tomleslie

5757 Reputation

17 Badges

10 years, 45 days

MaplePrimes Activity


These are answers submitted by tomleslie

the value of 'B' is complex.

'B' is only real when either a=0, or a>=44460.18115.

See the attached

  restart;
  expr:=(7.72-7.72*B)*(-7.717267500*a) = 662204.4444*B^2:
#
# Isolate 'B'
#
  sol:=unapply( isolate( expr, B),a);
#
# Compte B for any value of 'a' from 0 to 100000
# in steps of 1000. For any value of 'a' less
# than 45000 (approximately), the value of B will
# be complex
#
  seq( [a, evalc(sol(a))], a=0..100000, 1000);

proc (a) options operator, arrow; B = 0.4498407222e-4*a-0.2265161481e-12*(0.3943839203e17*a^2-0.1753438054e22*a)^(1/2) end proc

 

[0, B = 0.], [1000, B = 0.4498407222e-1-.2965545105*I], [2000, B = 0.8996814444e-1-.4145383237*I], [3000, B = .1349522167-.5016894782*I], [4000, B = .1799362889-.5722722338*I], [5000, B = .2249203611-.6318635559*I], [6000, B = .2699044333-.6833450543*I], [7000, B = .3148885055-.7284382198*I], [8000, B = .3598725778-.7682687570*I], [9000, B = .4048566500-.8036195575*I], [10000, B = .4498407222-.8350597397*I], [11000, B = .4948247944-.8630168081*I], [12000, B = .5398088666-.8878198696*I], [13000, B = .5847929389-.9097269349*I], [14000, B = .6297770111-.9289429145*I], [15000, B = .6747610833-.9456318768*I], [16000, B = .7197451555-.9599256334*I], [17000, B = .7647292277-.9719298655*I], [18000, B = .8097133000-.9817285628*I], [19000, B = .8546973722-.9893872580*I], [20000, B = .8996814444-.9949553694*I], [21000, B = .9446655166-.9984678733*I], [22000, B = .9896495888-.9999464330*I], [23000, B = 1.034633661-.9994000747*I], [24000, B = 1.079617733-.9968254693*I], [25000, B = 1.124601806-.9922068281*I], [26000, B = 1.169585878-.9855154131*I], [27000, B = 1.214569950-.9767086241*I], [28000, B = 1.259554022-.9657285897*I], [29000, B = 1.304538094-.9525001568*I], [30000, B = 1.349522167-.9369280946*I], [31000, B = 1.394506239-.9188932620*I], [32000, B = 1.439490311-.8982473303*I], [33000, B = 1.484474383-.8748054478*I], [34000, B = 1.529458455-.8483358673*I], [35000, B = 1.574442528-.8185449174*I], [36000, B = 1.619426600-.7850545756*I], [37000, B = 1.664410672-.7473676862*I], [38000, B = 1.709394744-.7048113905*I], [39000, B = 1.754378817-.6564393353*I], [40000, B = 1.799362889-.6008485429*I], [41000, B = 1.844346961-.5357967983*I], [42000, B = 1.889331033-.4572639427*I], [43000, B = 1.934315105-.3564481499*I], [44000, B = 1.979299178-.2024181823*I], [45000, B = 1.802571328], [46000, B = 1.690674392], [47000, B = 1.622767753], [48000, B = 1.572867948], [49000, B = 1.533291303], [50000, B = 1.500531679], [51000, B = 1.472651463], [52000, B = 1.448452389], [53000, B = 1.427135789], [54000, B = 1.408139971], [55000, B = 1.391053575], [56000, B = 1.375565631], [57000, B = 1.361434997], [58000, B = 1.348470706], [59000, B = 1.336518858], [60000, B = 1.325453547], [61000, B = 1.315170443], [62000, B = 1.305582112], [63000, B = 1.296614572], [64000, B = 1.288204655], [65000, B = 1.280298017], [66000, B = 1.272847578], [67000, B = 1.265812283], [68000, B = 1.259156137], [69000, B = 1.252847404], [70000, B = 1.246857984], [71000, B = 1.241162865], [72000, B = 1.235739711], [73000, B = 1.230568491], [74000, B = 1.225631182], [75000, B = 1.220911513], [76000, B = 1.216394749], [77000, B = 1.212067507], [78000, B = 1.207917598], [79000, B = 1.203933905], [80000, B = 1.200106245], [81000, B = 1.196425279], [82000, B = 1.192882430], [83000, B = 1.189469791], [84000, B = 1.186180073], [85000, B = 1.183006535], [86000, B = 1.179942930], [87000, B = 1.176983473], [88000, B = 1.174122779], [89000, B = 1.171355848], [90000, B = 1.168678012], [91000, B = 1.166084920], [92000, B = 1.163572509], [93000, B = 1.161136970], [94000, B = 1.158774746], [95000, B = 1.156482493], [96000, B = 1.154257077], [97000, B = 1.152095546], [98000, B = 1.149995132], [99000, B = 1.147953221], [100000, B = 1.145967351]

(1)

#
# Actual value of 'a' at which 'B' stops being complex
# appears to be 44460.18115
#
  isolate( expr, B);
  fsolve(op([2,2,2,1],%));

B = 0.4498407222e-4*a-0.2265161481e-12*(0.3943839203e17*a^2-0.1753438054e22*a)^(1/2)

 

0., 44460.18115

(2)

 


 

Download complexB.mw

Using the VectorCalculus:-Laplacian() function just to get the second (spatial) derivative seems a bit "overkill" - not wrong, just a bit unnecessary.

What is wrong with the attached?

  restart;
  PDE := diff(u(x, t), t) - diff(u(x, t), x$2) - u(x, t) + x - 2*sin(2*x)*cos(x) = 0;
  IBC := D[1](u)(Pi/2, t) = 1, u(0, t) = 0, u(x, 0) = x;
  pds := pdsolve(eval(PDE), {IBC}, type = numeric);
  pds:-plot3d( u(x,t), x=0..Pi/2, t=0..10);

diff(u(x, t), t)-(diff(diff(u(x, t), x), x))-u(x, t)+x-2*sin(2*x)*cos(x) = 0

 

(D[1](u))((1/2)*Pi, t) = 1, u(0, t) = 0, u(x, 0) = x

 

_m708065760

 

 

 

 

Download pdeIss.mw

see the attached


 

NULL

restart:

