## 195 Reputation

12 years, 133 days

Amir

## Convergence problem for some values of p...

Maple

Dear collagues

Hi,

I write a code to solve a system of ODE. It solve the ODES in a wide range of parameters but as I decrease NBT below 0.5, it doesnt converge. I do my best but I couldn't find the answer. Would you please help me? Thank you

Here is my code and it should be run for 0.1<NBT<10. the value of NBT is input directly in res1.

restart:
EPSILONE:=1000:
Digits:=15:

a[mu1]:=5.45:
b[mu1]:=108.2:
a[k1]:=1.292:
b[k1]:=-11.99:

rhop:=4175:
rhobf:=998.2:
mu1[bf]:=9.93/10000:
k1[bf]:=0.597:

rhost(eta):=1-phi(eta)+phi(eta)*rhop/rhobf;
k:=unapply(k1[bf]*(1+a[k1]*phi(eta)+b[k1]*phi(eta)^2),eta);

eq1:=(diff(u(eta), eta))*a[mu1]*(diff(phi(eta), eta))+2*(diff(u(eta), eta))*b[mu1]*phi(eta)*(diff(phi(eta), eta))+((diff(u(eta), eta))+(diff(u(eta), eta))*a[mu1]*phi(eta)+(diff(u(eta), eta))*b[mu1]*phi(eta)^2)/(eta+EPSILONE)+diff(u(eta), eta, eta)+(diff(u(eta), eta, eta))*a[mu1]*phi(eta)+(diff(u(eta), eta, eta))*b[mu1]*phi(eta)^2+1-phi(eta)+phi(eta)*rhop/rhobf:
eq2:=(1+a[k1]*phi(eta)+b[k1]*phi(eta)^2)*(diff(T(eta), eta))/(eta+EPSILONE) + (a[k1]*(diff(phi(eta), eta))+2*b[k1]*phi(eta)*(diff(phi(eta), eta)))*(diff(T(eta), eta))+(1+a[k1]*phi(eta)+b[k1]*phi(eta)^2)*(diff(T(eta), eta, eta));
eq3:=diff(phi(eta),eta)+phi(eta)/(N_bt*(1+gama1*T(eta))^2)*diff(T(eta),eta):

eq2:=subs(phi(0)=phi0,eq2):
eq3:=subs(phi(0)=phi0,eq3):

eval(dsolve({eq3,phi(1)=phiv},phi(eta)),(T)(1)=1):
Phi:=normal(combine(%)):
Teq:=isolate(eval(eq2,Phi),diff(T(eta),eta)):
ueq1:=eval(eq1,Phi)=0:
ueq2:=subs(Teq,ueq1):

lambda:=0;
Ha:=0;
N_bt:=cc*NBT+(1-cc)*0.8;
kratio:=k1[p]/k1[bf]:

GUESS:=[T(eta) =0.0001*eta, u(eta) =0.1*eta, phi(eta) = 0.3*(eta-1)^4];
res1 := dsolve(subs(NBT=0.48,gama1=0.2,phiv=0.06,{eq1,eq2,eq3,u(0)=lambda*D(u)(0),D(u)(1)=0,T(0)=0,phi(1)=phiv,T(1)=1}), numeric,method=bvp[midrich],maxmesh=4000,approxsoln=GUESS, output=listprocedure,continuation=cc):
G0,G1,G2:=op(subs(subs(res1),[phi(eta),u(eta),diff(T(eta),eta)])):

masst:=evalf(int((1-G0(eta)+G0(eta)*rhop/rhobf)*G1(eta), eta = 0..1));
heatt:=(1+a[k1]*G0(0)+b[k1]*G0(0)^2)*G2(0);

plots:-odeplot(res1,[[eta,T(eta)]],0..1,legend=[T],color=["Black"],linestyle=Solid,axes=boxed,thickness=3);
plots:-odeplot(res1,[[eta,u(eta)]],0..1,legend=[u],color=["Black"],linestyle=Solid,axes=boxed,thickness=3);
plots:-odeplot(res1,[[eta,phi(eta)]],0..1,legend=[phi],color=["Black"],linestyle=Solid,axes=boxed,thickness=3);

>
>

Thank you

Amir

## Wrong calculations of the results...

Maple

Dear Collagues

I wrote a code to solve a system of ode numerically. When the equations have been solved, I want to find the value of MTE which is in integral form. I check and see that the value of MTE is calculated wrong. I dont know why?

