fatemeh1090

30 Reputation

One Badge

1 years, 1 days

MaplePrimes Activity


These are questions asked by fatemeh1090

How I can plot the answers obtained from solving two differential equations?

Thanks

SAL.mw
 

restart

e := 0.62e-2

0.62e-2

(1)

r := 0.15e-1

0.15e-1

(2)

DDo2 := .17*3600

612.00

(3)

DDco2 := .12*3600

432.00

(4)

NULL

N := 20

20

(5)

P1o2 := 3600*(1000*(27*10^(-13)*24.45)*100)/(10000*0.986923267e-2)

0.2408029155e-3

(6)

P1co2 := 3600*(1000*(99*10^(-13)*24.45)*100)/(10000*0.986923267e-2)

0.8829440235e-3

(7)

P2o2 := Pi*r^2*DDo2*N/(e+r)

408.1106684

(8)

P2co2 := Pi*r^2*DDco2*N/(e+r)

288.0781188

(9)

diff(y[o2](t), t) = ((P1o2+P2o2)*(21-y[o2](t))-100*(167*y[o2](t)/(1.6+y[o2](t))*.25))*(1/1300)

diff(y[o2](t), t) = 6.592560841-.3139314686*y[o2](t)-3.211538462*y[o2](t)/(1.6+y[o2](t))

(10)

diff(y[co2](t), t) = ((P1co2+P2co2)*(0.4e-1-y*y[co2](t))+.25*(.8*(167*y*y[co2](t)/(1.6+y*y[co2](t))))*100)*(1/1300)

diff(y[co2](t), t) = 0.8863969285e-2-.2215992321*y*y[co2](t)+2.569230769*y*y[co2](t)/(1.6+y*y[co2](t))

(11)

                 initial*conditional     @t=0     yO2=21 , yco2=0.04


 

Download SAL.mw

 

How I can determine the trace of the matrix.

My answer has a lot of differences comparing the result provided in the pdf file (end of the file).

Also, I think we should use from  EQ(4).

what is the problem?

Please help me..

Best

Doc2.pdf

1111.mw


 

restart; x__2 := beta*gamma+2*beta+delta*gamma+delta-alpha-sqrt(alpha^2-2*alpha*(beta*gamma+delta*gamma+2*beta+delta)+(beta*gamma+delta*gamma+delta)^2)/(2*(beta+delta))

y__2 := 1-x__2

J := Matrix([[1-2*x__2-y__2, -x__2], [beta*y__2^2/x__2^2, delta-2*beta*y__2/x__2-alpha*gamma/(gamma+y__2)^2]])

 

 

                            

and y__2*(delta-beta*y__2/x__2)-alpha*y__2/(gamma+y__2) = 0``

Error, reserved word `and` unexpected

 
  NULL

 

 

NULL

TTR := Trace(J)

TTR := 1-2*x__2-y__2+delta-2*beta*y__2/x__2-alpha*gamma/(gamma+y__2)^2

-beta*gamma-2*beta-delta*gamma+alpha+(alpha^2-2*alpha*(beta*gamma+delta*gamma+2*beta+delta)+(beta*gamma+delta*gamma+delta)^2)^(1/2)/(2*beta+2*delta)-2*beta*(1-beta*gamma-2*beta-delta*gamma-delta+alpha+(alpha^2-2*alpha*(beta*gamma+delta*gamma+2*beta+delta)+(beta*gamma+delta*gamma+delta)^2)^(1/2)/(2*beta+2*delta))/(beta*gamma+2*beta+delta*gamma+delta-alpha-(alpha^2-2*alpha*(beta*gamma+delta*gamma+2*beta+delta)+(beta*gamma+delta*gamma+delta)^2)^(1/2)/(2*beta+2*delta))-alpha*gamma/(gamma+1-beta*gamma-2*beta-delta*gamma-delta+alpha+(alpha^2-2*alpha*(beta*gamma+delta*gamma+2*beta+delta)+(beta*gamma+delta*gamma+delta)^2)^(1/2)/(2*beta+2*delta))^2

(1)

s := diff(TTR, alpha)

