one man

Alexey Ivanov

1265 Reputation

18 Badges

12 years, 131 days

Social Networks and Content at Maplesoft.com

Maple Application Center

MaplePrimes Activity


These are answers submitted by one man

   I think you would be able to help yourself consider "a" as a function of a = a (x, y). Approximate considerations in text.

Fa.mw    

Yuri Nikolaevich, using  print() suit you?
PRICONV.mw

     Numerically for the curve given any kind of equations. With geom3d  you construct the plane equation for any three points of the curve that does not lie on one line. In a cycle of successively take point of the curve, substitute them in the equation of the plane and monitor the absolute value of the discrepancy.



Many choices
on the same basis.
PAR.mw

restart:
a := [x+1, x+2, x+3, x+4];
a := convert(a, set);
a :=minus(a, {x+2});
a := convert(a, list);

restart;
a := [x+1, x+2, x+3, x+4];
a := subs(x+2 = NULL, a);
nops(a);
op(2, a);

restart: with(plots):
t := [1, 2, 3];
f(t[1]) := [3, 4]; f(t[2]) := [11, 12]; f(t[3]) := [41, 1];
pointplot([f(t[1]), f(t[2]), f(t[3])], color = RGB(7, .3, 4), style = line, symbol = solidcircle, thickness = 5);
pointplot3d([1, op(f(t[1])), 2, op(f(t[2])), 3, op(f(t[3]))], color = RGB(7, .3, 4), style = line, symbol = solidcircle, thickness = 5);

combine(-ln(x)+ln(y), symbolic);

restart;
f := x1^2/(x2^3*x3^2);
op(1, op(2, f))^sign(op(2, op(2, f)));
op(1, op(3, f))^sign(op(2, op(3, f)));
f := algsubs(1/x2 = x2b, f);
f := algsubs(1/x3 = x3b, f);

restart;

(diff(f(x), x))/(diff(ln(x), x));

 

for example:

restart;

f := sin(x);

(diff(f, x))/(diff(ln(x), x));

Skeptik18(_for_d1.mw

 For a start point “a” = 0.5 any number of solutions. It depends on the "smax".

   1, [(0.8013209420000008)], 2.70183810879842667*10^-8                                                            

   2, [(1.0938038328000006)], 1.75716205141895898*10^-7                                                        

      3, [(1.5165511908)], 3.19181676505797540*10^-8                                                        

   4, [(1.9061358998000002)], 4.58627091859398206*10^-9                                                           

   5, [(2.1833650214000007)], 4.36816931514982798*10^-8                                                            

   6, [(2.5877177300000005)], 1.71876049503971729*10^-7                                                            

    7, [(2.937538889999998)], 9.29630750157173224*10^-9                                                           

    8, [(3.219756611999996)], 2.01128799837135830*10^-7                                                            

   9, [(3.6180527559999964)], 4.55144026911824540*10^-8                                                           

   10, [(3.953152181999997)], 3.39347172584325562*10^-8                                                            

   11, [(4.239272189999994)], 2.57192325658905930*10^-7                                                           

   12, [(4.635025125999992)], 3.01111789280383846*10^-7                                                         

   13, [(4.962516473999992)], 9.20600748965938465 10^-8                                                            

   14, [(5.2514410039999975)], 2.19850920579744980*10^-7                                                           

   15, [(5.645899321999999)], 1.82685308214303177*10^-7                                                         

   16, [5.968760335999992)], 2.30153605063065925*10^-8                                                          

   17, [6.2597571959999945)], 2.33606770816408017*10^-7                                                           

   18, [(6.653469225999989)], 1.16942534766906194*10^-7                                                           

    19, [(6.97322109999999)], 7.71696275769784279*10^-8                                                          

   20, [(7.265801703999997)], 4.86139439814792240*10^-8                                                           

   21, [(7.659044969999998)], 4.08131656026711200*10^-7                                                          

   22, [(7.976567196000005)], 6.48611420128730742*10^-8                                                    

   23, [(8.270394148000008)], 1.66075897922723926*10^-7                                                           

   24, [(8.663323925999999)], 2.60858493916771295*10^-7                                                      

      25, [(8.979170028)], 7.82206077687419565*10^-8                                                           

   26, [(9.274002000000005)], 1.76298078358172460*10^-8                                                           

   27, [(9.666711878000001)], 5.96099682503847818*10^-7                                                        

      28,[(9.981252484)], 2.84982932807764656*10^-8                                                            

   29, [(10.276911416000011)], 2.49167541710448860*10^-7 

...

The Draghilev method. Read, for example: http://www.mapleprimes.com/posts/145360-The-Dragilev-Method-1-Some-Mathematical

 

restart;
Digits := 30; 2^29.403243784;

For example:

restart:
nn := nextprime(10^100); zz := 1;
for ii from 0 to 100000 do zz := `mod`(zz^2+1, nn); if `or`(ii > 99997, zz = 66388502) then print("ii=", ii, "zz=", zz) end if end do:

Blue - the denominator sin(x+(1/3)*Pi-theta) = 0.
theta, I think, has a period of Pi, and x has a period of Pi / 3. The solution is obtained by Draghilev method. This numerical solution of ordinary differential equations with initial conditions theta (0) = 0, x (0) = Pi / 3.

METHOD(n-1)2d.mw

MaplePrime.mw

This way you get all the real solutions for any real value of any parameter for the polynomial

equations N * N.

 

1 2 3 4 5 6 Page 5 of 6