I calculated the values of MTE twice (another variable is masst below res1). Two different answers!!

I would be most grateful if you could help me.

Thank you

Here is my code

restart:
EPSILONE:=1:
#Digits:=10:

a[mu1]:=39.11:
b[mu1]:=533.9:
a[k1]:=7.47:
b[k1]:=0:

rhop:=5180:
rhobf:=998.2:
#gama1:=0.2;
mu1[bf]:=9.93/10000:
k1[bf]:=0.597:

rhost(eta):=1-phi(eta)+phi(eta)*rhop/rhobf;
#mu:=unapply(mu1[bf]/(1-phi(eta))^2.5,eta);
mu:=unapply(mu1[bf]*(1+a[mu1]*phi(eta)+b[mu1]*phi(eta)^2),eta);
#mu1[bf]:=9.93/10000:
k:=unapply(k1[bf]*(1+a[k1]*phi(eta)+b[k1]*phi(eta)^2),eta);
mu(eta)/mu1[bf];

#eq1:=diff((mu(eta)/mu1[bf])*diff(u(eta),eta),eta)+rhost(eta)-Ha^2*u(eta);
eq1:=(a[mu1]*(diff(phi(eta), eta))+2*b[mu1]*phi(eta)*(diff(phi(eta), eta)))*(diff(u(eta), eta))+(1+a[mu1]*phi(eta)+b[mu1]*phi(eta)^2)*(diff(u(eta), eta, eta))+rhost(eta)-Ha^2*u(eta);
eq2:=diff((k(eta)/k1[bf])*diff(T(eta),eta),eta);
eq3:=diff(phi(eta),eta)+phi(eta)/(N_bt*(1+gama1*T(eta))^2)*diff(T(eta),eta):
eq2:=subs(phi(0)=phi0,eq2);
eq3:=subs(phi(0)=phi0,eq3);

eval(dsolve({eq3,phi(1)=phiv},phi(eta)),(T)(1)=1);
Phi:=normal(combine(%));
Teq:=isolate(eval(eq2,Phi),diff(T(eta),eta));
ueq1:=eval(eq1,Phi)=0:
ueq2:=subs(Teq,ueq1):

Agama1:=<<0.1>,<0.2>,<0.3>>:
ANBT:=<<0.2>,<1>,<10>>:
Aphiv:=<<0.02>,<0.06>,<0.1>>:
lambda:=0;
Ha:=0;
#NBT:=0.5:
N_bt:=cc*NBT+(1-cc)*10;
#phiv:=0.02:

kratio:=k1[p]/k1[bf];

eq1;
eq2;
eq3;

res1 := dsolve(subs(NBT=1,gama1=0.3,phiv=0.06,{eq1,eq2,eq3,u(0)=lambda*D(u)(0),D(u)(1)=0,T(0)=0,phi(1)=phiv,T(1)=1}), numeric,method=bvp[midrich],output=listprocedure,continuation=cc):
G0,G1,G2:=op(subs(subs(res1),[phi(eta),u(eta),diff(T(eta),eta)])):

masst:=evalf(int((1-G0(eta)+G0(eta)*rhop/rhobf)*G1(eta), eta = 0..1));
heatt:=(1+a[k1]*G0(0)+b[k1]*G0(0)^2)*G2(0);

