alaloush

35 Reputation

4 Badges

7 years, 100 days

MaplePrimes Activity


These are replies submitted by alaloush

@acer 

 

Do you mean that the equation should be in the following formula?
Bilinear(diff(u(x, t), t)+6*u(x, t)*(diff(u(x, t), x))+diff(u(x, t), x$3), ln(f), f(x, t), x, 1)
I may have incorrectly set the parameters
Can you run the program in relation to the first example given in the attached article?
##################
It is to get the numerator of the fraction that is denominated by f after replacing u = 2*alpha*('diff')(ln(f), x$j), in the equation

 

Perhaps you could see the attached article
https://drive.google.com/open?id=1BLzklSFx3nPovLC_2L1muAWY1kFnbwLV
 

@Rouben Rostamian  

I am trying to apply the method mentioned in the attached article
Is what I did right?

@ecterrab 

 

Thank you very much for these very valuable details.
About your question "if this is the determining system of a PDE problem you " ? Yes its for determining system of Gardner equation 
pde := diff(u(t, x), t)+A(t)*u(t, x)^n.(diff(u(t, x), x))+B(t).(diff(u(t, x), x, x, x))+F(t)*u(t, x) = 0;

 

I try to do it the other way but I didn't succeed
How can we do it through use of something called a 'differential extension'.

@one man But the result is still very complex

@dharr But the result is very complex


 

"I am trying to solve these two algebraic equations for A and B "

 

eq1 := -(64*A*B^2*k[1]+28*B^2*k[2]+112*A*k[1]+105*k[2])*A/(105*B)-(32*A^2*B^2*k[1]+28*A*B^2*k[2]+56*A^2*k[1]+105*A*k[2]+210*a)/(105*B) = 0

-(1/105)*(64*A*B^2*k[1]+28*B^2*k[2]+112*A*k[1]+105*k[2])*A/B-(1/105)*(32*A^2*B^2*k[1]+28*A*B^2*k[2]+56*A^2*k[1]+105*A*k[2]+210*a)/B = 0

(1)

eq2 := -(64*A^2*B*k[1]+56*A*B*k[2])*A/(105*B)+(32*A^2*B^2*k[1]+28*A*B^2*k[2]+56*A^2*k[1]+105*A*k[2]+210*a)*A/(105*B^2) = 0

-(1/105)*(64*A^2*B*k[1]+56*A*B*k[2])*A/B+(1/105)*(32*A^2*B^2*k[1]+28*A*B^2*k[2]+56*A^2*k[1]+105*A*k[2]+210*a)*A/B^2 = 0

(2)

solve({eq1, eq2}, {A, B}, explicit = true)

