sunit

100 Reputation

10 Badges

6 years, 353 days

MaplePrimes Activity


These are replies submitted by sunit

@acer Thanks a lot for helping. I had to put this command at multiple locations in code but it was worth it as 'convert(...,rational)' was little bit troublesome and was not gving me desired results. Thanks again for helping.

With Regards

Sunit

@acer Thanks for helping, but it not happening at one location, it is appearing at multiple location, so do I need to put this command after every equation?

With Regards

Sunit

@acer Thanks a lot for helping me out. Although I did not get whats the difference between Int or int function.

With Regards

Sunit

@acer Hi,

I am really thankful to you for solving my issue.

With Regards

Sunit

@acer

I am really sorry for the incomplete description and inconvenience I caused. I was mainly operating factor operation in the numerator only, however, is it possible to implement on both, i.e., on numerator and on denominator?

In my description f(x) and g(x) were just for illustration what I wanted to ask.

This command will surely work for me, so I am really thankful to you for providing the solution.

With Regards

Sunit

 

@Carl Love Thanks a lot for the insight explanation about 'subs' and 'algsubs', but I am not getting why algsbus will fail. Even for numerical values I guess 'algsubs' will be better. I menat to say I can directly put the numercal value of an algebaric expression appearing in an equation, instead of putting the individual values of parameters in an equation.

I have one ore doubt regarding 'factor' of an equation. So do i need to put it in another post or can I ask in this post itself?

With Regards

Sunit

@Carl Love Thanks a lot for the help. I really appreciate it.

Regards

Sunit

@Carl Love Hi,

If you notice in the code then you will find that just before setting it to 0, i made their coeffecients equal to zero. So there will be no exp(I*omega*T0) and exp(-I*omega*T0) equal to 0. So in furhter equations there will be no terms involving  exp(I*omega*T0) and exp(-I*omega*T0). The easy way to remove the rerms is by setting exp(I*omega*T0) and exp(-I*omega*T0)=0.

@Carl Love Hi,

I just wanted to remove these terms from my equations. So this is the way i came up with.

@Carl Love

Hi,

Please find the attached maple file. the function that i need to plot is trash9/trash8, with omega. I have plotted with three different ranges for omega and every time i got different plot. Its a little bit long code.

maple3.mw

@tomleslie Hi,

As you can see that in my case matrix has symbolic entires, so its determinant will not be zero. However, i tried your suggestion but still not getting anything except trivial solution.

 

@Carl Love I got it. Thanks

 

Regards

Sunit

@Carl Love Sir,

I was not ignoring your solution even that one is really worked out for me. I just wanted to look for other solutions.

Thanks a lot sir for your suggestion to my problem. It really worked out.

Thanks and regards

Sunit

@Carl Love Thanks a lot sir for the suggestion. It really worked. But I am having a doubt that if i put T[0],T[1] and T[2] instead of a, b and c, respectively then it is giving an error. 

restart

junk := (psi*n+1-n*v_SDD)*x[2](T[0], T[1], T[2])+(n*v_SDD-psi*n)*x[2](T[0]-tau_1, T[1], T[2])+2*kappa*(D[1](x[2]))(T[0], T[1], T[2])-2*psi*Pi*k_1+2*kappa*(D[2](x[1]))(T[0], T[1], T[2])+n*v_SDD*(D[1](x[1]))(T[0]-tau_1, T[1], T[2])*x[1](T[0], T[1], T[2])/(omega_0*psi)-n*v_SDD*(D[1](x[1]))(T[0]-tau_1, T[1], T[2])*x[1](T[0]-tau_1, T[1], T[2])/(omega_0*psi)+psi*n*(D[2](x[1]))(T[0]-tau_1, T[1], T[2])*tau_1+(D[1, 1](x[2]))(T[0], T[1], T[2])-n*(D[1](x[1]))(T[0]-tau_1, T[1], T[2])*x[1](T[0], T[1], T[2])/omega_0+omega_0*psi*n*tau[1]*k_1-n*v_SDD*(D[2](x[1]))(T[0]-tau_1, T[1], T[2])*tau_1+n*(D[1](x[1]))(T[0]-tau_1, T[1], T[2])*x[1](T[0]-tau_1, T[1], T[2])/omega_0+2*(D[1, 2](x[1]))(T[0], T[1], T[2])