for iNBT from 1 to 3 do

for iphi from 1 to 3 do

for igamma from 1 to 3 do

res := dsolve(subs(NBT=ANBT(iNBT),gama1=Agama1(igamma),phiv=Aphiv(iphi),{eq1,eq2,eq3,u(0)=lambda*D(u)(0),D(u)(1)=0,T(0)=0,phi(1)=phiv,T(1)=1}), numeric,method=bvp[midrich],output=listprocedure,continuation=cc):
F0,F1,F2:=op(subs(subs(res),[phi(eta),u(eta),diff(T(eta),eta)])):
MTE[iNBT,iphi,igamma]:=evalf(Int((1-F0(eta)+F0(eta)*rhop/rhobf)*F1(eta), eta = 0..1)):
HTC[iNBT,iphi,igamma]:=(1+a[k1]*F0(0)+b[k1]*F0(0)^2)*F2(0):

end do;

end do;

end do;

for iNBT from 1 to 3 do

for iphi from 1 to 3 do

for igamma from 1 to 3 do

print (convert(HTC[iNBT,iphi,igamma],float,9));

end do;

end do;

end do;
for iNBT from 1 to 3 do

for iphi from 1 to 3 do

for igamma from 1 to 3 do

print (convert(MTE[iNBT,iphi,igamma],float,9));

end do;

end do;

end do;

Amir

## Analytic solution of dsolve...

Maple

Dear Collegues

I have a system of odes as follows

restart:
#gama1:=0.2:

#rhop:=5180:
#rhobf:=998.2:
#a[mu1]:=39.11:
#b[mu1]:=533.9:
#a[k1]:=7.47:
#b[k1]:=0:

Teq := N_bt*T(eta)^2*(exp(-(T(eta)-1)/(N_bt*(1+gama1)*(1+gama1*T(eta)))))^2*(diff(T(eta), eta, eta))*gama1^2*b[k1]+N_bt*T(eta)^2*exp(-(T(eta)-1)/(N_bt*(1+gama1)*(1+gama1*T(eta))))*(diff(T(eta), eta, eta))*gama1^2*a[k1]+2*N_bt*T(eta)*(exp(-(T(eta)-1)/(N_bt*(1+gama1)*(1+gama1*T(eta)))))^2*(diff(T(eta), eta, eta))*gama1*b[k1]+N_bt*T(eta)^2*(diff(T(eta), eta, eta))*gama1^2;

UEQ:=(a[mu1]*(-(diff(T(eta), eta))/(N_bt*(1+gama1)*(1+gama1*T(eta)))+(T(eta)-1)*gama1*(diff(T(eta), eta))/(N_bt*(1+gama1)*(1+gama1*T(eta))^2))*exp(-(T(eta)-1)/(N_bt*(1+gama1)*(1+gama1*T(eta))))+2*b[mu1]*(exp(-(T(eta)-1)/(N_bt*(1+gama1)*(1+gama1*T(eta)))))^2*(-(diff(T(eta), eta))/(N_bt*(1+gama1)*(1+gama1*T(eta)))+(T(eta)-1)*gama1*(diff(T(eta), eta))/(N_bt*(1+gama1)*(1+gama1*T(eta))^2)))*(diff(u(eta), eta))+(1+a[mu1]*exp(-(T(eta)-1)/(N_bt*(1+gama1)*(1+gama1*T(eta))))+b[mu1]*(exp(-(T(eta)-1)/(N_bt*(1+gama1)*(1+gama1*T(eta)))))^2)*(diff(u(eta), eta, eta))+1-exp(-(T(eta)-1)/(N_bt*(1+gama1)*(1+gama1*T(eta))))+exp(-(T(eta)-1)/(N_bt*(1+gama1)*(1+gama1*T(eta))))*rhop/rhobf;

I want to solve them with the following boundary conditions

T(0)=0, T(1)=1

u(0)=L*D(u)(0), D(u)(1)=0

However I tried, I cannot find the solution in a closed form. I want to know that is there a closed form solution for the above odes?

Thank you

Amir

## Convergence problem of ODE system...

Maple

Hi,

In line with my previous questions

http://www.mapleprimes.com/questions/201944-Convergence-Problem-In-My-Algorithm-DSOLVE

I write a code with different variables and odes. However I tried to get the solution, I cannot get the results. I think it should be some problems with my Guess procedure. The code is attached. I would be most grateful if you help me on this problem.

code.mw

Thank you.