Eq1 := (2.394038482*10^(-25)*A[1]*B[1]*b[1]*ln(4624/3969)*a[1]^2 + 6.231123984*10^(-25)*a[1]^2*b[1]*ln(4624/3969)^2*A[1]*B[1] + 8.857755670*10^(-26)*a[1]^3*ln(4624/3969)^3*B[1]^2 + 1.856626218*10^(-33)*a[1]*ln(4624/3969)^2*A[1]^2 + 3.115561992*10^(-25)*a[1]*b[1]^2*ln(4624/3969)^2*A[1]^2 + 2.657326700*10^(-25)*a[1]*b[1]^2*ln(4624/3969)^3*A[1]^2 + 2.657326700*10^(-25)*a[1]*b[1]^2*ln(4624/3969)^3*B[1]^2 + 4.995877205*10^(-27)*a[1]^3*B[1]^2 + 4.023466006*10^(-35)*a[1]*B[1]^2 + 2.497938606*10^(-26)*a[1]^3*A[1]^2 + 5.314653400*10^(-25)*a[1]^2*b[1]*ln(4624/3969)^3*A[1]*B[1] + 1.995032068*10^(-25)*A[1]^2*ln(4624/3969)*a[1]^3 + 4.428877833*10^(-25)*a[1]^3*ln(4624/3969)^3*A[1]^2 + 5.192603320*10^(-25)*a[1]^3*ln(4624/3969)^2*A[1]^2 + 1.038520664*10^(-25)*a[1]^3*ln(4624/3969)^2*B[1]^2 + 1.498763163*10^(-26)*a[1]*b[1]^2*A[1]^2 + 1.498763163*10^(-26)*a[1]*b[1]^2*B[1]^2 + 8.199429997*10^(-34)*a[1]*ln(4624/3969)*A[1]^2 + 4.671138947*10^(-34)*a[1]*ln(4624/3969)^3*B[1]^2 + 1.401341684*10^(-33)*a[1]*ln(4624/3969)^3*A[1]^2 + 3.990064137*10^(-26)*B[1]^2*ln(4624/3969)*a[1]^3 + 9.991754410*10^(-27)*A[1]*B[1]*b[1]^3 + 8.046932010*10^(-35)*A[1]*B[1]*b[1] + 3.115561992*10^(-25)*a[1]*b[1]^2*ln(4624/3969)^2*B[1]^2 + 2.997526324*10^(-26)*a[1]^2*b[1]*A[1]*B[1] + 1.237750812*10^(-33)*A[1]*B[1]*b[1]*ln(4624/3969)^2 + 6.188754060*10^(-34)*a[1]*ln(4624/3969)^2*B[1]^2 + 2.077041328*10^(-25)*b[1]^3*ln(4624/3969)^2*A[1]*B[1] + 1.771551133*10^(-25)*b[1]^3*ln(4624/3969)^3*A[1]*B[1] + 7.980128275*10^(-26)*A[1]*B[1]*b[1]^3*ln(4624/3969) + 5.466286665*10^(-34)*A[1]*B[1]*b[1]*ln(4624/3969) + 9.342277895*10^(-34)*A[1]*B[1]*b[1]*ln(4624/3969)^3 - 8.980366659*10^(-50)*b[1]*ln(4624/3969)^5 + 8.628745640*10^(-49)*a[1]*ln(4624/3969)^4 - 1.983002476*10^(-49)*b[1]*ln(4624/3969)^4 + 3.907675385*10^(-49)*a[1]*ln(4624/3969)^5 + 1.207039802*10^(-34)*a[1]*A[1]^2 + 1.197019241*10^(-25)*A[1]^2*b[1]^2*ln(4624/3969)*a[1] + 1.197019241*10^(-25)*B[1]^2*b[1]^2*ln(4624/3969)*a[1] + 2.733143333*10^(-34)*a[1]*ln(4624/3969)*B[1]^2 - 1.751509252*10^(-49)*b[1]*ln(4624/3969)^3 + 3.365859858*10^(-49)*a[1]*ln(4624/3969)^2 + 7.621436685*10^(-49)*a[1]*ln(4624/3969)^3 - 1.708050894*10^(-50)*b[1]*ln(4624/3969) - 7.735201281*10^(-50)*b[1]*ln(4624/3969)^2 + 7.432333988*10^(-50)*ln(4624/3969)*a[1] - 1.508655173*10^(-51)*b[1] + 6.564692631*10^(-51)*a[1])/(4.097832766*10^(-51)*ln(4624/3969)^5 + 9.048642256*10^(-51)*ln(4624/3969)^4 + 7.992315096*10^(-51)*ln(4624/3969)^3 + 3.529651123*10^(-51)*ln(4624/3969)^2 + 7.794010183*10^(-52)*ln(4624/3969) + 6.884147200*10^(-53)):

