matmxhu

85 Reputation

5 Badges

11 years, 251 days

MaplePrimes Activity


These are questions asked by matmxhu

Hey all Maple experts.I could really use some help with  diff,D,Diff

restart

interface(version)

`Standard Worksheet Interface, Maple 2024.2, Windows 10, October 29 2024 Build ID 1872373`

(1)

with(Physics[Vectors])

NULL

CompactDisplay(A_(x, y, z, t), `ϕ`(x, y, z, t), v_(x, y, z, t), F_(x, y, z, t), v__x(x, y, z, t), v__y(x, y, z, t), v__z(x, y, z, t), A__x(x, y, z, t), A__y(x, y, z, t), A__z(x, y, z, t), quiet)

macro(Av = A_(x, y, z, t), `ϑ` = `ϕ`(x, y, z, t), Vv = v_(x, y, z, t), Fv = F_(x, y, z, t))

show, ON, OFF, kd_, ep_, Av, vartheta, Vv, Fv

(2)

Fv = q*('-VectorCalculus[Nabla](`ϑ`)'-(diff(Av, t))+`&x`(Vv, `&x`(VectorCalculus[Nabla], Av)))

F_(x, y, z, t) = q*(-Physics:-Vectors:-Nabla(varphi(x, y, z, t))-(diff(A_(x, y, z, t), t))+Physics:-Vectors:-`&x`(v_(x, y, z, t), Physics:-Vectors:-Curl(A_(x, y, z, t))))

(3)

Av = A__x(x, y, z, t)*_i+A__y(x, y, z, t)*_j+A__z(x, y, z, t)*_k, Vv = v__x(x, y, z, t)*_i+v__y(x, y, z, t)*_j+v__z(x, y, z, t)*_k, F_(x, y, z, t) = F__x*_i+F__y*_j+F__z*_k

A_(x, y, z, t) = A__x(x, y, z, t)*_i+A__y(x, y, z, t)*_j+A__z(x, y, z, t)*_k, v_(x, y, z, t) = v__x(x, y, z, t)*_i+v__y(x, y, z, t)*_j+v__z(x, y, z, t)*_k, F_(x, y, z, t) = F__x*_i+F__y*_j+F__z*_k

(4)

subs[eval](A_(x, y, z, t) = A__x(x, y, z, t)*_i+A__y(x, y, z, t)*_j+A__z(x, y, z, t)*_k, v_(x, y, z, t) = v__x(x, y, z, t)*_i+v__y(x, y, z, t)*_j+v__z(x, y, z, t)*_k, F_(x, y, z, t) = F__x*_i+F__y*_j+F__z*_k, F_(x, y, z, t) = q*(-Physics[Vectors][Nabla](varphi(x, y, z, t))-(diff(A_(x, y, z, t), t))+Physics[Vectors][`&x`](v_(x, y, z, t), Physics[Vectors][Curl](A_(x, y, z, t)))))

F__x*_i+F__y*_j+F__z*_k = q*(-(diff(varphi(x, y, z, t), x))*_i-(diff(varphi(x, y, z, t), y))*_j-(diff(varphi(x, y, z, t), z))*_k-(diff(A__x(x, y, z, t), t))*_i-(diff(A__y(x, y, z, t), t))*_j-(diff(A__z(x, y, z, t), t))*_k+(-v__y(x, y, z, t)*(diff(A__x(x, y, z, t), y))+v__y(x, y, z, t)*(diff(A__y(x, y, z, t), x))+v__z(x, y, z, t)*(diff(A__z(x, y, z, t), x))-v__z(x, y, z, t)*(diff(A__x(x, y, z, t), z)))*_i+(-v__z(x, y, z, t)*(diff(A__y(x, y, z, t), z))+v__z(x, y, z, t)*(diff(A__z(x, y, z, t), y))+v__x(x, y, z, t)*(diff(A__x(x, y, z, t), y))-v__x(x, y, z, t)*(diff(A__y(x, y, z, t), x)))*_j+(v__y(x, y, z, t)*(diff(A__y(x, y, z, t), z))-v__y(x, y, z, t)*(diff(A__z(x, y, z, t), y))-v__x(x, y, z, t)*(diff(A__z(x, y, z, t), x))+v__x(x, y, z, t)*(diff(A__x(x, y, z, t), z)))*_k)

