permanoon123

Mr. Erfan Permanoon

165 Reputation

5 Badges

5 years, 102 days

MaplePrimes Activity


These are questions asked by permanoon123

restart

with(plottools)

with(plots)

with(CurveFitting)

Digits := 10

with(GaussInt)

w := GInearest(0+I)

I

(1)

NULL

"f(t):=7.0*(e)^((-(t-13180)^(2))/(2000000))+4.7*(e)^((-(t-16000)^(2))/(3200000)):"

p1 := plot(f(t), t = 0 .. 20000, color = green); plots[display]({p1})

 

NULL

D1 := 15

epsilon := 200000

L := 6500

v := .7

.7

(2)

t := 10000

10000

(3)

i = sqrt(-1)

i = I

(4)

"k(n) := evalf((2 *Pi*n)/(L))"

proc (n) options operator, arrow, function_assign; evalf(2*Pi*n/L) end proc

(5)

f(n) = (int(f(t)*exp(-w*k(n)*x), x = 0 .. L))/L

NULL

"C(x, t) :=  (∑) exp(-v* t*k(n)- D1 *t*(k(n)^())^(2)- epsilon *t*(k(n))^(4)) *f(n)* exp(w*k(n)* x)"

proc (x, t) options operator, arrow, function_assign; sum(exp(-v*t*k(n)-D1*t*k(n)^2-varepsilon*t*k(n)^4)*f(n)*exp(w*k(n)*x), n = 1 .. 10) end proc

(6)

uu10000 := [seq(evalf(C(L-j, t)), j = 0 .. 6500, 100)]

[0.8582270020e-37+0.7071768085e-46*I, 0.8542115620e-37-0.8289193755e-38*I, 0.8422030662e-37-0.1650065052e-37*I, 0.8223146210e-37-0.2455737186e-37*I, 0.7947335229e-37-0.3238382907e-37*I, 0.7597194496e-37-0.3990668010e-37*I, 0.7176019535e-37-0.4705546418e-37*I, 0.6687772885e-37-0.5376326775e-37*I, 0.6137045955e-37-0.5996735584e-37*I, 0.5529014934e-37-0.6560976155e-37*I, 0.4869391210e-37-0.7063782859e-37*I, 0.4164366719e-37-0.7500470239e-37*I, 0.3420554942e-37-0.7866976371e-37*I, 0.2644927960e-37-0.8159900244e-37*I, 0.1844750367e-37-0.8376532722e-37*I, 0.1027510610e-37-0.8514880864e-37*I, 0.2008503850e-38-0.8573685436e-37*I, -0.6275071112e-38-0.8552431450e-37*I, -0.1449829443e-37-0.8451351706e-37*I, -0.2258447115e-37-0.8271423331e-37*I, -0.3045824843e-37-0.8014357420e-37*I, -0.3804631338e-37-0.7682581907e-37*I, -0.4527807059e-37-0.7279217843e-37*I, -0.5208629116e-37-0.6808049422e-37*I, -0.5840773014e-37-0.6273487939e-37*I, -0.6418370476e-37-0.5680530177e-37*I, -0.6936062957e-37-0.5034711554e-37*I, -0.7389050434e-37-0.4342054446e-37*I, -0.7773134955e-37-0.3609012248e-37*I, -0.8084758661e-37-0.2842409660e-37*I, -0.8321035975e-37-0.2049379645e-37*I, -0.8479779638e-37-0.1237297776e-37*I, -0.8559520434e-37-0.4137144557e-38*I, -0.8559520435e-37+0.4137144402e-38*I, -0.8479779639e-37+0.1237297769e-37*I, -0.8321035979e-37+0.2049379630e-37*I, -0.8084758664e-37+0.2842409653e-37*I, -0.7773134957e-37+0.3609012242e-37*I, -0.7389050442e-37+0.4342054433e-37*I, -0.6936062961e-37+0.5034711548e-37*I, -0.6418370481e-37+0.5680530171e-37*I, -0.5840773026e-37+0.6273487928e-37*I, -0.5208629121e-37+0.6808049418e-37*I, -0.4527807065e-37+0.7279217840e-37*I, -0.3804631352e-37+0.7682581900e-37*I, -0.3045824850e-37+0.8014357418e-37*I, -0.2258447130e-37+0.8271423327e-37*I, -0.1449829450e-37+0.8451351705e-37*I, -0.6275071183e-38+0.8552431450e-37*I, 0.2008503694e-38+0.8573685437e-37*I, 0.1027510603e-37+0.8514880865e-37*I, 0.1844750360e-37+0.8376532724e-37*I, 0.2644927944e-37+0.8159900249e-37*I, 0.3420554936e-37+0.7866976374e-37*I, 0.4164366713e-37+0.7500470242e-37*I, 0.4869391201e-37+0.7063782866e-37*I, 0.5529014927e-37+0.6560976160e-37*I, 0.6137045944e-37+0.5996735595e-37*I, 0.6687772877e-37+0.5376326784e-37*I, 0.7176019529e-37+0.4705546426e-37*I, 0.7597194490e-37+0.3990668022e-37*I, 0.7947335225e-37+0.3238382916e-37*I, 0.8223146207e-37+0.2455737195e-37*I, 0.8422030659e-37+0.1650065065e-37*I, 0.8542115619e-37+0.8289193856e-38*I, 0.8582270020e-37]

(7)
 

``

Download 0_one.mw

restart

with(plottools)

with(plots)

with(CurveFitting)

Digits := 10

NULL

"f(t):=7.0*(e)^((-(t-13180)^(2))/(2000000))+4.7*(e)^((-(t-16000)^(2))/(3200000)):"

p1 := plot(f(t), t = 0 .. 20000, color = green); plots[display]({p1})