Eq2 := (6.188754060*10^(-34)*b[1]*A[1]^2*ln(4624/3969)^2 + 9.991754410*10^(-27)*a[1]^3*A[1]*B[1] + 8.199429997*10^(-34)*b[1]*B[1]^2*ln(4624/3969) + 1.498763163*10^(-26)*a[1]^2*b[1]*A[1]^2 + 1.401341684*10^(-33)*b[1]*B[1]^2*ln(4624/3969)^3 + 1.197019241*10^(-25)*b[1]*B[1]^2*ln(4624/3969)*a[1]^2 + 1.197019241*10^(-25)*b[1]*A[1]^2*ln(4624/3969)*a[1]^2 + 2.497938606*10^(-26)*B[1]^2*b[1]^3 - 1.594466862*10^(-55)*ln(4624/3969)^3 - 7.041653990*10^(-56)*ln(4624/3969)^2 + 2.394038482*10^(-25)*A[1]*B[1]*b[1]^2*ln(4624/3969)*a[1] + 1.038520664*10^(-25)*b[1]^3*ln(4624/3969)^2*A[1]^2 + 5.192603320*10^(-25)*b[1]^3*ln(4624/3969)^2*B[1]^2 + 8.980366659*10^(-50)*a[1]*ln(4624/3969)^5 + 2.657326700*10^(-25)*a[1]^2*b[1]*ln(4624/3969)^3*B[1]^2 + 4.023466006*10^(-35)*b[1]*A[1]^2 + 1.207039802*10^(-34)*b[1]*B[1]^2 + 4.671138947*10^(-34)*b[1]*A[1]^2*ln(4624/3969)^3 + 1.856626218*10^(-33)*b[1]*B[1]^2*ln(4624/3969)^2 - 8.175176368*10^(-56)*ln(4624/3969)^5 - 1.805204130*10^(-55)*ln(4624/3969)^4 + 3.115561992*10^(-25)*a[1]^2*b[1]*ln(4624/3969)^2*A[1]^2 + 3.115561992*10^(-25)*a[1]^2*b[1]*ln(4624/3969)^2*B[1]^2 + 2.657326700*10^(-25)*a[1]^2*b[1]*ln(4624/3969)^3*A[1]^2 + 5.314653400*10^(-25)*a[1]*b[1]^2*ln(4624/3969)^3*A[1]*B[1] + 6.231123984*10^(-25)*a[1]*b[1]^2*ln(4624/3969)^2*A[1]*B[1] - 1.373387366*10^(-57) + 3.990064137*10^(-26)*b[1]^3*A[1]^2*ln(4624/3969) + 3.365859858*10^(-49)*b[1]*ln(4624/3969)^2 + 7.735201281*10^(-50)*a[1]*ln(4624/3969)^2 + 1.498763163*10^(-26)*a[1]^2*b[1]*B[1]^2 + 2.733143333*10^(-34)*b[1]*A[1]^2*ln(4624/3969) + 1.237750812*10^(-33)*a[1]*ln(4624/3969)^2*A[1]*B[1] + 5.466286665*10^(-34)*A[1]*B[1]*ln(4624/3969)*a[1] + 9.342277895*10^(-34)*a[1]*ln(4624/3969)^3*A[1]*B[1] - 1.554905032*10^(-56)*ln(4624/3969) + 8.857755670*10^(-26)*b[1]^3*ln(4624/3969)^3*A[1]^2 + 1.995032068*10^(-25)*B[1]^2*b[1]^3*ln(4624/3969) + 8.046932010*10^(-35)*A[1]*B[1]*a[1] + 4.428877833*10^(-25)*b[1]^3*ln(4624/3969)^3*B[1]^2 + 2.077041328*10^(-25)*a[1]^3*ln(4624/3969)^2*A[1]*B[1] + 2.997526324*10^(-26)*a[1]*b[1]^2*A[1]*B[1] + 7.980128275*10^(-26)*A[1]*B[1]*ln(4624/3969)*a[1]^3 + 1.771551133*10^(-25)*a[1]^3*ln(4624/3969)^3*A[1]*B[1] + 1.983002476*10^(-49)*a[1]*ln(4624/3969)^4 + 8.628745640*10^(-49)*b[1]*ln(4624/3969)^4 + 3.907675385*10^(-49)*b[1]*ln(4624/3969)^5 + 4.995877205*10^(-27)*b[1]^3*A[1]^2 + 7.621436685*10^(-49)*b[1]*ln(4624/3969)^3 + 1.751509252*10^(-49)*a[1]*ln(4624/3969)^3 + 7.432333988*10^(-50)*b[1]*ln(4624/3969) + 1.708050894*10^(-50)*ln(4624/3969)*a[1] + 6.564692631*10^(-51)*b[1] + 1.508655173*10^(-51)*a[1])/(4.097832766*10^(-51)*ln(4624/3969)^5 + 9.048642256*10^(-51)*ln(4624/3969)^4 + 7.992315096*10^(-51)*ln(4624/3969)^3 + 3.529651123*10^(-51)*ln(4624/3969)^2 + 7.794010183*10^(-52)*ln(4624/3969) + 6.884147200*10^(-53)):

Eq3 := (6.795005989*10^(-42)*a[1]^4*ln(4624/3969)^3*A[1] + 4.209850900*10^(-42)*a[1]^4*ln(4624/3969)^4*A[1] + 1.359001197*10^(-42)*b[1]^4*ln(4624/3969)^3*A[1] + 8.419701800*10^(-43)*b[1]^4*ln(4624/3969)^4*A[1] + 8.388879275*10^(-44)*a[1]*b[1]^3*B[1] - 1.228735462*10^(-57)*A[1]*ln(4624/3969)^5 + 1.074935208*10^(-42)*A[1]*ln(4624/3969)*a[1]^4 - 3.754479537*10^(-60)*B[1] - 2.064212054*10^(-59)*A[1] - 1.340926813*10^(-57)*B[1]*ln(4624/3969)^5 - 5.060514119*10^(-58)*B[1]*ln(4624/3969)^6 + 8.388879275*10^(-44)*a[1]^3*b[1]*B[1] + 6.756044870*10^(-52)*a[1]*b[1]*B[1] + 1.776052466*10^(-50)*a[1]*b[1]*ln(4624/3969)^4*B[1] + 3.367880720*10^(-42)*a[1]*b[1]^3*ln(4624/3969)^4*B[1] + 5.436004790*10^(-42)*a[1]*b[1]^3*ln(4624/3969)^3*B[1] + 2.097219818*10^(-44)*b[1]^4*A[1] + 3.367880720*10^(-42)*a[1]^3*b[1]*ln(4624/3969)^4*B[1] + 5.436004790*10^(-42)*a[1]^3*b[1]*ln(4624/3969)^3*B[1] + 5.051821080*10^(-42)*a[1]^2*b[1]^2*ln(4624/3969)^4*A[1] + 8.154007187*10^(-42)*a[1]^2*b[1]^2*ln(4624/3969)^3*A[1] + 1.289922249*10^(-42)*b[1]^2*A[1]*ln(4624/3969)*a[1]^2 + 8.599481665*10^(-43)*b[1]*B[1]*ln(4624/3969)*a[1]^3 + 8.599481665*10^(-43)*b[1]^3*B[1]*ln(4624/3969)*a[1] + 3.260938160*10^(-42)*a[1]^3*b[1]*ln(4624/3969)^2*B[1] + 4.891407240*10^(-42)*a[1]^2*b[1]^2*ln(4624/3969)^2*A[1] - 1.058366154*10^(-57)*ln(4624/3969)^2*A[1] - 2.887504260*10^(-58)*ln(4624/3969)^2*B[1] - 2.396496281*10^(-57)*A[1]*ln(4624/3969)^3 - 2.337034537*10^(-58)*A[1]*ln(4624/3969) + 3.378022435*10^(-52)*b[1]^2*A[1] + 1.048609909*10^(-43)*a[1]^4*A[1] + 1.013406730*10^(-51)*a[1]^2*A[1] - 2.713236060*10^(-57)*A[1]*ln(4624/3969)^4 - 8.717705361*10^(-58)*B[1]*ln(4624/3969)^3 - 5.100841261*10^(-59)*B[1]*ln(4624/3969) - 1.480485871*10^(-57)*B[1]*ln(4624/3969)^4 + 6.119181470*10^(-51)*b[1]*B[1]*ln(4624/3969)*a[1] + 3.137436654*10^(-50)*a[1]*b[1]*ln(4624/3969)^3*B[1] + 2.078382172*10^(-50)*a[1]*b[1]*ln(4624/3969)^2*B[1] + 3.260938160*10^(-42)*a[1]*b[1]^3*ln(4624/3969)^2*B[1] + 2.664078699*10^(-50)*a[1]^2*ln(4624/3969)^4*A[1] + 2.149870415*10^(-43)*b[1]^4*A[1]*ln(4624/3969) + 4.706154981*10^(-50)*a[1]^2*ln(4624/3969)^3*A[1] + 9.178772213*10^(-51)*A[1]*ln(4624/3969)*a[1]^2 + 3.117573259*10^(-50)*a[1]^2*ln(4624/3969)^2*A[1] + 8.880262330*10^(-51)*b[1]^2*A[1]*ln(4624/3969)^4 + 3.059590737*10^(-51)*b[1]^2*A[1]*ln(4624/3969) + 8.152345410*10^(-43)*b[1]^4*ln(4624/3969)^2*A[1] + 4.076172701*10^(-42)*a[1]^4*ln(4624/3969)^2*A[1] + 1.039191087*10^(-50)*b[1]^2*ln(4624/3969)^2*A[1] + 1.568718327*10^(-50)*b[1]^2*A[1]*ln(4624/3969)^3 + 1.258331891*10^(-43)*a[1]^2*b[1]^2*A[1])/(5.196166686*10^(-61)*ln(4624/3969)^6 + 1.376871810*10^(-60)*ln(4624/3969)^5 + 1.520171900*10^(-60)*ln(4624/3969)^4 + 8.951392907*10^(-61)*ln(4624/3969)^3 + 2.964906943*10^(-61)*ln(4624/3969)^2 + 5.237574842*10^(-62)*ln(4624/3969) + 3.855122432*10^(-63)):