(5)

map(Component, F__x*_i+F__y*_j+F__z*_k = q*(-(diff(varphi(x, y, z, t), x))*_i-(diff(varphi(x, y, z, t), y))*_j-(diff(varphi(x, y, z, t), z))*_k-(diff(A__x(x, y, z, t), t))*_i-(diff(A__y(x, y, z, t), t))*_j-(diff(A__z(x, y, z, t), t))*_k+(-v__y(x, y, z, t)*(diff(A__x(x, y, z, t), y))+v__y(x, y, z, t)*(diff(A__y(x, y, z, t), x))+v__z(x, y, z, t)*(diff(A__z(x, y, z, t), x))-v__z(x, y, z, t)*(diff(A__x(x, y, z, t), z)))*_i+(-v__z(x, y, z, t)*(diff(A__y(x, y, z, t), z))+v__z(x, y, z, t)*(diff(A__z(x, y, z, t), y))+v__x(x, y, z, t)*(diff(A__x(x, y, z, t), y))-v__x(x, y, z, t)*(diff(A__y(x, y, z, t), x)))*_j+(v__y(x, y, z, t)*(diff(A__y(x, y, z, t), z))-v__y(x, y, z, t)*(diff(A__z(x, y, z, t), y))-v__x(x, y, z, t)*(diff(A__z(x, y, z, t), x))+v__x(x, y, z, t)*(diff(A__x(x, y, z, t), z)))*_k), 1)

F__x = -v__y(x, y, z, t)*(diff(A__x(x, y, z, t), y))*q+v__y(x, y, z, t)*(diff(A__y(x, y, z, t), x))*q+v__z(x, y, z, t)*(diff(A__z(x, y, z, t), x))*q-v__z(x, y, z, t)*(diff(A__x(x, y, z, t), z))*q-(diff(varphi(x, y, z, t), x))*q-(diff(A__x(x, y, z, t), t))*q

(6)

collect(F__x = -v__y(x, y, z, t)*(diff(A__x(x, y, z, t), y))*q+v__y(x, y, z, t)*(diff(A__y(x, y, z, t), x))*q+v__z(x, y, z, t)*(diff(A__z(x, y, z, t), x))*q-v__z(x, y, z, t)*(diff(A__x(x, y, z, t), z))*q-(diff(varphi(x, y, z, t), x))*q-(diff(A__x(x, y, z, t), t))*q, [q, v__x(x, y, z, t), v__y(x, y, z, t), v__z(x, y, z, t)])

F__x = (v__y(x, y, z, t)*(diff(A__y(x, y, z, t), x)-(diff(A__x(x, y, z, t), y)))+(diff(A__z(x, y, z, t), x)-(diff(A__x(x, y, z, t), z)))*v__z(x, y, z, t)-(diff(varphi(x, y, z, t), x))-(diff(A__x(x, y, z, t), t)))*q

(7)

convert(F__x = (v__y(x, y, z, t)*(diff(A__y(x, y, z, t), x)-(diff(A__x(x, y, z, t), y)))+(diff(A__z(x, y, z, t), x)-(diff(A__x(x, y, z, t), z)))*v__z(x, y, z, t)-(diff(varphi(x, y, z, t), x))-(diff(A__x(x, y, z, t), t)))*q, Diff)

F__x = (v__y(x, y, z, t)*(Diff(A__y(x, y, z, t), x)-(Diff(A__x(x, y, z, t), y)))+(Diff(A__z(x, y, z, t), x)-(Diff(A__x(x, y, z, t), z)))*v__z(x, y, z, t)-(Diff(varphi(x, y, z, t), x))-(Diff(A__x(x, y, z, t), t)))*q

(8)

convert(F__x = (v__y(x, y, z, t)*(diff(A__y(x, y, z, t), x)-(diff(A__x(x, y, z, t), y)))+(diff(A__z(x, y, z, t), x)-(diff(A__x(x, y, z, t), z)))*v__z(x, y, z, t)-(diff(varphi(x, y, z, t), x))-(diff(A__x(x, y, z, t), t)))*q, D)

F__x = (v__y(x, y, z, t)*((D[1](A__y))(x, y, z, t)-(D[2](A__x))(x, y, z, t))+((D[1](A__z))(x, y, z, t)-(D[3](A__x))(x, y, z, t))*v__z(x, y, z, t)-(D[1](varphi))(x, y, z, t)-(D[4](A__x))(x, y, z, t))*q

(9)

 
Hello everyone, in the result of this command execution process, it appears that the symbols for partial derivatives and derivatives in equation (8) are displayed incorrectly. What should I do?