(psi*n+1-n*v_SDD)*x[2](T[0], T[1], T[2])+(n*v_SDD-psi*n)*x[2](T[0]-tau_1, T[1], T[2])+2*kappa*(D[1](x[2]))(T[0], T[1], T[2])-2*psi*Pi*k_1+2*kappa*(D[2](x[1]))(T[0], T[1], T[2])+n*v_SDD*(D[1](x[1]))(T[0]-tau_1, T[1], T[2])*x[1](T[0], T[1], T[2])/(omega_0*psi)-n*v_SDD*(D[1](x[1]))(T[0]-tau_1, T[1], T[2])*x[1](T[0]-tau_1, T[1], T[2])/(omega_0*psi)+psi*n*(D[2](x[1]))(T[0]-tau_1, T[1], T[2])*tau_1+(D[1, 1](x[2]))(T[0], T[1], T[2])-n*(D[1](x[1]))(T[0]-tau_1, T[1], T[2])*x[1](T[0], T[1], T[2])/omega_0+omega_0*psi*n*tau[1]*k_1-n*v_SDD*(D[2](x[1]))(T[0]-tau_1, T[1], T[2])*tau_1+n*(D[1](x[1]))(T[0]-tau_1, T[1], T[2])*x[1](T[0]-tau_1, T[1], T[2])/omega_0+2*(D[1, 2](x[1]))(T[0], T[1], T[2])

(1)

x1sol := R(T[1], T[2])*sin(omega*T[0]+phi(T[1], T[2]))

R(T[1], T[2])*sin(omega*T[0]+phi(T[1], T[2]))

(2)

x1sold := subs(c = omega*T[0]+phi(T[1], T[2]), expand(algsubs(omega*T[0]+phi(T[1], T[2]) = c, map(simplify, subs(T[0] = T[0]-tau_1, x1sol)))))

R(T[1], T[2])*sin(omega*T[0]+phi(T[1], T[2]))*cos(omega*tau_1)-R(T[1], T[2])*cos(omega*T[0]+phi(T[1], T[2]))*sin(omega*tau_1)

(3)

"map(simplify,eval(junk, x[1]= ((T[0],T[1],T[2])-> R(T[1],T[2])*sin(omega*T[0]+ phi(T[1],T[2])))))"

Error, invalid operator parameter name

"map(simplify,eval(junk, x[1]= ((T[0],T[1],T[2])-> R(T[1],T[2])*sin(omega*T[0]+ phi(T[1],T[2])))))"

 

``

``


Download question3.mw

Just being curious that why it is not working.

Regards

Sunit

@John Fredsted Thanks a lot sir. But this is not working for the following equation.

restart

junk := (psi*n+1-n*v_SDD)*x[2](T[0], T[1], T[2])+(n*v_SDD-psi*n)*x[2](T[0]-tau_1, T[1], T[2])+2*kappa*(D[1](x[2]))(T[0], T[1], T[2])-2*psi*Pi*k_1+2*kappa*(D[2](x[1]))(T[0], T[1], T[2])+n*v_SDD*(D[1](x[1]))(T[0]-tau_1, T[1], T[2])*x[1](T[0], T[1], T[2])/(omega_0*psi)-n*v_SDD*(D[1](x[1]))(T[0]-tau_1, T[1], T[2])*x[1](T[0]-tau_1, T[1], T[2])/(omega_0*psi)+psi*n*(D[2](x[1]))(T[0]-tau_1, T[1], T[2])*tau_1+(D[1, 1](x[2]))(T[0], T[1], T[2])-n*(D[1](x[1]))(T[0]-tau_1, T[1], T[2])*x[1](T[0], T[1], T[2])/omega_0+omega_0*psi*n*tau[1]*k_1-n*v_SDD*(D[2](x[1]))(T[0]-tau_1, T[1], T[2])*tau_1+n*(D[1](x[1]))(T[0]-tau_1, T[1], T[2])*x[1](T[0]-tau_1, T[1], T[2])/omega_0+2*(D[1, 2](x[1]))(T[0], T[1], T[2])