Eq4 := (1.340926813*10^(-57)*A[1]*ln(4624/3969)^5 + 3.754479537*10^(-60)*A[1] + 8.717705361*10^(-58)*A[1]*ln(4624/3969)^3 - 1.228735462*10^(-57)*B[1]*ln(4624/3969)^5 + 4.891407240*10^(-42)*a[1]^2*b[1]^2*ln(4624/3969)^2*B[1] + 5.051821080*10^(-42)*a[1]^2*b[1]^2*ln(4624/3969)^4*B[1] + 8.388879275*10^(-44)*a[1]*b[1]^3*A[1] + 6.756044870*10^(-52)*a[1]*b[1]*A[1] + 8.388879275*10^(-44)*a[1]^3*b[1]*A[1] + 3.117573259*10^(-50)*b[1]^2*ln(4624/3969)^2*B[1] + 4.706154981*10^(-50)*b[1]^2*ln(4624/3969)^3*B[1] + 1.568718327*10^(-50)*a[1]^2*ln(4624/3969)^3*B[1] + 1.039191087*10^(-50)*a[1]^2*ln(4624/3969)^2*B[1] + 2.664078699*10^(-50)*b[1]^2*ln(4624/3969)^4*B[1] + 9.178772213*10^(-51)*b[1]^2*ln(4624/3969)*B[1] + 8.880262330*10^(-51)*a[1]^2*ln(4624/3969)^4*B[1] + 4.209850900*10^(-42)*b[1]^4*ln(4624/3969)^4*B[1] + 6.795005989*10^(-42)*b[1]^4*ln(4624/3969)^3*B[1] + 3.059590737*10^(-51)*a[1]^2*ln(4624/3969)*B[1] + 2.149870415*10^(-43)*ln(4624/3969)*a[1]^4*B[1] + 1.359001197*10^(-42)*ln(4624/3969)^3*a[1]^4*B[1] + 8.419701800*10^(-43)*ln(4624/3969)^4*a[1]^4*B[1] + 8.152345410*10^(-43)*ln(4624/3969)^2*a[1]^4*B[1] + 4.076172701*10^(-42)*b[1]^4*ln(4624/3969)^2*B[1] + 1.074935208*10^(-42)*b[1]^4*ln(4624/3969)*B[1] + 1.258331891*10^(-43)*a[1]^2*b[1]^2*B[1] + 3.378022435*10^(-52)*a[1]^2*B[1] + 1.013406730*10^(-51)*b[1]^2*B[1] + 5.060514119*10^(-58)*A[1]*ln(4624/3969)^6 + 2.097219818*10^(-44)*a[1]^4*B[1] + 1.048609909*10^(-43)*b[1]^4*B[1] + 1.480485871*10^(-57)*A[1]*ln(4624/3969)^4 - 2.713236060*10^(-57)*B[1]*ln(4624/3969)^4 + 2.887504260*10^(-58)*ln(4624/3969)^2*A[1] - 1.058366154*10^(-57)*ln(4624/3969)^2*B[1] - 2.396496281*10^(-57)*B[1]*ln(4624/3969)^3 + 5.100841261*10^(-59)*A[1]*ln(4624/3969) - 2.337034537*10^(-58)*B[1]*ln(4624/3969) + 1.289922249*10^(-42)*a[1]^2*b[1]^2*ln(4624/3969)*B[1] + 8.154007187*10^(-42)*a[1]^2*b[1]^2*ln(4624/3969)^3*B[1] + 3.260938160*10^(-42)*a[1]*b[1]^3*ln(4624/3969)^2*A[1] + 2.078382172*10^(-50)*a[1]*b[1]*ln(4624/3969)^2*A[1] + 3.260938160*10^(-42)*a[1]^3*b[1]*ln(4624/3969)^2*A[1] + 8.599481665*10^(-43)*a[1]^3*b[1]*ln(4624/3969)*A[1] + 8.599481665*10^(-43)*a[1]*b[1]^3*ln(4624/3969)*A[1] + 5.436004790*10^(-42)*a[1]^3*b[1]*ln(4624/3969)^3*A[1] + 1.776052466*10^(-50)*a[1]*b[1]*ln(4624/3969)^4*A[1] + 3.367880720*10^(-42)*a[1]^3*b[1]*ln(4624/3969)^4*A[1] + 5.436004790*10^(-42)*a[1]*b[1]^3*ln(4624/3969)^3*A[1] + 6.119181470*10^(-51)*a[1]*b[1]*ln(4624/3969)*A[1] + 3.137436654*10^(-50)*a[1]*b[1]*ln(4624/3969)^3*A[1] + 3.367880720*10^(-42)*a[1]*b[1]^3*ln(4624/3969)^4*A[1] - 2.064212054*10^(-59)*B[1])/(5.196166686*10^(-61)*ln(4624/3969)^6 + 1.376871810*10^(-60)*ln(4624/3969)^5 + 1.520171900*10^(-60)*ln(4624/3969)^4 + 8.951392907*10^(-61)*ln(4624/3969)^3 + 2.964906943*10^(-61)*ln(4624/3969)^2 + 5.237574842*10^(-62)*ln(4624/3969) + 3.855122432*10^(-63)):

sys := { Eq1 , Eq2, Eq3, Eq4 }:

#
# Attempt a numerical solution.
#
# fsolve() returns unevaluated, suggesting that
# no solution exists
#
  fsolve( evalf~(sys), indets~(sys)[]);

fsolve({0.4837481725e11*a[1]^2*B[1]+0.1451244518e12*b[1]^2*B[1]+0.3410193433e19*a[1]^4*B[1]+0.1705096716e20*b[1]^4*B[1]+973.8937223*A[1]-3978.447451*B[1]+0.1364077373e20*a[1]*b[1]^3*A[1]+0.9674963450e11*a[1]*b[1]*A[1]+0.1364077373e20*a[1]^3*b[1]*A[1]+0.2046116060e20*a[1]^2*b[1]^2*B[1], 0.3410193433e19*b[1]^4*A[1]+0.4837481725e11*b[1]^2*A[1]+0.1705096716e20*a[1]^4*A[1]+0.1451244518e12*a[1]^2*A[1]-3978.447451*A[1]-973.8937223*B[1]+0.1364077373e20*a[1]*b[1]^3*B[1]+0.1364077373e20*a[1]^3*b[1]*B[1]+0.9674963446e11*a[1]*b[1]*B[1]+0.2046116060e20*a[1]^2*b[1]^2*A[1], 0.4549198038e26*a[1]^3*B[1]^2+0.3226600311e18*a[1]*B[1]^2+0.2274599020e27*a[1]^3*A[1]^2+0.9679800931e18*a[1]*A[1]^2-21.91491740*b[1]+95.35956218*a[1]+0.2729518823e27*a[1]^2*b[1]*A[1]*B[1]+0.1364759412e27*a[1]*b[1]^2*A[1]^2+0.1364759412e27*a[1]*b[1]^2*B[1]^2+0.9098396076e26*A[1]*B[1]*b[1]^3+0.6453200619e18*A[1]*B[1]*b[1], 0.2274599020e27*B[1]^2*b[1]^3+0.3226600311e18*b[1]*A[1]^2+0.9679800931e18*b[1]*B[1]^2+0.4549198038e26*b[1]^3*A[1]^2+95.35956218*b[1]+21.91491740*a[1]+0.2729518823e27*a[1]*b[1]^2*A[1]*B[1]+0.9098396076e26*a[1]^3*A[1]*B[1]+0.1364759412e27*a[1]^2*b[1]*A[1]^2+0.1364759412e27*a[1]^2*b[1]*B[1]^2+0.6453200619e18*A[1]*B[1]*a[1]-0.1995000000e-4}, {A[1], B[1], a[1], b[1]})

(1)

#
# DirectSearch return a "solution", but the residuals
# are "huge", again suggesting that no solution exists
#
  DirectSearch:-SolveEquations(convert(evalf~(sys), list));

[1.1782090079949228*10^14, Vector(4, {(1) = -7660.19490245949, (2) = -4146.042186128595, (3) = -10825910.08, (4) = -787715.5405}), [A[1] = .5385264020439374, B[1] = 2.057250343383483, a[1] = -7.013902666610012*10^(-12), b[1] = 1.0087019453655173*10^(-12)], 1305]

(2)

``


 

Download simEq.mw

Before attempting to "solve" the PDE, you should ensure that your "piecewise function" is correctly defined.

The attached contains four possibilities, with associated PDE solutions

restart

f := proc (x, y) options operator, arrow; piecewise((x, y) = (.8, .5) or (x, y) = (1.6, 1.5), -250, 0) end proc

proc (x, y) options operator, arrow; piecewise((x, y) = (.8, .5) or (x, y) = (1.6, 1.5), -250, 0) end proc

(1)

pde1 := -(diff(u(x, y), `$`(x, 2)))-(diff(u(x, y), `$`(y, 2))) = f; pde2 := -(diff(u(x, y), `$`(x, 2)))-(diff(u(x, y), `$`(y, 2))) = f(x, y); f := proc (x, y) options operator, arrow; piecewise(Or(And(x = .9, y = .5), And(x = .8, y = .5)), -250, 0) end proc; pde3 := -(diff(u(x, y), `$`(x, 2)))-(diff(u(x, y), `$`(y, 2))) = f(x, y); f := proc (x, y) options operator, arrow; -250*Dirac(x-4/5)*Dirac(y-1/2)-250*Dirac(x-9/10)*Dirac(y-1/2) end proc; pde4 := -(diff(u(x, y), `$`(x, 2)))-(diff(u(x, y), `$`(y, 2))) = f(x, y)

pde1 := -(diff(u(x, y), x, x))-(diff(u(x, y), y, y)) = f

 

pde2 := -(diff(u(x, y), x, x))-(diff(u(x, y), y, y)) = 0

 

f := proc (x, y) options operator, arrow; piecewise(x = .9 and y = .5 or x = .8 and y = .5, -250, 0) end proc

 

-(diff(diff(u(x, y), x), x))-(diff(diff(u(x, y), y), y)) = piecewise(Or(And(x = .8, y = .5), And(x = .9, y = .5)), -250, 0)

 

proc (x, y) options operator, arrow; -250*Dirac(x-4/5)*Dirac(y-1/2)-250*Dirac(x-9/10)*Dirac(y-1/2) end proc

 

-(diff(diff(u(x, y), x), x))-(diff(diff(u(x, y), y), y)) = -250*Dirac(-4/5+x)*Dirac(-1/2+y)-250*Dirac(-9/10+x)*Dirac(-1/2+y)

(2)

Bcs := u(0, y) = 100, u(2, y) = 100, (D[2](u))(x, 0) = 0, (D[2](u))(x, 2) = 0; sol1 := pdsolve([pde1, Bcs]); sol2 := pdsolve([pde2, Bcs]); sol3 := pdsolve([pde3, Bcs]); sol4 := pdsolve([pde4, Bcs])

Bcs := u(0, y) = 100, u(2, y) = 100, (D[2](u))(x, 0) = 0, (D[2](u))(x, 2) = 0

 

sol1 := u(x, y) = 100+(1/2)*(-x^2+2*x)*f

 

sol2 := u(x, y) = 100

 

u(x, y) = Int(Sum(.6366197722*sin(1.570796327*n*x)*(Int(sin(1.570796327*n*x)*piecewise(Or(And(x = 4/5, tau = 1/2), And(x = 9/10, tau = 1/2)), -250., 0.), x = 0. .. 2.))*(exp(-1.570796327*n*(y-1.*tau-4.))+exp(1.570796327*n*(y-1.*tau)))/(n*(exp(6.283185308*n)-1.)), n = 1 .. infinity), tau = 0. .. y)+100.

