
+ Upsilon mu + b beta + beta d) _Z - alpha beta - mu beta/

/                          2
Upsilon b mu - 3 RootOf\(Upsilon b + Upsilon d) _Z  + (
-Upsilon alpha + Upsilon beta + Upsilon mu + b beta + beta d) _Z

\                          /
- alpha beta - mu beta/ Upsilon beta d - 3 RootOf\(Upsilon b

2
+ Upsilon d) _Z  + (-Upsilon alpha + Upsilon beta + Upsilon mu

\
+ b beta + beta d) _Z - alpha beta - mu beta/ Upsilon d mu

\            /
- alpha b beta + 2 b beta mu + 3 beta d mu/ _Z + RootOf\

2
(Upsilon b + Upsilon d) _Z  + (-Upsilon alpha + Upsilon beta

\
+ Upsilon mu + b beta + beta d) _Z - alpha beta - mu beta/

/                          2
Upsilon alpha b + RootOf\(Upsilon b + Upsilon d) _Z  + (
-Upsilon alpha + Upsilon beta + Upsilon mu + b beta + beta d) _Z

\                        /
- alpha beta - mu beta/ Upsilon beta d + RootOf\(Upsilon b

2
+ Upsilon d) _Z  + (-Upsilon alpha + Upsilon beta + Upsilon mu

\
+ b beta + beta d) _Z - alpha beta - mu beta/ Upsilon d mu

\          1   /      // 2
+ alpha b beta - beta d mu/, r[c] = ---- \RootOf\\b  beta
beta

2                         \   2   /
+ 2 b  mu + b beta d + 2 b d mu/ _Z  + \
/                          2
-RootOf\(Upsilon b + Upsilon d) _Z  + (-Upsilon alpha

+ Upsilon beta + Upsilon mu + b beta + beta d) _Z - alpha beta

\                           /
- mu beta/ Upsilon alpha b - 2 RootOf\(Upsilon b + Upsilon d)

2
_Z  + (-Upsilon alpha + Upsilon beta + Upsilon mu + b beta

\                          /
+ beta d) _Z - alpha beta - mu beta/ Upsilon b beta - 2 RootOf\

2
(Upsilon b + Upsilon d) _Z  + (-Upsilon alpha + Upsilon beta

\
+ Upsilon mu + b beta + beta d) _Z - alpha beta - mu beta/

/                          2
Upsilon b mu - 3 RootOf\(Upsilon b + Upsilon d) _Z  + (
-Upsilon alpha + Upsilon beta + Upsilon mu + b beta + beta d) _Z

\                          /
- alpha beta - mu beta/ Upsilon beta d - 3 RootOf\(Upsilon b

2
+ Upsilon d) _Z  + (-Upsilon alpha + Upsilon beta + Upsilon mu

\
+ b beta + beta d) _Z - alpha beta - mu beta/ Upsilon d mu

\            /
- alpha b beta + 2 b beta mu + 3 beta d mu/ _Z + RootOf\

2
(Upsilon b + Upsilon d) _Z  + (-Upsilon alpha + Upsilon beta

\
+ Upsilon mu + b beta + beta d) _Z - alpha beta - mu beta/

/                          2
Upsilon alpha b + RootOf\(Upsilon b + Upsilon d) _Z  + (
-Upsilon alpha + Upsilon beta + Upsilon mu + b beta + beta d) _Z

\                        /
- alpha beta - mu beta/ Upsilon beta d + RootOf\(Upsilon b

2
+ Upsilon d) _Z  + (-Upsilon alpha + Upsilon beta + Upsilon mu

\
+ b beta + beta d) _Z - alpha beta - mu beta/ Upsilon d mu

\ /      /
+ alpha b beta - beta d mu/ \RootOf\(Upsilon b + Upsilon d)

2
_Z  + (-Upsilon alpha + Upsilon beta + Upsilon mu + b beta

\           /
+ beta d) _Z - alpha beta - mu beta/ b + RootOf\(Upsilon b

2
+ Upsilon d) _Z  + (-Upsilon alpha + Upsilon beta + Upsilon mu

\               \\
+ b beta + beta d) _Z - alpha beta - mu beta/ d - alpha + mu//

\
}
/

 Page 1 of 1
﻿