 

NULL

D1 := 15

epsilon := 200000

L := 6500

n := 200

t := 1000

1000

(1)

lambda := simplify(evalf(n*Pi*sqrt((1/2)*D1+sqrt((1/4)*D1^2+epsilon*(n*Pi/L)^2))/L))

.6928578233

(2)

b := 2*(int(f(t)*sin(m*Pi*x/L), x = 0 .. L))/L

-0.6366197724e-1*(0.1409730543e-28*cos(3.141592654*m)-0.1409730543e-28)/m

(3)

C(x, t) = sum(b*exp^(-lambda^2*t)*sin(m*Pi*x/L), m = 1 .. 2)

C(x, 1000) = 0.1794924675e-29*sin(0.4833219466e-3*x)/exp^(4800519633/10000000)

(4)

uu1000 := [seq(evalf(C(L-i, t)), i = 0 .. 6500, 100)]

[C(6500, 1000), C(6400, 1000), C(6300, 1000), C(6200, 1000), C(6100, 1000), C(6000, 1000), C(5900, 1000), C(5800, 1000), C(5700, 1000), C(5600, 1000), C(5500, 1000), C(5400, 1000), C(5300, 1000), C(5200, 1000), C(5100, 1000), C(5000, 1000), C(4900, 1000), C(4800, 1000), C(4700, 1000), C(4600, 1000), C(4500, 1000), C(4400, 1000), C(4300, 1000), C(4200, 1000), C(4100, 1000), C(4000, 1000), C(3900, 1000), C(3800, 1000), C(3700, 1000), C(3600, 1000), C(3500, 1000), C(3400, 1000), C(3300, 1000), C(3200, 1000), C(3100, 1000), C(3000, 1000), C(2900, 1000), C(2800, 1000), C(2700, 1000), C(2600, 1000), C(2500, 1000), C(2400, 1000), C(2300, 1000), C(2200, 1000), C(2100, 1000), C(2000, 1000), C(1900, 1000), C(1800, 1000), C(1700, 1000), C(1600, 1000), C(1500, 1000), C(1400, 1000), C(1300, 1000), C(1200, 1000), C(1100, 1000), C(1000, 1000), C(900, 1000), C(800, 1000), C(700, 1000), C(600, 1000), C(500, 1000), C(400, 1000), C(300, 1000), C(200, 1000), C(100, 1000), C(0, 1000)]

(5)

``

xx := [seq(k, k = 0 .. 6500, 100)]

NULL

p2 := plot(xx, uu1000, color = cyan)

Error, (in plot) two lists or Vectors of numerical values expected

 

plots[display]({p2})

Error, (in plots:-display) expecting plot structures but received: {p2}

 

NULL

Download easy_way.mw

restart

with(plottools)

with(plots)

with(CurveFitting)

Digits := 100

"g(t):=10*(e)^((-(t-4000)^(2))/(1300000))+6*(e)^((-(t-6900)^(2))/(1400000))"

proc (t) options operator, arrow, function_assign; 10*exp(-(1/1300000)*(t-4000)^2)+6*exp(-(1/1400000)*(t-6900)^2) end proc

(1)

p0 := plot(g(t), t = 0 .. 20000, color = green); plots[display]({p0})

 

````

v := .7

disp := 15

PDE := diff(C(x, t), t) = -v*(diff(C(x, t), x))+disp*(diff(C(x, t), x, x))

IBC := C(x, 0) = 0, C(0, t) = g(t), (D[1](C))(10000, t) = 0

pds := pdsolve(PDE, [IBC], time = t, range = 0 .. 10000, timestep = 10, numeric, spacestep = 10)

_m2712135358688

(2)

k := pds:-plot(x = 6500, t = 0 .. 20000, numpoints = 600); plots[display]({k})

 

NULL

"f(t):= unapply(Spline( getdata(k)[3][..,1],getdata(k)[3][..,2],'t',degree=2),t): "

D1 := 15

E := 20000

L := 6500

n := 200

lambda = `√`(n*Pi/L, (1/2)*D1+`√`((1/4)*D1^2+E(`nπ`/L)^2))

"p(t):=(∫)[0]^(L)f(t)  (e(-lambda^2 t) )^dt :"

Error, Got internal error in Typesetting:-Parse : "invalid subscript selector"

"p(t):=(∫)[0]^Lf(t)  e(-lambda^2 t) dt :"

 

C(x, t) = sum((2*sin(`nπx`/L)*exp(1)/L*sin(`nπx`/L))*p(t), n = 1 .. 500)

Error, (in sum) summation variable previously assigned, second argument evaluates to 200 = 1 .. 500

 

uu20000 := [seq(evalf(C(20000-i, 5000)), i = 0 .. 20000, 100)]

``

xx := [seq(i, i = 0 .. 20000, 100)]

p1 := pds:-plot(t = 33000, numpoints = 150, color = red)

plots[display]({p1})

Download 1.mw

H.M.mw

restart

with(plottools):

with(plots):

with(CurveFitting):

with(Statistics):

Digits := 10:

L := point([0, 0, 0], color = blue, symbol = cross, symbolsize = 50), point([0, 0, 1], color = red, symbol = cross, symbolsize = 50), point([0, 1, 0], color = black, symbol = cross, symbolsize = 50):

display(L, axes = boxed, view = [-1 .. 1, -1 .. 1, -1 .. 1], orientation = [125, 65])

 

``

``

``

``

Download H.M.mw

1 2 3 4 5 Page 1 of 5