 

u(x, y) = -500*Heaviside(-1/2+y)*(Sum(sin((1/2)*n*Pi*x)*(exp(-(1/4)*Pi*n*(-9+2*y))+exp((1/4)*Pi*n*(-1+2*y)))*(sin((9/20)*Pi*n)+sin((2/5)*Pi*n))/(n*(exp(2*Pi*n)-1)), n = 1 .. infinity))/Pi+100

(3)

 

``

``

Download pdeSols.mw

 

The 'linalg' package was deprecated as of Maple 6, which was released in 1999.

Why are you using a package which was superseded more than 20 years ago?

If you hope to preserve the concept of "order" of equations, then do not define your equations as a set ( ie enclosed within '{}' braces). Sets have no concept of 'order', and anything you enter as a set will be reordered using a mixture of lexicography and complexity. So my first recommendation would be to change the definition of the quantity 'eqs' from a set to a list

If your 'unknowns' are u[1, 0], u[2, 0], u[3, 0], u[1, 1], u[2, 1], u[3, 1], u[1, 2], u[2, 2], u[3, 2], u[1, 3], u[2, 3], u[3, 3], then what are the quantities f[1, 0], f[1, 1], f[1, 2], f[1, 3], f[2, 0], f[2, 1], f[2, 2], f[2, 3], f[3, 0], f[3, 1], f[3, 2], f[3, 3]?

but (maybe) something like the attached is what you need

  restart;
  with(LinearAlgebra):
#
# Input matrix for test purposes
#
  m:= 10:
  n:= 10:
  M1:= RandomMatrix(m,n, generator=rand(-5..5));

Matrix(10, 10, {(1, 1) = 1, (1, 2) = 4, (1, 3) = 0, (1, 4) = -4, (1, 5) = 5, (1, 6) = -2, (1, 7) = 0, (1, 8) = -1, (1, 9) = 5, (1, 10) = -5, (2, 1) = 2, (2, 2) = -1, (2, 3) = 4, (2, 4) = 5, (2, 5) = -4, (2, 6) = -4, (2, 7) = -2, (2, 8) = 2, (2, 9) = 5, (2, 10) = -3, (3, 1) = 3, (3, 2) = 4, (3, 3) = -4, (3, 4) = 5, (3, 5) = 2, (3, 6) = 4, (3, 7) = 3, (3, 8) = 5, (3, 9) = -5, (3, 10) = 0, (4, 1) = 1, (4, 2) = 1, (4, 3) = -3, (4, 4) = -3, (4, 5) = -1, (4, 6) = -3, (4, 7) = 2, (4, 8) = 4, (4, 9) = -3, (4, 10) = -5, (5, 1) = -5, (5, 2) = -3, (5, 3) = -1, (5, 4) = -1, (5, 5) = 4, (5, 6) = 4, (5, 7) = 4, (5, 8) = 5, (5, 9) = -4, (5, 10) = 2, (6, 1) = -2, (6, 2) = -4, (6, 3) = 3, (6, 4) = -1, (6, 5) = 3, (6, 6) = 1, (6, 7) = -2, (6, 8) = -3, (6, 9) = 4, (6, 10) = 3, (7, 1) = 4, (7, 2) = 5, (7, 3) = -2, (7, 4) = 3, (7, 5) = 1, (7, 6) = 2, (7, 7) = 3, (7, 8) = -5, (7, 9) = 4, (7, 10) = -4, (8, 1) = 5, (8, 2) = -2, (8, 3) = 1, (8, 4) = 2, (8, 5) = -5, (8, 6) = 0, (8, 7) = -2, (8, 8) = -5, (8, 9) = 1, (8, 10) = -4, (9, 1) = 3, (9, 2) = -1, (9, 3) = 3, (9, 4) = 3, (9, 5) = -2, (9, 6) = -3, (9, 7) = -2, (9, 8) = 0, (9, 9) = -2, (9, 10) = -2, (10, 1) = 4, (10, 2) = 2, (10, 3) = -4, (10, 4) = 1, (10, 5) = -4, (10, 6) = 5, (10, 7) = -1, (10, 8) = 5, (10, 9) = -3, (10, 10) = -1})

(1)

#
# Create table (aka hash?) from matrix: table indices
# are matrix entries; table entries are lists of matrix
# (programmer) indices
#
  t:= table
      ( [ seq
          ( i=[ seq
                ( `if`( M1(j)=i , j, NULL ),
                  j = 1..m*n
                )
              ],
              i in { entries(M1,'nolist') }
          )
        ]
      );

table( [( -1 ) = [12, 19, 25, 35, 36, 44, 70, 71, 100], ( 0 ) = [21, 58, 61, 79, 93], ( -2 ) = [6, 18, 27, 49, 51, 62, 66, 68, 69, 89, 99], ( 1 ) = [1, 4, 14, 28, 40, 47, 56, 88], ( -3 ) = [15, 24, 34, 54, 59, 76, 84, 90, 92], ( 2 ) = [2, 20, 38, 43, 57, 64, 72, 95], ( -4 ) = [16, 23, 30, 31, 42, 50, 52, 85, 97, 98], ( 3 ) = [3, 9, 26, 29, 37, 39, 46, 63, 67, 96], ( 4 ) = [7, 10, 11, 13, 22, 45, 53, 55, 65, 74, 86, 87], ( -5 ) = [5, 48, 77, 78, 83, 91, 94], ( 5 ) = [8, 17, 32, 33, 41, 60, 73, 75, 80, 81, 82] ] )

(2)

#
# Reconstruct Matrix from table
#
  M2:=Matrix(m, n):
  seq
  ( seq
    ( (M2(j):=i),
      j in t[i]
    ),
    i in [ indices(t, 'nolist') ]
  ):
  M2;
  Equal(M1, M2);