{A = (1/72)*(50220*a*k[2]*k[1]-10450*k[2]^3+135*3^(1/2)*(1474560*a^3*k[1]^3-1116112*a^2*k[1]^2*k[2]^2+286160*a*k[1]*k[2]^4-24745*k[2]^6)^(1/2))^(1/3)/k[1]-(5/72)*(864*a*k[1]-227*k[2]^2)/(k[1]*(50220*a*k[2]*k[1]-10450*k[2]^3+135*3^(1/2)*(1474560*a^3*k[1]^3-1116112*a^2*k[1]^2*k[2]^2+286160*a*k[1]*k[2]^4-24745*k[2]^6)^(1/2))^(1/3))-(55/72)*k[2]/k[1], B = (1/126)*(-7*(50220*a*k[2]*k[1]-10450*k[2]^3+135*3^(1/2)*(1474560*a^3*k[1]^3-1116112*a^2*k[1]^2*k[2]^2+286160*a*k[1]*k[2]^4-24745*k[2]^6)^(1/2))^(2/3)*(8*(50220*a*k[2]*k[1]-10450*k[2]^3+135*3^(1/2)*(1474560*a^3*k[1]^3-1116112*a^2*k[1]^2*k[2]^2+286160*a*k[1]*k[2]^4-24745*k[2]^6)^(1/2))^(4/3)+34560*a*k[1]*(50220*a*k[2]*k[1]-10450*k[2]^3+135*3^(1/2)*(1474560*a^3*k[1]^3-1116112*a^2*k[1]^2*k[2]^2+286160*a*k[1]*k[2]^4-24745*k[2]^6)^(1/2))^(2/3)-6615*k[2]^2*(50220*a*k[2]*k[1]-10450*k[2]^3+135*3^(1/2)*(1474560*a^3*k[1]^3-1116112*a^2*k[1]^2*k[2]^2+286160*a*k[1]*k[2]^4-24745*k[2]^6)^(1/2))^(2/3)-267840*(50220*a*k[2]*k[1]-10450*k[2]^3+135*3^(1/2)*(1474560*a^3*k[1]^3-1116112*a^2*k[1]^2*k[2]^2+286160*a*k[1]*k[2]^4-24745*k[2]^6)^(1/2))^(1/3)*a*k[1]*k[2]+70370*(50220*a*k[2]*k[1]-10450*k[2]^3+135*3^(1/2)*(1474560*a^3*k[1]^3-1116112*a^2*k[1]^2*k[2]^2+286160*a*k[1]*k[2]^4-24745*k[2]^6)^(1/2))^(1/3)*k[2]^3+149299200*a^2*k[1]^2-75337560*a*k[1]*k[2]^2+9657900*k[2]^4+8370*(1474560*a^3*k[1]^3-1116112*a^2*k[1]^2*k[2]^2+286160*a*k[1]*k[2]^4-24745*k[2]^6)^(1/2)*3^(1/2)*k[2]))^(1/2)/((50220*a*k[2]*k[1]-10450*k[2]^3+135*3^(1/2)*(1474560*a^3*k[1]^3-1116112*a^2*k[1]^2*k[2]^2+286160*a*k[1]*k[2]^4-24745*k[2]^6)^(1/2))^(2/3)*k[2])}, {A = (1/72)*(50220*a*k[2]*k[1]-10450*k[2]^3+135*3^(1/2)*(1474560*a^3*k[1]^3-1116112*a^2*k[1]^2*k[2]^2+286160*a*k[1]*k[2]^4-24745*k[2]^6)^(1/2))^(1/3)/k[1]-(5/72)*(864*a*k[1]-227*k[2]^2)/(k[1]*(50220*a*k[2]*k[1]-10450*k[2]^3+135*3^(1/2)*(1474560*a^3*k[1]^3-1116112*a^2*k[1]^2*k[2]^2+286160*a*k[1]*k[2]^4-24745*k[2]^6)^(1/2))^(1/3))-(55/72)*k[2]/k[1], B = -(1/126)*(-7*(50220*a*k[2]*k[1]-10450*k[2]^3+135*3^(1/2)*(1474560*a^3*k[1]^3-1116112*a^2*k[1]^2*k[2]^2+286160*a*k[1]*k[2]^4-24745*k[2]^6)^(1/2))^(2/3)*(8*(50220*a*k[2]*k[1]-10450*k[2]^3+135*3^(1/2)*(1474560*a^3*k[1]^3-1116112*a^2*k[1]^2*k[2]^2+286160*a*k[1]*k[2]^4-24745*k[2]^6)^(1/2))^(4/3)+34560*a*k[1]*(50220*a*k[2]*k[1]-10450*k[2]^3+135*3^(1/2)*(1474560*a^3*k[1]^3-1116112*a^2*k[1]^2*k[2]^2+286160*a*k[1]*k[2]^4-24745*k[2]^6)^(1/2))^(2/3)-6615*k[2]^2*(50220*a*k[2]*k[1]-10450*k[2]^3+135*3^(1/2)*(1474560*a^3*k[1]^3-1116112*a^2*k[1]^2*k[2]^2+286160*a*k[1]*k[2]^4-24745*k[2]^6)^(1/2))^(2/3)-267840*(50220*a*k[2]*k[1]-10450*k[2]^3+135*3^(1/2)*(1474560*a^3*k[1]^3-1116112*a^2*k[1]^2*k[2]^2+286160*a*k[1]*k[2]^4-24745*k[2]^6)^(1/2))^(1/3)*a*k[1]*k[2]+70370*(50220*a*k[2]*k[1]-10450*k[2]^3+135*3^(1/2)*(1474560*a^3*k[1]^3-1116112*a^2*k[1]^2*k[2]^2+286160*a*k[1]*k[2]^4-24745*k[2]^6)^(1/2))^(1/3)*k[2]^3+149299200*a^2*k[1]^2-75337560*a*k[1]*k[2]^2+9657900*k[2]^4+8370*(1474560*a^3*k[1]^3-1116112*a^2*k[1]^2*k[2]^2+286160*a*k[1]*k[2]^4-24745*k[2]^6)^(1/2)*3^(1/2)*k[2]))^(1/2)/((50220*a*k[2]*k[1]-10450*k[2]^3+135*3^(1/2)*(1474560*a^3*k[1]^3-1116112*a^2*k[1]^2*k[2]^2+286160*a*k[1]*k[2]^4-24745*k[2]^6)^(1/2))^(2/3)*k[2])}, {A = -(1/144)*(50220*a*k[2]*k[1]-10450*k[2]^3+135*3^(1/2)*(1474560*a^3*k[1]^3-1116112*a^2*k[1]^2*k[2]^2+286160*a*k[1]*k[2]^4-24745*k[2]^6)^(1/2))^(1/3)/k[1]+(5/144)*(864*a*k[1]-227*k[2]^2)/(k[1]*(50220*a*k[2]*k[1]-10450*k[2]^3+135*3^(1/2)*(1474560*a^3*k[1]^3-1116112*a^2*k[1]^2*k[2]^2+286160*a*k[1]*k[2]^4-24745*k[2]^6)^(1/2))^(1/3))-(55/72)*k[2]/k[1]+((1/2)*I)*3^(1/2)*((1/72)*(50220*a*k[2]*k[1]-10450*k[2]^3+135*3^(1/2)*(1474560*a^3*k[1]^3-1116112*a^2*k[1]^2*k[2]^2+286160*a*k[1]*k[2]^4-24745*k[2]^6)^(1/2))^(1/3)/k[1]+(5/72)*(864*a*k[1]-227*k[2]^2)/(k[1]*(50220*a*k[2]*k[1]-10450*k[2]^3+135*3^(1/2)*(1474560*a^3*k[1]^3-1116112*a^2*k[1]^2*k[2]^2+286160*a*k[1]*k[2]^4-24745*k[2]^6)^(1/2))^(1/3))), B = (1/126)*7^(1/2)*((50220*a*k[2]*k[1]-10450*k[2]^3+135*3^(1/2)*(1474560*a^3*k[1]^3-1116112*a^2*k[1]^2*k[2]^2+286160*a*k[1]*k[2]^4-24745*k[2]^6)^(1/2))^(2/3)*((37668780*I)*3^(1/2)*a*k[1]*k[2]^2-(4828950*I)*3^(1/2)*k[2]^4+(35185*I)*3^(1/2)*(50220*a*k[2]*k[1]-10450*k[2]^3+135*3^(1/2)*(1474560*a^3*k[1]^3-1116112*a^2*k[1]^2*k[2]^2+286160*a*k[1]*k[2]^4-24745*k[2]^6)^(1/2))^(1/3)*k[2]^3-(133920*I)*3^(1/2)*(50220*a*k[2]*k[1]-10450*k[2]^3+135*3^(1/2)*(1474560*a^3*k[1]^3-1116112*a^2*k[1]^2*k[2]^2+286160*a*k[1]*k[2]^4-24745*k[2]^6)^(1/2))^(1/3)*a*k[1]*k[2]-(12555*I)*(1474560*a^3*k[1]^3-1116112*a^2*k[1]^2*k[2]^2+286160*a*k[1]*k[2]^4-24745*k[2]^6)^(1/2)*k[2]+(4*I)*3^(1/2)*(50220*a*k[2]*k[1]-10450*k[2]^3+135*3^(1/2)*(1474560*a^3*k[1]^3-1116112*a^2*k[1]^2*k[2]^2+286160*a*k[1]*k[2]^4-24745*k[2]^6)^(1/2))^(4/3)+4*(50220*a*k[2]*k[1]-10450*k[2]^3+135*3^(1/2)*(1474560*a^3*k[1]^3-1116112*a^2*k[1]^2*k[2]^2+286160*a*k[1]*k[2]^4-24745*k[2]^6)^(1/2))^(4/3)-34560*a*k[1]*(50220*a*k[2]*k[1]-10450*k[2]^3+135*3^(1/2)*(1474560*a^3*k[1]^3-1116112*a^2*k[1]^2*k[2]^2+286160*a*k[1]*k[2]^4-24745*k[2]^6)^(1/2))^(2/3)+6615*k[2]^2*(50220*a*k[2]*k[1]-10450*k[2]^3+135*3^(1/2)*(1474560*a^3*k[1]^3-1116112*a^2*k[1]^2*k[2]^2+286160*a*k[1]*k[2]^4-24745*k[2]^6)^(1/2))^(2/3)-133920*(50220*a*k[2]*k[1]-10450*k[2]^3+135*3^(1/2)*(1474560*a^3*k[1]^3-1116112*a^2*k[1]^2*k[2]^2+286160*a*k[1]*k[2]^4-24745*k[2]^6)^(1/2))^(1/3)*a*k[1]*k[2]+35185*(50220*a*k[2]*k[1]-10450*k[2]^3+135*3^(1/2)*(1474560*a^3*k[1]^3-1116112*a^2*k[1]^2*k[2]^2+286160*a*k[1]*k[2]^4-24745*k[2]^6)^(1/2))^(1/3)*k[2]^3+74649600*a^2*k[1]^2-37668780*a*k[1]*k[2]^2+4828950*k[2]^4+4185*(1474560*a^3*k[1]^3-1116112*a^2*k[1]^2*k[2]^2+286160*a*k[1]*k[2]^4-24745*k[2]^6)^(1/2)*3^(1/2)*k[2]-(74649600*I)*3^(1/2)*a^2*k[1]^2))^(1/2)/((50220*a*k[2]*k[1]-10450*k[2]^3+135*3^(1/2)*(1474560*a^3*k[1]^3-1116112*a^2*k[1]^2*k[2]^2+286160*a*k[1]*k[2]^4-24745*k[2]^6)^(1/2))^(2/3)*k[2])}, {A = -(1/144)*(50220*a*k[2]*k[1]-10450*k[2]^3+135*3^(1/2)*(1474560*a^3*k[1]^3-1116112*a^2*k[1]^2*k[2]^2+286160*a*k[1]*k[2]^4-24745*k[2]^6)^(1/2))^(1/3)/k[1]+(5/144)*(864*a*k[1]-227*k[2]^2)/(k[1]*(50220*a*k[2]*k[1]-10450*k[2]^3+135*3^(1/2)*(1474560*a^3*k[1]^3-1116112*a^2*k[1]^2*k[2]^2+286160*a*k[1]*k[2]^4-24745*k[2]^6)^(1/2))^(1/3))-(55/72)*k[2]/k[1]+((1/2)*I)*3^(1/2)*((1/72)*(50220*a*k[2]*k[1]-10450*k[2]^3+135*3^(1/2)*(1474560*a^3*k[1]^3-1116112*a^2*k[1]^2*k[2]^2+286160*a*k[1]*k[2]^4-24745*k[2]^6)^(1/2))^(1/3)/k[1]+(5/72)*(864*a*k[1]-227*k[2]^2)/(k[1]*(50220*a*k[2]*k[1]-10450*k[2]^3+135*3^(1/2)*(1474560*a^3*k[1]^3-1116112*a^2*k[1]^2*k[2]^2+286160*a*k[1]*k[2]^4-24745*k[2]^6)^(1/2))^(1/3))), B = -(1/126)*7^(1/2)*((50220*a*k[2]*k[1]-10450*k[2]^3+135*3^(1/2)*(1474560*a^3*k[1]^3-1116112*a^2*k[1]^2*k[2]^2+286160*a*k[1]*k[2]^4-24745*k[2]^6)^(1/2))^(2/3)*((37668780*I)*3^(1/2)*a*k[1]*k[2]^2-(4828950*I)*3^(1/2)*k[2]^4+(35185*I)*3^(1/2)*(50220*a*k[2]*k[1]-10450*k[2]^3+135*3^(1/2)*(1474560*a^3*k[1]^3-1116112*a^2*k[1]^2*k[2]^2+286160*a*k[1]*k[2]^4-24745*k[2]^6)^(1/2))^(1/3)*k[2]^3-(133920*I)*3^(1/2)*(50220*a*k[2]*k[1]-10450*k[2]^3+135*3^(1/2)*(1474560*a^3*k[1]^3-1116112*a^2*k[1]^2*k[2]^2+286160*a*k[1]*k[2]^4-24745*k[2]^6)^(1/2))^(1/3)*a*k[1]*k[2]-(12555*I)*(1474560*a^3*k[1]^3-1116112*a^2*k[1]^2*k[2]^2+286160*a*k[1]*k[2]^4-24745*k[2]^6)^(1/2)*k[2]+(4*I)*3^(1/2)*(50220*a*k[2]*k[1]-10450*k[2]^3+135*3^(1/2)*(1474560*a^3*k[1]^3-1116112*a^2*k[1]^2*k[2]^2+286160*a*k[1]*k[2]^4-24745*k[2]^6)^(1/2))^(4/3)+4*(50220*a*k[2]*k[1]-10450*k[2]^3+135*3^(1/2)*(1474560*a^3*k[1]^3-1116112*a^2*k[1]^2*k[2]^2+286160*a*k[1]*k[2]^4-24745*k[2]^6)^(1/2))^(4/3)-34560*a*k[1]*(50220*a*k[2]*k[1]-10450*k[2]^3+135*3^(1/2)*(1474560*a^3*k[1]^3-1116112*a^2*k[1]^2*k[2]^2+286160*a*k[1]*k[2]^4-24745*k[2]^6)^(1/2))^(2/3)+6615*k[2]^2*(50220*a*k[2]*k[1]-10450*k[2]^3+135*3^(1/2)*(1474560*a^3*k[1]^3-1116112*a^2*k[1]^2*k[2]^2+286160*a*k[1]*k[2]^4-24745*k[2]^6)^(1/2))^(2/3)-133920*(50220*a*k[2]*k[1]-10450*k[2]^3+135*3^(1/2)*(1474560*a^3*k[1]^3-1116112*a^2*k[1]^2*k[2]^2+286160*a*k[1]*k[2]^4-24745*k[2]^6)^(1/2))^(1/3)*a*k[1]*k[2]+35185*(50220*a*k[2]*k[1]-10450*k[2]^3+135*3^(1/2)*(1474560*a^3*k[1]^3-1116112*a^2*k[1]^2*k[2]^2+286160*a*k[1]*