nmani

136 Reputation

7 Badges

15 years, 209 days

MaplePrimes Activity


These are answers submitted by nmani

3*n2*n12*n8*n9+3*n2*n12*n7*n10+3*n1*n11*n8*n9+3*n1*n11*n7*n10+3*n2*n8*n9+3*n2*n7*n10+3*n9-3*n1*n12*n8*n10+3*n1*n12*n7*n9+3*n2*n11*n8*n10-3*n2*n11*n7*n9-3*n1*n8*n10+3*n1*n7*n9,
-3-3*n2*n12*n8*n10+3*n2*n12*n7*n9-3*n1*n11*n8*n10+3*n1*n11*n7*n9-3*n2*n8*n10+3*n2*n7*n9-3*n10-3*n1*n12*n7*n10-3*n1*n12*n8*n9+3*n2*n11*n7*n10+3*n2*n11*n8*n9-3*n1*n7*n10-3*n1*n8*n9,
-3*n2*n4*n8*n10*n5+3*n2*n4*n7*n10*n6+3*n2*n3*n7*n10*n5+3*n2*n3*n8*n10*n6+3*n1*n4*n13*n7*n9*n5+3*n1*n4*n13*n8*n9*n6+3*n1*n4*n13*n7*n10*n6-3*n1*n4*n13*n8*n10*n5-3*n1*n4*n14*n7*n10*n5-3*n1*n4*n14*n8*n10*n6+3*n2*n4*n13*n8*n9*n5-3*n2*n4*n13*n7*n9*n6-3*n2*n3*n13*n7*n9*n5-3*n2*n3*n13*n8*n9*n6+3*n2*n4*n13*n7*n10*n5+3*n2*n4*n13*n8*n10*n6-3*n2*n3*n13*n7*n10*n6+3*n2*n3*n13*n8*n10*n5+3*n2*n4*n14*n7*n10*n6-3*n2*n4*n14*n8*n10*n5+3*n2*n3*n14*n7*n10*n5+3*n2*n3*n14*n8*n10*n6-3*n5+3*n2*n4*n7*n9*n5+3*n2*n4*n8*n9*n6+3*n2*n3*n8*n9*n5-3*n2*n3*n7*n9*n6-3*n1*n4*n7*n10*n5-3*n1*n4*n8*n10*n6-3*n1*n3*n8*n10*n5+3*n1*n3*n7*n10*n6-3*n1*n4*n8*n9*n5+3*n1*n4*n7*n9*n6+3*n1*n3*n7*n9*n5+3*n1*n3*n8*n9*n6+3*n2*n4*n14*n7*n9*n5+3*n2*n4*n14*n8*n9*n6+3*n2*n3*n14*n8*n9*n5-3*n2*n3*n14*n7*n9*n6-3*n10*n5+3*n2*n7*n10*n6-3*n2*n8*n10*n5+3*n1*n7*n9*n6-3*n1*n8*n9*n5-3*n1*n8*n10*n6-3*n1*n7*n10*n5+3*n1*n3*n14*n7*n10*n6-3*n1*n3*n14*n8*n10*n5+3*n1*n3*n13*n8*n10*n6+3*n1*n3*n13*n7*n10*n5+3*n1*n4*n14*n7*n9*n6-3*n1*n4*n14*n8*n9*n5+3*n1*n3*n14*n7*n9*n5+3*n1*n3*n14*n8*n9*n6+3*n1*n3*n13*n8*n9*n5-3*n1*n3*n13*n7*n9*n6+3*n2*n8*n9*n6+3*n2*n7*n9*n5+3*n9*n6,
-3*n2*n4*n7*n10*n5-3*n2*n4*n8*n10*n6-3*n2*n3*n8*n10*n5+3*n2*n3*n7*n10*n6-3*n2*n3*n14*n8*n10*n5+3*n2*n3*n14*n7*n10*n6-3*n2*n4*n14*n7*n10*n5-3*n2*n4*n14*n8*n10*n6+3*n2*n3*n13*n7*n10*n5+3*n2*n3*n13*n8*n10*n6-3*n2*n4*n13*n8*n10*n5+3*n2*n4*n13*n7*n10*n6+3*n2*n3*n14*n7*n9*n5+3*n2*n3*n14*n8*n9*n6-3*n2*n4*n14*n8*n9*n5+3*n2*n4*n14*n7*n9*n6-3*n6+3*n2*n3*n13*n8*n9*n5-3*n2*n3*n13*n7*n9*n6+3*n2*n4*n13*n7*n9*n5+3*n2*n4*n13*n8*n9*n6-3*n2*n4*n8*n9*n5+3*n2*n4*n7*n9*n6+3*n2*n3*n7*n9*n5+3*n2*n3*n8*n9*n6+3*n1*n4*n8*n10*n5-3*n1*n4*n7*n10*n6-3*n1*n3*n7*n10*n5-3*n1*n3*n8*n10*n6-3*n1*n4*n7*n9*n5-3*n1*n4*n8*n9*n6-3*n1*n3*n8*n9*n5+3*n1*n3*n7*n9*n6-3*n1*n3*n14*n7*n10*n5-3*n1*n3*n14*n8*n10*n6+3*n1*n4*n14*n8*n10*n5-3*n1*n4*n14*n7*n10*n6-3*n1*n3*n13*n8*n10*n5+3*n1*n3*n13*n7*n10*n6-3*n1*n4*n13*n7*n10*n5-3*n1*n4*n13*n8*n10*n6-3*n1*n3*n14*n8*n9*n5+3*n1*n3*n14*n7*n9*n6-3*n1*n4*n14*n7*n9*n5-3*n1*n4*n14*n8*n9*n6+3*n1*n3*n13*n7*n9*n5+3*n1*n3*n13*n8*n9*n6-3*n1*n4*n13*n8*n9*n5+3*n1*n4*n13*n7*n9*n6-3*n10*n6-3*n2*n8*n10*n6-3*n2*n7*n10*n5-3*n1*n8*n9*n6-3*n1*n7*n9*n5-3*n1*n7*n10*n6+3*n1*n8*n10*n5-3+3*n2*n7*n9*n6-3*n2*n8*n9*n5-3*n9*n5,
n1^2+n2^2-1,
n3^2+n4^2-1,
n5^2+n6^2-1,
n7^2+n8^2-1,
n9^2+n10^2-1,
n11^2+n12^2-1,
n13^2+n14^2-1

My system is real itself, just initial condition are complex.

I mean the value I have for initial value are complex but system is real what should I do now?

 

Thanks

Hello

Dsolve produces X[5] and first derivative and second derivative of that the problem is I do not know what is maple comand to plot it

I mean I use

plots[odeplot](dsol, [t, (D(X[5]))(t)], 0 .. 5, numpoints = 250); to plot first derivative what is maple comand like this for second derivative

is it plots[odeplot](dsol, [t, (D^2(X[5]))(t)], 0 .. 5, numpoints = 250); or

 

plots[odeplot](dsol, [t, (D[1,1](X[5]))(t)], 0 .. 5, numpoints = 250);

Thanks

 

 

 

Page 1 of 1