Matrix(10, 10, {(1, 1) = 1, (1, 2) = 4, (1, 3) = 0, (1, 4) = -4, (1, 5) = 5, (1, 6) = -2, (1, 7) = 0, (1, 8) = -1, (1, 9) = 5, (1, 10) = -5, (2, 1) = 2, (2, 2) = -1, (2, 3) = 4, (2, 4) = 5, (2, 5) = -4, (2, 6) = -4, (2, 7) = -2, (2, 8) = 2, (2, 9) = 5, (2, 10) = -3, (3, 1) = 3, (3, 2) = 4, (3, 3) = -4, (3, 4) = 5, (3, 5) = 2, (3, 6) = 4, (3, 7) = 3, (3, 8) = 5, (3, 9) = -5, (3, 10) = 0, (4, 1) = 1, (4, 2) = 1, (4, 3) = -3, (4, 4) = -3, (4, 5) = -1, (4, 6) = -3, (4, 7) = 2, (4, 8) = 4, (4, 9) = -3, (4, 10) = -5, (5, 1) = -5, (5, 2) = -3, (5, 3) = -1, (5, 4) = -1, (5, 5) = 4, (5, 6) = 4, (5, 7) = 4, (5, 8) = 5, (5, 9) = -4, (5, 10) = 2, (6, 1) = -2, (6, 2) = -4, (6, 3) = 3, (6, 4) = -1, (6, 5) = 3, (6, 6) = 1, (6, 7) = -2, (6, 8) = -3, (6, 9) = 4, (6, 10) = 3, (7, 1) = 4, (7, 2) = 5, (7, 3) = -2, (7, 4) = 3, (7, 5) = 1, (7, 6) = 2, (7, 7) = 3, (7, 8) = -5, (7, 9) = 4, (7, 10) = -4, (8, 1) = 5, (8, 2) = -2, (8, 3) = 1, (8, 4) = 2, (8, 5) = -5, (8, 6) = 0, (8, 7) = -2, (8, 8) = -5, (8, 9) = 1, (8, 10) = -4, (9, 1) = 3, (9, 2) = -1, (9, 3) = 3, (9, 4) = 3, (9, 5) = -2, (9, 6) = -3, (9, 7) = -2, (9, 8) = 0, (9, 9) = -2, (9, 10) = -2, (10, 1) = 4, (10, 2) = 2, (10, 3) = -4, (10, 4) = 1, (10, 5) = -4, (10, 6) = 5, (10, 7) = -1, (10, 8) = 5, (10, 9) = -3, (10, 10) = -1})

 

true

(3)

 


 

Download tableMat.mw

see the attached

restart; PDEtools

pde := diff(u(x, t), `$`(t, 2)) = diff(u(x, t), `$`(x, 2))+1

diff(diff(u(x, t), t), t) = diff(diff(u(x, t), x), x)+1

(1)

ic := u(x, 0) = 4

u(x, 0) = 4

(2)

NULL

bc := u(0, t) = 0, (D[2, 2](u))(3, t) = -4*(D[1](u))(3, t)+4

u(0, t) = 0, (D[2, 2](u))(3, t) = -4*(D[1](u))(3, t)+4

(3)

sol := pdsolve([pde, bc])

u(x, t) = -(1/2)*x^2+4*x

(4)

plot3d(rhs(sol), x = 0 .. 3, t = 0 .. 1)

 

u

u

(5)

NULL

Download plotPDE.mw

Numerous syntax errors, some of which are 2D- Math-related, and some are misuse of the delimiters '()' , '[]' and even '{}'.

  1.  '()') is for groupting terms in an expression.
  2.  '[]' is used to obtain elements of indexable quantities, such as lists, vectors,matrices, etc and should not be used if you just want a subscripted variable name. n the latter case you should use a__D, rather than a[D].
  3.  '{}' is used to designate sets. You definitely do not have any mathematical sets in your worksheet, so don't use this at all

You have also used the construct e^(someArgument) when you probably(?) mean exp(someArgument)

So inn order to produce the attached I made a lot of guesses about your intention - and some of my guesswork may be wrong, so check this very carefully before using


 

  restart:
  with(RootFinding):

  r[eD] := 4.5:
  rootfunction:= beta -> BesselY(1, beta)*BesselJ(1, beta*r[eD]) - BesselJ(1, beta)*BesselY(1, beta*r[eD]):
  a := Vector(40, fill = 0):
  StartPoint:=0.001:
  for i from 1 by 1 to 40 do
      a[i]:= NextZero(rootfunction, StartPoint):
      StartPoint:=a[i]:
  od:
  a;

_rtable[18446744074329391222]

(1)

NULL

  p__D:= (r__D, t__D) ->(2*((r__D^2)/4+t__D))/(r[eD]^2-1)-(r[eD]^2*ln(r__D))/(r[eD]^2-1)-(3*r[eD]^4-4*r[eD]^4*ln(r[eD])-2*r[eD]^2-1)/(4*(r[eD]^2-1)^2)+Pi*add(BesselJ(1,a[i]*r[eD])^2*(BesselJ(1,a[i])*BesselY(0,a[i]*r__D)-BesselY(1,a[i])*BesselJ(0,a[i]*r__D))/(a[i]*BesselJ(1,a[i]*r[eD])^2-BesselJ(1,a[i])^2)*exp(-a[i]^2*t__D),  i = 1..40  );

proc (r__D, t__D) local i; options operator, arrow; 2*((1/4)*r__D^2+t__D)/(r[eD]^2-1)-r[eD]^2*ln(r__D)/(r[eD]^2-1)-(1/4)*(3*r[eD]^4-4*r[eD]^4*ln(r[eD])-2*r[eD]^2-1)/(r[eD]^2-1)^2+Pi*add(BesselJ(1, a[i]*r[eD])^2*(BesselJ(1, a[i])*BesselY(0, a[i]*r__D)-BesselY(1, a[i])*BesselJ(0, a[i]*r__D))*exp(-a[i]^2*t__D)/(a[i]*BesselJ(1, a[i]*r[eD])^2-BesselJ(1, a[i])^2), i = 1 .. 40) end proc

(2)

#
# Check a few values
#
  p__D(1,1);
  p__D(0.5,0.5);

.8036477586

 

1.378243473

(3)

``


 

Download diffFunc.mw

It is trivial to convert the original model I posted here

https://www.mapleprimes.com/posts/212100-Exploring-The-CoVid19-Outbreak

to use "difference" equations rather than odes, as in the attached - although TBH I have no idea why you would want to)

I think you should give some serious thought to your parameter choices
 

  restart;
  with(plots):
#
# Change the imaginary unit, just because
# most models use I() to designate the number
# of the population who are infected and I
# decided to stick with this convention
#
  interface(imaginaryunit=J):

