one man

Alexey Ivanov

860 Reputation

14 Badges

8 years, 353 days
Russian Federation

Social Networks and Content at

Maple Application Center

MaplePrimes Activity

These are answers submitted by one man

In this case, this method gives a parametric solution. In the text of the program, the Draghilev method is highlighted in green.
(If satisfied with numerical parameterization, the examples can be very complex. But as far as analytical parameterization is concerned, even in this case, the method can perform an example more complicated.)



  solve(r2,{ksi});  or  fsolve(r2); 

And if just combine "transparency" and "thickness"?
For example

restart: with(plots):
p1:=plot(f1(x),x=0..2,color=red,legend = f1(x)): 
p2:=plot(f2(x),x=0..2,color=blue,legend = f2(x)): 
p3:=plot(f3(x),x=0..2,color=green,thickness = 10, transparency = .7, legend = f3(x)): 


Just in case, search for "Draghilev method" (or Dragilev here: )
The method, in particular, finds continuous solutions of systems with free variables (underdetermined systems of equations).

You can do this:

 a := plot({seq((6*x-2*t)/x^2, t = 1 .. 3)}, x = -1 .. 5, y = -1 .. 6):
 b := plot(3/x, x = 0 .. 5, y = -1 .. 6, color = black, thickness = 3):
 plots[display](a, b)


Since childhood, I try to avoid strict zeros in coordinates (and generally avoid strictly identical values) due to formulas, because expressions may be nullified after substitution. It is better to shift the point o or d along the oX axis, for example:

point(o, 0.1e-11, 0.); 
point(A, 0., 1.); 
point(d, 0., 2.);
point(F, .8944271920, 1.4472135960); 
line(lOD, [o, d]); 
line(lAF, [A, F]); 
alpha := FindAngle(lOD, lAF);

alpha = 1.107148718

CompleteSquare(x^2+y^2-2*x-y-2 = 10, x);


EQ2 :=-1186578.220*R*k^2*wr-312683.0293*k^5-288960.9621*k^3*R:
 allvalues(solve([EQ1, EQ2], [k, wr]));


Looks like he's alive and well. Those who have lost hope of communicating with this person can find him, for example, here and here.


allvalues(solve({eq1, eq2}, {A, B}));

For calculating the kinematics of the manipulator, Maple of almost any version is quite suitable directly. If a system of nonlinear equations is used to describe the model of a manipulator, then it is very easy mathematically to fix any desired degree of freedom.
Perhaps you can be useful the messages, which can be found at this link:


Is this way acceptable?

f := d+(c*x^3+b*x^2)*(x-1)+(b*x^2+d)^3*(a+x);
sort(collect(expand(f), x), x, ascending);
sort(collect(expand(f), x), x, descending);

There is a universal approach in plots[implicitplot3d]. It can be used also for other equations.
(In the text, any combination of multiplication of two equations.)

1 2 3 4 5 Page 1 of 5