Download error_display.mw

Hi,

    here a problem when i solve equations.i guess solve lost a root.how can i do.


An_unexpected_solve_bug_.pdf
Download An_unexpected_solve_bug_.mw

how I can I get MAPLe to simplify this to Pi/2-beta ,

simplify(arctan(sin(beta)/cos(beta)),arctrig) assuming beta<Pi/2,beta>0;

simplify(arctan(sin(beta)/cos(beta)),symbolic) assuming beta<Pi/2,beta>0;

why i can't get Pi/2-beta

for example, a__b+b__a+a__b^2,how i can choose the first and third.

hi,

here a comlicated formula,how i simplify

thanks  a lot.

``

f := (kappa*omega^2+omega^3)*(Y+(-sqrt(N)*omega^(3/2)*sin(theta[2])*cos(varphi[2])*lambda__b+sqrt(N)*omega^(3/2)*sin(theta[1])*cos(varphi[1])*lambda__a)/(2*(kappa*omega^2+omega^3)))^2/(2*omega)+(-kappa*omega^2+omega^3)*(X+(sqrt(N)*omega^(3/2)*sin(theta[2])*cos(varphi[2])*lambda__b+sqrt(N)*omega^(3/2)*sin(theta[1])*cos(varphi[1])*lambda__a)/(2*(-kappa*omega^2+omega^3)))^2/(2*omega)+(Omega*N*cos(theta[2])*omega+Omega*N*cos(theta[1])*omega-P__X^2*kappa+P__X^2*omega+P__Y^2*kappa+P__Y^2*omega)/(2*omega)-(sqrt(N)*omega^(3/2)*sin(theta[2])*cos(varphi[2])*lambda__b+sqrt(N)*omega^(3/2)*sin(theta[1])*cos(varphi[1])*lambda__a)^2/(8*omega*(-kappa*omega^2+omega^3))-(-sqrt(N)*omega^(3/2)*sin(theta[2])*cos(varphi[2])*lambda__b+sqrt(N)*omega^(3/2)*sin(theta[1])*cos(varphi[1])*lambda__a)^2/(8*omega*(kappa*omega^2+omega^3))

(1/2)*(kappa*omega^2+omega^3)*(Y+(-N^(1/2)*omega^(3/2)*sin(theta[2])*cos(varphi[2])*lambda__b+N^(1/2)*omega^(3/2)*sin(theta[1])*cos(varphi[1])*lambda__a)/(2*kappa*omega^2+2*omega^3))^2/omega+(1/2)*(-kappa*omega^2+omega^3)*(X+(N^(1/2)*omega^(3/2)*sin(theta[2])*cos(varphi[2])*lambda__b+N^(1/2)*omega^(3/2)*sin(theta[1])*cos(varphi[1])*lambda__a)/(-2*kappa*omega^2+2*omega^3))^2/omega+(1/2)*(Omega*N*cos(theta[2])*omega+Omega*N*cos(theta[1])*omega-P__X^2*kappa+P__X^2*omega+P__Y^2*kappa+P__Y^2*omega)/omega-(1/8)*(N^(1/2)*omega^(3/2)*sin(theta[2])*cos(varphi[2])*lambda__b+N^(1/2)*omega^(3/2)*sin(theta[1])*cos(varphi[1])*lambda__a)^2/(omega*(-kappa*omega^2+omega^3))-(1/8)*(-N^(1/2)*omega^(3/2)*sin(theta[2])*cos(varphi[2])*lambda__b+N^(1/2)*omega^(3/2)*sin(theta[1])*cos(varphi[1])*lambda__a)^2/(omega*(kappa*omega^2+omega^3))

(1)

``

(1/2)*(kappa*omega^2+omega^3)*(Y+(-N^(1/2)*omega^(3/2)*sin(theta[2])*cos(varphi[2])*lambda__b+N^(1/2)*omega^(3/2)*sin(theta[1])*cos(varphi[1])*lambda__a)/(2*kappa*omega^2+2*omega^3))^2/omega

(2)

``

    f is a complicated function,i want to make it more simplify,but i want to keep square style,

 let coefficients of X and Y keep one unit,and simplify terms  containd special symbol of omega

 

Download Q1119.mw

it what i wanted.

1 2 3 Page 1 of 3