1+(1/2)*(-2*beta*gamma-2*delta*gamma+2*alpha-4*beta-2*delta)/((alpha^2-2*alpha*(beta*gamma+delta*gamma+2*beta+delta)+(beta*gamma+delta*gamma+delta)^2)^(1/2)*(2*beta+2*delta))-2*beta*(1+(1/2)*(-2*beta*gamma-2*delta*gamma+2*alpha-4*beta-2*delta)/((alpha^2-2*alpha*(beta*gamma+delta*gamma+2*beta+delta)+(beta*gamma+delta*gamma+delta)^2)^(1/2)*(2*beta+2*delta)))/(beta*gamma+2*beta+delta*gamma+delta-alpha-(alpha^2-2*alpha*(beta*gamma+delta*gamma+2*beta+delta)+(beta*gamma+delta*gamma+delta)^2)^(1/2)/(2*beta+2*delta))+2*beta*(1-beta*gamma-2*beta-delta*gamma-delta+alpha+(alpha^2-2*alpha*(beta*gamma+delta*gamma+2*beta+delta)+(beta*gamma+delta*gamma+delta)^2)^(1/2)/(2*beta+2*delta))*(-1-(1/2)*(-2*beta*gamma-2*delta*gamma+2*alpha-4*beta-2*delta)/((alpha^2-2*alpha*(beta*gamma+delta*gamma+2*beta+delta)+(beta*gamma+delta*gamma+delta)^2)^(1/2)*(2*beta+2*delta)))/(beta*gamma+2*beta+delta*gamma+delta-alpha-(alpha^2-2*alpha*(beta*gamma+delta*gamma+2*beta+delta)+(beta*gamma+delta*gamma+delta)^2)^(1/2)/(2*beta+2*delta))^2-gamma/(gamma+1-beta*gamma-2*beta-delta*gamma-delta+alpha+(alpha^2-2*alpha*(beta*gamma+delta*gamma+2*beta+delta)+(beta*gamma+delta*gamma+delta)^2)^(1/2)/(2*beta+2*delta))^2+2*alpha*gamma*(1+(1/2)*(-2*beta*gamma-2*delta*gamma+2*alpha-4*beta-2*delta)/((alpha^2-2*alpha*(beta*gamma+delta*gamma+2*beta+delta)+(beta*gamma+delta*gamma+delta)^2)^(1/2)*(2*beta+2*delta)))/(gamma+1-beta*gamma-2*beta-delta*gamma-delta+alpha+(alpha^2-2*alpha*(beta*gamma+delta*gamma+2*beta+delta)+(beta*gamma+delta*gamma+delta)^2)^(1/2)/(2*beta+2*delta))^3

(2)

NULL

NULL


 

Download 1111.mw

Hi, after solving an equation and inserting it in the original equation the result is not equal to zero!!

What is the problem?

in the attached file below I obtained 'q' and then I put it in the eq (3), but the result is not zero!!

Please help me.

555.mw

hello,

How I can remove this error for dsolve equation.

Thanks

2023.mw


 

"restart:Digits :=15: upsilon:=0.3:E(x):=E0*((x)/((b)))^(beta):rho(x):=rho0*((x)/((b)))^(beta):alpha(x):=alpha0*((x)/((b)))^(beta):a:=0.2:b:=1:omega:=100:E0:=390e9:rho0:=3900:T(x):=Ta+(Tb-Ta)/(ln(b/(a)))*(ln(x)-ln(a)):Ta:=373:Tb:=273:upsilon:=0.25:alpha0:=7e-6:  h(x):=(1-n*(x/(b)))^(k):n:=0.415196:k:=3:beta:=1:    dsys5 := {(1/(b))*( diff(u(x),x,x) )+(1/(b*h(x))*(diff(h(x),x))+1/(b*E(x))*(diff(E(x),x))+1/(b*(x)))*(diff(u(x),x))+((upsilon)/((b^(2)*x))*1/(h(x))*(diff(h(x),x))-1/((b*x)^(2))+(upsilon)/(b^(2)*(x))*1/(E(x))*(diff(E(x),x)))*b*u(x)+(1+upsilon)*((rho(x)*x*b*(omega^(2)))/(E(x))*(1-upsilon)-(alpha(x)*Ta)/(b)*(diff(T(x),x))-((diff(alpha(x),x))/(b)+(alpha(x)*diff(E(x),x))/(b*E(x))+(alpha(x)*diff(h(x),x))/(b*h(x)))*Ta*T(x) ),u(a) = 0,(E(b))/((1-upsilon^(2)))*(D^((1))(u)(b)+upsilon/(x)*D^((0))(u)(b))-(E(b)*alpha(b)*T(b)*Ta)/((1-upsilon^())) =-1}:dsol5 := dsolve(dsys5,abserr=1e-1, 'maxmesh'=900, numeric, method=bvp[middefer],output=listprocedure):fy := eval(u(x),dsol5)"

Error, invalid input: eval received dsol5, which is not valid for its 2nd argument, eqns

 

``


 

Download 2023.mw

how I can gain a function that it is fitting in these data in x and y and z?

please see the following figure.

this curve is a 3D diagram in three coordinates x,y and z.

Thanks

PLOTfitting.xls

1 2 3 Page 1 of 3