k[2]^4-24745*k[2]^6)^(1/2))^(1/3)*k[2]^3+74649600*a^2*k[1]^2-37668780*a*k[1]*k[2]^2+4828950*k[2]^4+4185*(1474560*a^3*k[1]^3-1116112*a^2*k[1]^2*k[2]^2+286160*a*k[1]*k[2]^4-24745*k[2]^6)^(1/2)*3^(1/2)*k[2]-(74649600*I)*3^(1/2)*a^2*k[1]^2))^(1/2)/((50220*a*k[2]*k[1]-10450*k[2]^3+135*3^(1/2)*(1474560*a^3*k[1]^3-1116112*a^2*k[1]^2*k[2]^2+286160*a*k[1]*k[2]^4-24745*k[2]^6)^(1/2))^(2/3)*k[2])}, {A = -(1/144)*(50220*a*k[2]*k[1]-10450*k[2]^3+135*3^(1/2)*(1474560*a^3*k[1]^3-1116112*a^2*k[1]^2*k[2]^2+286160*a*k[1]*k[2]^4-24745*k[2]^6)^(1/2))^(1/3)/k[1]+(5/144)*(864*a*k[1]-227*k[2]^2)/(k[1]*(50220*a*k[2]*k[1]-10450*k[2]^3+135*3^(1/2)*(1474560*a^3*k[1]^3-1116112*a^2*k[1]^2*k[2]^2+286160*a*k[1]*k[2]^4-24745*k[2]^6)^(1/2))^(1/3))-(55/72)*k[2]/k[1]-((1/2)*I)*3^(1/2)*((1/72)*(50220*a*k[2]*k[1]-10450*k[2]^3+135*3^(1/2)*(1474560*a^3*k[1]^3-1116112*a^2*k[1]^2*k[2]^2+286160*a*k[1]*k[2]^4-24745*k[2]^6)^(1/2))^(1/3)/k[1]+(5/72)*(864*a*k[1]-227*k[2]^2)/(k[1]*(50220*a*k[2]*k[1]-10450*k[2]^3+135*3^(1/2)*(1474560*a^3*k[1]^3-1116112*a^2*k[1]^2*k[2]^2+286160*a*k[1]*k[2]^4-24745*k[2]^6)^(1/2))^(1/3))), B = (1/126)*(-7*(50220*a*k[2]*k[1]-10450*k[2]^3+135*3^(1/2)*(1474560*a^3*k[1]^3-1116112*a^2*k[1]^2*k[2]^2+286160*a*k[1]*k[2]^4-24745*k[2]^6)^(1/2))^(2/3)*(-(4828950*I)*3^(1/2)*k[2]^4+(37668780*I)*3^(1/2)*a*k[1]*k[2]^2-(133920*I)*3^(1/2)*(50220*a*k[2]*k[1]-10450*k[2]^3+135*3^(1/2)*(1474560*a^3*k[1]^3-1116112*a^2*k[1]^2*k[2]^2+286160*a*k[1]*k[2]^4-24745*k[2]^6)^(1/2))^(1/3)*a*k[1]*k[2]+(35185*I)*3^(1/2)*(50220*a*k[2]*k[1]-10450*k[2]^3+135*3^(1/2)*(1474560*a^3*k[1]^3-1116112*a^2*k[1]^2*k[2]^2+286160*a*k[1]*k[2]^4-24745*k[2]^6)^(1/2))^(1/3)*k[2]^3-(12555*I)*(1474560*a^3*k[1]^3-1116112*a^2*k[1]^2*k[2]^2+286160*a*k[1]*k[2]^4-24745*k[2]^6)^(1/2)*k[2]-(74649600*I)*3^(1/2)*a^2*k[1]^2-4*(50220*a*k[2]*k[1]-10450*k[2]^3+135*3^(1/2)*(1474560*a^3*k[1]^3-1116112*a^2*k[1]^2*k[2]^2+286160*a*k[1]*k[2]^4-24745*k[2]^6)^(1/2))^(4/3)+34560*a*k[1]*(50220*a*k[2]*k[1]-10450*k[2]^3+135*3^(1/2)*(1474560*a^3*k[1]^3-1