####################################################
# S(t) represents the number of people who are
# susceptible to the disease
#
# I(t) represents the number of people who are
# infected
#
# R(t) represents the number of people who have
# reached a resolution - in other words they have
# either recovered or are dead!. With either of
# these resolutions, they are no longer infected or
# susceptible! If 'x' is the death rate, then
#
#      x*R(t) people are dead
#  (1-x)*R(t) people have recovered
#
# For Covid-19 the death rate is estimated anywhere
# between 1% and 5% - so 3% is probably about as good
# a guess as you are going to get
#
####################################################
#
# N represents the total population which is assumed
# constant - and hence neglects "normal" birth and
# death (unrelated to the epidemic) rates
#
# myBeta is the infection rate per unit time - in
# other words how many people per day will get
# the disease from a single infected person. Note that
# this can be reduced by "social isolation". If the
# infected person doesn't get to interact with the
# susceptible population, then the number of people
# who can be infected goes down
#
# myGamma is the "recovery" rate per unit time.
# Another way to look at this is that for 1/myGamma
# units of time an individual has the capability
# to infect others. After that time the infected
# individual has either recovered, or is dead. Either
# way they no longer infect anyone else.
#
# At time=0, there has to be (at least) one person
# infected (otherwise we can't start an epidemic),
# and hence N-1 people are susceptible
#

  N:= 100000000:
  myBeta:= 0.5:
  myGamma:= 0.25:
  t:= Vector(201, j->j-1):
  S:= Vector(201):
  I:= Vector(201):
  R:= Vector(201):  
  S[1]:= N-1: I[1]:= 1: R[1]:= 0:
  for j from 2 by 1 to 201 do
      S[j]:= S[j-1]-myBeta*I[j-1]*S[j-1]/N:
      I[j]:= I[j-1]+myBeta*I[j-1]*S[j-1]/N-myGamma*I[j-1]:
  od:

  display( [ pointplot( [t, S], color=blue),
             pointplot( [t, I], color=red),
             pointplot( [t, -(S+I-~N)], color=green)
           ]
         );

 

 

 


 

Download covid2.mw

'gamma' is an 'initially known name' in Maple  (Euler's constant).

You have two choices

  1. use a different name
  2. declare 'gamma' as local, as in the attached

diff( sin(gamma), gamma);

Error, invalid input: diff received gamma, which is not valid for its 2nd argument

 

local gamma;
diff( sin(gamma), gamma)

Warning, A new binding for the name `gamma` has been created. The global instance of this name is still accessible using the :- prefix, :-`gamma`.  See ?protect for details.

 

gamma

 

cos(gamma)

(1)

 


 

Download gamProb.mw

the attached


 

restart;
a:=[parse(readline( "C:/Users/TomLeslie/Desktop/bTest.csv"))];

[1, 2, 3, "x+y, algorithm=["123"]", "OK", 5]

(1)

 


Download icsv2.mw

produces the correct(?) output on the file containing

1,2,3,"x+y, algorithm=["123"]","OK",5

 

the attached


 

data:=Import("C:/Users/TomLeslie/Desktop/bTest.csv", format="CSV", output=Matrix, source=file);

Vector[row](6, {(1) = 1, (2) = 2, (3) = 3, (4) = "x+y, algorithm=["123"]", (5) = "OK", (6) = 5})

(1)

 

Download icsv.mw

Although you do have to change the input file to

1,2,3,"x+y, algorithm=[""123""]","OK",5

 

 

 

If I type your code into Maple 2020 under Windows 7, then the bracket matching seems to work, see the 'still' below. Because I obtained the attached with the simple 'Snipping Tool', the cursor at the end of the line is not visible, becuase the cursor was need to define the 'snip

Notice that the opening parenthesis in the "offending" line is surrounded by a 'square highlight'

 

You state that you are using Document Mode, which your  Options->Interface menu entry would *seem* to confirm. However if you look at the help page "Documents vs. Worksheets: Which Should You Choose?", you will note that in Document Mode the following apply by default

  • Quick problem-solving and free-form, rich content composition
  • No prompt (>) displayed
  • Math is entered and displayed in 2-D math
  • Solve math problems with right-click menu on input and output

Rather obviously, the worksheet in your original post has command prompts, and 1-D Maple input, which looks like you are actually using Worksheet Mode

NB, it is possible to use Document Mode with 1D input, but I don't think(?) it is possible to specify Document Mode and then turn on command prompts!

So are you using some weird sort of 'hybrid' setting - like 'Document Mode' with 1D input and command prompts??

If so, how??, why??

 

 

 

 

as shown in the attached - although this won't work for integers, unless these are coerced to type 'float'


 

  restart;
#
# Set (display-only) precision to 1 digits
#
  interface(displayprecision=1):
  with(Units[Standard]):

#
# Floats will be rounded to 1  decimal place
#
  2400000.0*Unit('m')/Unit('s');
#
# but integers will not be rounded
#
  2400000*Unit('m')/Unit('s');
#
# unless they are coerced to type 'float'
  evalf(%);

2400000.0*Units:-Unit(m/s)

 

2400000*Units:-Unit(m/s)

 

2400000.*Units:-Unit(m/s)

(1)

 


 

Download dispPrec.mw

@adel-00 

The width, spacing and offset of the columns in a columngraph() are set by the values supplied to the options with these names

Maybe you want the values for these quantities to be based on the list 'yr'?????

I suggest you read the help carefully, but maybe one of the graphs in the attached meets your requirements.

NB the appearance of gridlines is a 'quirk' of this site: they won't appear in a Maple worksheet (unless you turn them on!)

  restart;
  yr:=[0.1, 0.2, 0.3]:
  sle:=[8, 12, 200]:
#
# Maple default column graph. Each "column" will
# have width 0.75, space between columns is 0.25
#
  Statistics:-ColumnGraph( sle
                         );
#
# Alternatively one can use 'yr' values as dataset
# labels, in which case there willl be no x-axis
# tickmarks.
#
# Width, spacing and offset of columns are all
# (still) on defaults
#
  Statistics:-ColumnGraph( sle,
                           datasetlabels=yr
                         );

 

 

#
# One can of course use the values in 'yr' to
# determine appropriate values for the options
# 'offset', 'width', and 'distance'
#
  Statistics:-ColumnGraph( sle,
                           offset=0.0875,
                           width=0.025,
                           distance=0.075
                         );
  Statistics:-ColumnGraph( sle,
                           offset=0.075,
                           width=0.05,
                           distance=0.05
                         );
  Statistics:-ColumnGraph( sle,
                           offset=0.0625,
                           width=0.075,
                           distance=0.025
                         );
  Statistics:-ColumnGraph( sle,
                           offset=0.05,
                           width=0.1,
                           distance=0.0
                         );

 

 

 

 

 

Download colGR2.mw

1 2 3 4 5 6 7 Last Page 1 of 125