bradshaw1759

40 Reputation

4 Badges

17 years, 302 days

MaplePrimes Activity


These are questions asked by bradshaw1759

How can i get a bifurcation diagram and also identify the types of bifurcation that occur for these equations: 1) fa(x) = a + ln(x) , x>0 2) fa(x) = a - ln(x) , x>0 3) fa(x) = a * ln(x) , x>0 4) fa(x) = a + x - exp(x) , x>0
How can I create a 3D images in Maple 11 without entering any expression?Is it by using the new drawing tools?
How do I find the numeric value of these equation.I want actual value of all symbols( alpha,beta and gamma) 1) b_2 = -3.464909430*RootOf(-gamma^2+alpha*beta+(-gamma^2-4*alpha*beta)*_Z+(gamma^2+4*alpha*beta)*_Z^2, label = _L1)+1.732454715 2) b_1 = RootOf(-gamma^2+alpha*beta+(-gamma^2-4*alpha*beta)*_Z+(gamma^2+4*alpha*beta)*_Z^2, label = _L1)/alpha 3) Z = -.5772156649*alpha/(2.*RootOf(-gamma^2+alpha*beta+(-gamma^2-4*alpha*beta)*_Z+(gamma^2+4*alpha*beta)*_Z^2, label = _L1)-1.)
Please help me find the numeric values of a_1,a_2,b_1 and b_2, base on the below equation. solve({a_1^2*alpha+a_2^2*beta=a_1,2*a_1*a_2*alpha+a_2^2*gamma=a_2,a_1*b_1*alpha+a_2*b_2*beta=b_1,a_1*b_2*alpha+a_2*b_1*alpha+a_2*b_2*gamma=b_2,b_1^2*alpha+b_2^2*beta=a_1+b_1,2*b_1*b_2*alpha+b_2^2*gamma=a_2+b_2,a_1*b_2<>b_1*a_2},[a_1,a_2,b_1,b_2]);
solve({a1*alpha+b1 *beta=a1^2*alpha+2*a1*a2*gamma+a2^2*gamma*delta/beta,a2*alpha+b2* beta=a1^2*beta+2*a1*a2*delta+a2^2* (beta*gamma-delta*(alpha-delta))/beta, a1*gamma+b1*delta=a1*b1*alpha+a1*b2*gamma+a2*b1*gamma+a2 *b2*gamma*delta/beta,a2*gamma+b2*delta=a1*b1*beta+a1*b2* delta+a2*b1*delta+a2*b2*(beta*gamma-delta*(alpha-delta))/ beta, a1*gamma*delta/beta+b1*(beta*gamma-delta*(alpha-delta))/ beta=b1^2*alpha+2*b1*b2*gamma+b2^2*gamma*delta/beta,a2* gamma*delta/beta+b2*(beta*gamma-delta*(alpha-delta))/ beta=b1^2*beta+2*b1*b2*delta+b2^2*(beta*gamma-delta*( alpha-delta))/beta},{a1,a2,b1,b2}); Warning, computation interrupted
1 2 Page 1 of 2