116112*a^2*k[1]^2*k[2]^2+286160*a*k[1]*k[2]^4-24745*k[2]^6)^(1/2))^(2/3)-6615*k[2]^2*(50220*a*k[2]*k[1]-10450*k[2]^3+135*3^(1/2)*(1474560*a^3*k[1]^3-1116112*a^2*k[1]^2*k[2]^2+286160*a*k[1]*k[2]^4-24745*k[2]^6)^(1/2))^(2/3)+133920*(50220*a*k[2]*k[1]-10450*k[2]^3+135*3^(1/2)*(1474560*a^3*k[1]^3-1116112*a^2*k[1]^2*k[2]^2+286160*a*k[1]*k[2]^4-24745*k[2]^6)^(1/2))^(1/3)*a*k[1]*k[2]-35185*(50220*a*k[2]*k[1]-10450*k[2]^3+135*3^(1/2)*(1474560*a^3*k[1]^3-1116112*a^2*k[1]^2*k[2]^2+286160*a*k[1]*k[2]^4-24745*k[2]^6)^(1/2))^(1/3)*k[2]^3-74649600*a^2*k[1]^2+37668780*a*k[1]*k[2]^2-4828950*k[2]^4-4185*(1474560*a^3*k[1]^3-1116112*a^2*k[1]^2*k[2]^2+286160*a*k[1]*k[2]^4-24745*k[2]^6)^(1/2)*3^(1/2)*k[2]+(4*I)*3^(1/2)*(50220*a*k[2]*k[1]-10450*k[2]^3+135*3^(1/2)*(1474560*a^3*k[1]^3-1116112*a^2*k[1]^2*k[2]^2+286160*a*k[1]*k[2]^4-24745*k[2]^6)^(1/2))^(4/3)))^(1/2)/((50220*a*k[2]*k[1]-10450*k[2]^3+135*3^(1/2)*(1474560*a^3*k[1]^3-1116112*a^2*k[1]^2*k[2]^2+286160*a*k[1]*k[2]^4-24745*k[2]^6)^(1/2))^(2/3)*k[2])}, {A = -(1/144)*(50220*a*k[2]*k[1]-10450*k[2]^3+135*3^(1/2)*(1474560*a^3*k[1]^3-1116112*a^2*k[1]^2*k[2]^2+286160*a*k[1]*k[2]^4-24745*k[2]^6)^(1/2))^(1/3)/k[1]+(5/144)*(864*a*k[1]-227*k[2]^2)/(k[1]*(50220*a*k[2]*k[1]-10450*k[2]^3+135*3^(1/2)*(1474560*a^3*k[1]^3-1116112*a^2*k[1]^2*k[2]^2+286160*a*k[1]*k[2]^4-24745*k[2]^6)^(1/2))^(1/3))-(55/72)*k[2]/k[1]-((1/2)*I)*3^(1/2)*((1/72)*(50220*a*k[2]*k[1]-10450*k[2]^3+135*3^(1/2)*(1474560*a^3*k[1]^3-1116112*a^2*k[1]^2*k[2]^2+286160*a*k[1]*k[2]^4-24745*k[2]^6)^(1/2))^(1/3)/k[1]+(5/72)*(864*a*k[1]-227*k[2]^2)/(k[1]*(50220*a*k[2]*k[1]-10450*k[2]^3+135*3^(1/2)*(1474560*a^3*k[1]^3-1116112*a^2*k[1]^2*k[2]^2+286160*a*k[1]*k[2]^4-24745*k[2]^6)^(1/2))^(1/3))), B = -(1/126)*(-7*(50220*a*k[2]*k[1]-10450*k[2]^3+135*3^(1/2)*(1474560*a^3*k[1]^3-1116112*a^2*k[1]^2*k[2]^2+286160*a*k[1]*k[2]^4-24745*k[2]^6)^(1/2))^(2/3)*(-(4828950*I)*3^(1/2)*k[2]^4+(37668780*I)*3^(1/2)*a*k[1]*k[2]^2-(133920*I)*3^(1/2)*(50220*a*k[2]*k[1]-10450*k[2]^3+135*3^(1/2)*(1474560*a^3*k[1]^3-1116112*a^2*k[1]^2*k[2]^2+286160*a*k[1]*k[2]^4-24745*k[2]^6)^(1/2))^(1/3)*a*k[1]*k[2]+(35185*I)*3^(1/2)*(50220*a*k[2]*k[1]-10450*k[2]^3+135*3^(1/2)*(1474560*a^3*k[1]^3-1116112*a^2*k[1]^2*k[2]^2+286160*a*k[1]*k[2]^4-24745*k[2]^6)^(1/2))^(1/3)*k[2]^3-(12555*I)*(1474560*a^3*k[1]^3-1116112*a^2*k[1]^2*k[2]^2+286160*a*k[1]*k[2]^4-24745*k[2]^6)^(1/2)*k[2]-(74649600*I)*3^(1/2)*a^2*k[1]^2-4*(50220*a*k[2]*k[1]-10450*k[2]^3+135*3^(1/2)*(1474560*a^3*k[1]^3-1116112*a^2*k[1]^2*k[2]^2+286160*a*k[1]*k[2]^4-24745*k[2]^6)^(1/2))^(4/3)+34560*a*k[1]*(50220*a*k[2]*k[1]-10450*k[2]^3+135*3^(1/2)*(1474560*a^3*k[1]^3-1116112*a^2*k[1]^2*k[2]^2+286160*a*k[1]*k[2]^4-24745*k[2]^6)^(1/2))^(2/3)-6615*k[2]^2*(50220*a*k[2]*k[1]-10450*k[2]^3+135*3^(1/2)*(1474560*a^3*k[1]^3-1116112*a^2*k[1]^2*k[2]^2+286160*a*k[1]*k[2]^4-24745*k[2]^6)^(1/2))^(2/3)+133920*(50220*a*k[2]*k[1]-10450*k[2]^3+135*3^(1/2)*(1474560*a^3*k[1]^3-1116112*a^2*k[1]^2*k[2]^2+286160*a*k[1]*k[2]^4-24745*k[2]^6)^(1/2))^(1/3)*a*k[1]*k[2]-35185*(50220*a*k[2]*k[1]-10450*k[2]^3+135*3^(1/2)*(1474560*a^3*k[1]^3-1116112*a^2*k[1]^2*k[2]^2+286160*a*k[1]*k[2]^4-24745*k[2]^6)^(1/2))^(1/3)*k[2]^3-74649600*a^2*k[1]^2+37668780*a*k[1]*k[2]^2-4828950*k[2]^4-4185*(1474560*a^3*k[1]^3-1116112*a^2*k[1]^2*k[2]^2+286160*a*k[1]*k[2]^4-24745*k[2]^6)^(1/2)*3^(1/2)*k[2]+(4*I)*3^(1/2)*(50220*a*k[2]*k[1]-10450*k[2]^3+135*3^(1/2)*(1474560*a^3*k[1]^3-1116112*a^2*k[1]^2*k[2]^2+286160*a*k[1]*k[2]^4-24745*k[2]^6)^(1/2))^(4/3)))^(1/2)/((50220*a*k[2]*k[1]-10450*k[2]^3+135*3^(1/2)*(1474560*a^3*k[1]^3-1116112*a^2*k[1]^2*k[2]^2+286160*a*k[1]*k[2]^4-24745*k[2]^6)^(1/2))^(2/3)*k[2])}

(3)

1

1

(4)

``

The result I get is very complex
Is there a way to simplify this result as simple as possible
I tried to use "simplify" But the result is still very complex
 

 

 

``


 

Download solve_equattion.mw

@ecterrab I'm trying to do this by using dchange But I did not succeed in that. Can you tell us how we can achieve the required by using dchange 

Page 1 of 1