Amir

## ODE- convergence problem...

Maple 17

Dear Colleges

I have a problem with the following code. As you can see, procedure Q1 converges but I couldn't get the resutls from Q2.

I would be most grateful if you could help me on this problem.

Sincerely yours

Amir

restart;

Eq1:=diff(f(x),x\$3)+diff(f(x),x\$2)*f(x)+b^2*sqrt(2*reynolds)*diff(diff(f(x),x\$2)^2*x^2,x\$1);
Eq2:=diff(g(x),x\$3)+diff(g(x),x\$2)*g(x)+c*a^2*sqrt(2*reynolds)*diff(diff(g(x),x\$2)^2*x,x\$1);
eq1:=isolate(Eq1,diff(f(x),x,x,x));
eq2:=subs(g=f,isolate(Eq2,diff(g(x),x,x,x)));
EQ:=diff(f(x),x,x,x)=piecewise(x<c*0.1,rhs(eq1),rhs(eq2));
Eq11:=diff(theta(x),x\$2)+pr*diff(theta(x),x\$1)*f(x)+pr/prt*b^2*sqrt(2*reynolds)*diff(diff(f(x),x\$2)*diff(theta(x),x\$1)*x^2,x\$1);
Eq22:=diff(g(x),x\$2)+pr*diff(g(x),x\$1)*f(x)+pr/prt*a^2*c*sqrt(2*reynolds)*diff(diff(f(x),x\$2)*diff(g(x),x\$1)*x^1,x\$1);
eq11:=isolate(Eq11,diff(theta(x),x,x));
eq22:=subs(g=theta,isolate(Eq22,diff(g(x),x,x)));
EQT:=diff(theta(x),x,x)=piecewise(x<c*0.1,rhs(eq11),rhs(eq22));
EQT1a:=eval(EQT,EQ):
EQT2:=eval(EQT1a,{f(x)=G0(x),diff(f(x),x)=G1(x),diff(f(x),x,x)=G2(x)}):
bd:=c;
a:=0.13:
b:=0.41:
pr:=1;
prt:=0.86;
reynolds:=12734151.135786774055543653356602;     #10^6;   #1.125*10^8:

c:=88.419896050808975395120916434619:
;
Q:=proc(pp2) local res,F0,F1,F2;
print(pp2);
if not type(pp2,numeric) then return 'procname(_passed)' end if:
res:=dsolve({EQ,f(0)=0,D(f)(0)=0,(D@@2)(f)(0)=pp2},numeric,output=listprocedure);
F0,F1,F2:=op(subs(subs(res),[f(x),diff(f(x),x),diff(f(x),x,x)])):
F1(bd)-1;
end proc;
fsolve(Q(pp2)=0,pp2=(0..1002));
se:=%;
res2:=dsolve({EQ,f(0)=0,D(f)(0)=0,(D@@2)(f)(0)=se},numeric,output=listprocedure):
G0,G1,G2:=op(subs(subs(res2),[f(x),diff(f(x),x),diff(f(x),x,x)])):
plots:-odeplot(res2,[seq([x,diff(f(x),[x\$i])],i=1..1)],0..c);

Q2:=proc(rr2) local solT,T0,T1;
print(rr2);
if not type(rr2,numeric) then return 'procname(_passed)' end if:
solT:=dsolve({EQT2,theta(0)=1,D(theta)(0)=-rr2},numeric,known=[G0,G1,G2],output=listprocedure):
T0,T1:=op(subs(subs(res),[theta(x),diff(theta(x),x)])):
T0(bd);
end proc;
fsolve(Q2(rr2)=0,rr2=(0..100));

shib:=%;
sol:=dsolve({EQT2,theta(0)=1,D(theta)(0)=-shib},numeric,known=[G0,G1,G2],output=listprocedure):
plots:-odeplot(sol,[x,theta(x)],0..c);
#fsolve(Q2(pp3)=0,pp3=-2..2):

Amir

 1 2 3 4 5 6 7 Last Page 2 of 11
﻿