(psi*n+1-n*v_SDD)*x[2](T[0], T[1], T[2])+(n*v_SDD-psi*n)*x[2](T[0]-tau_1, T[1], T[2])+2*kappa*(D[1](x[2]))(T[0], T[1], T[2])-2*psi*Pi*k_1+2*kappa*(D[2](x[1]))(T[0], T[1], T[2])+n*v_SDD*(D[1](x[1]))(T[0]-tau_1, T[1], T[2])*x[1](T[0], T[1], T[2])/(omega_0*psi)-n*v_SDD*(D[1](x[1]))(T[0]-tau_1, T[1], T[2])*x[1](T[0]-tau_1, T[1], T[2])/(omega_0*psi)+psi*n*(D[2](x[1]))(T[0]-tau_1, T[1], T[2])*tau_1+(D[1, 1](x[2]))(T[0], T[1], T[2])-n*(D[1](x[1]))(T[0]-tau_1, T[1], T[2])*x[1](T[0], T[1], T[2])/omega_0+omega_0*psi*n*tau[1]*k_1-n*v_SDD*(D[2](x[1]))(T[0]-tau_1, T[1], T[2])*tau_1+n*(D[1](x[1]))(T[0]-tau_1, T[1], T[2])*x[1](T[0]-tau_1, T[1], T[2])/omega_0+2*(D[1, 2](x[1]))(T[0], T[1], T[2])

(1)

x1sol := R(T[1], T[2])*sin(omega*T[0]+phi(T[1], T[2]))

R(T[1], T[2])*sin(omega*T[0]+phi(T[1], T[2]))

(2)

x1sold := subs(c = omega*T[0]+phi(T[1], T[2]), expand(algsubs(omega*T[0]+phi(T[1], T[2]) = c, map(simplify, subs(T[0] = T[0]-tau_1, x1sol)))))

R(T[1], T[2])*sin(omega*T[0]+phi(T[1], T[2]))*cos(omega*tau_1)-R(T[1], T[2])*cos(omega*T[0]+phi(T[1], T[2]))*sin(omega*tau_1)

(3)

eval(convert(junk, diff), x[1]*(T[0]-tau_1, T[1], T[2]) = R(T[1], T[2])*sin(omega*T[0]+phi(T[1], T[2]))*cos(omega*tau_1)-R(T[1], T[2])*cos(omega*T[0]+phi(T[1], T[2]))*sin(omega*tau_1))

(psi*n+1-n*v_SDD)*x[2](T[0], T[1], T[2])+(n*v_SDD-psi*n)*x[2](T[0]-tau_1, T[1], T[2])+2*kappa*(D[1](x[2]))(T[0], T[1], T[2])-2*psi*Pi*k_1+2*kappa*(D[2](x[1]))(T[0], T[1], T[2])+n*v_SDD*(eval(diff(x[1](t1, T[1], T[2]), t1), {t1 = T[0]-tau_1}))*x[1](T[0], T[1], T[2])/(omega_0*psi)-n*v_SDD*(eval(diff(x[1](t1, T[1], T[2]), t1), {t1 = T[0]-tau_1}))*x[1](T[0]-tau_1, T[1], T[2])/(omega_0*psi)+psi*n*(D[2](x[1]))(T[0]-tau_1, T[1], T[2])*tau_1+(D[1, 1](x[2]))(T[0], T[1], T[2])-n*(eval(diff(x[1](t1, T[1], T[2]), t1), {t1 = T[0]-tau_1}))*x[1](T[0], T[1], T[2])/omega_0+omega_0*psi*n*tau[1]*k_1-n*v_SDD*(D[2](x[1]))(T[0]-tau_1, T[1], T[2])*tau_1+n*(eval(diff(x[1](t1, T[1], T[2]), t1), {t1 = T[0]-tau_1}))*x[1](T[0]-tau_1, T[1], T[2])/omega_0+2*(D[1, 2](x[1]))(T[0], T[1], T[2])

(4)

``

``


Download question3.mw

I tried to substitute for the x[1](T[0],T[1],T[2]), but it is not evaluating.

Please see and help me out for the same,

Regards

Sunit

 

1 2 3 4 5 Page 1 of 5