## 45 Reputation

11 years, 251 days

## How to solve Cauchy sequences...

Maple 12

(a) Show that if {an} ∞ n=1 is Cauchy then {a 2 n} ∞ n=1 is also Cauchy. (b) Give an example of a Cauchy sequence {a 2 n} ∞ n=1 such that {an} ∞ n=1 is not Cauchy

## how to solve an exercise with Maple invo...

Maple 12

Show that 2^3 + x ^2 − 3x + 2 is O(x ^3 ).

Maple 12

 >
 >
 >
 >
 >
 >
 (1)
 >
 >
 >
 >
 >
 (2)
 >
 >
 (3)
 >
 >
 (4)
 >
 (5)
 >
 (6)
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >

 >
 >
 >
 >
 >
 >
 (1)
 >
 >
 >
 >
 >
 (2)
 >
 >
 (3)
 >
 >
 (4)
 >
 (5)
 >
 (6)
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >

## How to solve infinite series...

Maple 12

If a dosage Q units of a certain drug is administrated to an individual, then the amount remaining in the bloodstream at the end of t minutes is given by Q*exp^-ct, where c>0. Suppose this same dosage is given at successive T-minute intervals.

a) Show that the amount A(k) of the drug is given by A(k) = ∑n=0k-1 Q*exp(^-ncT).

b) Find an upper bound for the amount of the drug in the bloodsteam after any number of doses.

c) Find the smallest time between doses that will ensure that A(k) does not exceed a certain level M for M>Q.

## Gerschorin's theorem Linear Algebra...

Maple 12

worksheet/expressions/copypasteMaple

Gerschgorin := proc (A::Matrix) local Delta, m, n, AA, R, C, i, c, eig, P, Plt; Delta := proc (i, j) if i = j then 0 else 1 end if end proc; m, n := LinearAlgebra[Dimension](A); AA := Matrix(m, n, proc (i, j) options operator, arrow; Delta(i, j)*abs(A[i, j]) end proc); R := evalm(`&*`(AA, Vector(m, 1))); C := {seq(('plottools[circle]')([Re(A[i, i]), Im(A[i, i])], R[i], color = violet), i = 1 .. m)}; c := {seq(('plottools[point]')([Re(A[i, i]), Im(A[i, i])], color = blue, symbol = diamond), i = 1 .. m)}; eig := evalf(LinearAlgebra[Eigenvalues](A)); P := {seq(('plottools[point]')([Re(eig[i]), Im(eig[i])], color = red, symbol = box), i = 1 .. m)}; Plt := `union`(`union`(C, c), P); plots[display](eval(Plt), scaling = constrained) end proc

A := Matrix([[5, 8, 4, -3], [8, -9, 7, 5], [0, 4, 4, 2], [5, -5, 9, -9]]); evalf(LinearAlgebra[Eigenvalues](A), 3); Gerschgorin(A)

worksheet/expressions/pasteMathML

F := Matrix([[2, -1/2, -1/3, 0], [0, 6, 1, 0], [1/3, -1/3, 5, 1/3], [-1/2, 1/4, -1/4, 4]]); evalf(LinearAlgebra[Eigenvalues](F)); Gerschgorin(F)

Could you print A & F ?

regards

 1 2 3 4 5 6 7 Page 1 of 7
﻿