Education

Teaching and learning about math, Maple and MapleSim

Several Maple T.A. users have developed comprehensive sets of question content and assignments to support full courses in Maple T.A. These questions are available through the Maple T.A. Cloud, and we have decided to also post the associated course modules on Maple Primes as an alternative way of accessing this content.

Below you will find a link to the Statistics Maple T.A.. course module developed by the University of Waterloo.

This testing content is freely distributed, and can be used in your own Maple T.A. tests either as-is, or with edits.

The Statistics content is used in introductory statistics courses at the University of Waterloo, and has been used regularly over several years. The over 700 questions are clearly organized by topic, and provide extensive feedback to students.


Topics include:

  • Basics
  • Confidence Intervals
  • Continuous Distribution
  • Discrete Multivariate
  • Discrete Probability
  • Graphical Analysis
  • Hypothesis Testing
  • Numerical Analysis for Statistics
  • Probability
  • Sampling Distributions

Jonny Zivku
Maplesoft Product Manager, Maple T.A.

Several Maple T.A. users have developed comprehensive sets of question content and assignments to support full courses in Maple T.A. These questions are available through the Maple T.A. Cloud, and we have decided to also post the associated course modules on Maple Primes as an alternative way of accessing this content.

Below you will find a link to the Calculus 1 Maple T.A.. course module developed by the University of Guelph. This course material also forms part of Teaching Calculus with Maple: A Complete Kit, which provides lectures notes, Maple demonstrations, Maple T.A. assignments, and more for teaching both Calculus 1 and Calculus 2.

This testing content is freely distributed, and can be used in your own Maple T.A. tests either as-is, or with edits.

The Calculus 1 course module is designed to accompany the first semester of an introductory honours calculus course. The course is intended primarily for students who need or expect to pursue further studies in mathematics, physics, chemistry, engineering and computer science.

Topics include:

  • trigonometry including the compound angle formulas
  • inequalities and absolute values
  • limits and continuity using rigorous definitions, the derivative and various applications (extreme, related rates, graph sketching)
  • Rolle's Theorem and the Mean Value Theorem for derivatives
  • the differential and anti-differentiation
  • the definite integral with application to area problems
  • the Fundamental Theorem of Calculus
  • logarithmic and exponential functions
  • the Mean Value Theorem for Integrals

The Calculus 2 course module is designed to accompany the second semester of an introductory honours calculus course.

Topics include:

  • inverse trigonometric functions
  • hyperbolic functions
  • L'Hôpital's Rule
  • techniques of integration
  • parametric equations
  • polar coordinates
  • Taylor and MacLaurin series
  • functions or two or more variables
  • partial derivatives
  • multiple integration

Jonny Zivku
Maplesoft Product Manager, Maple T.A.

I would like to pay attention to a series of applications by Samir Khan
http://www.maplesoft.com/applications/view.aspx?SID=153600
http://www.maplesoft.com/applications/view.aspx?SID=153599
http://www.maplesoft.com/applications/view.aspx?SID=153596
http://www.maplesoft.com/applications/view.aspx?SID=153598
My congratulations to the author on his work well done. New capacities of Global Optimization Toolbox are spectacular. For example, in the first application  an optimization
problem in 101 variables under 5050 nonlinear  constraints
(other than 202 bounds) is solved.
I think it requires a very powerful comp and much time.
I tried that  problem for n=20 with the good old DirectSearch
on my comp (4 GB RAM, Pentium Dual-Core CPU E5700@3GHz) by

soln2 := DirectSearch:-GlobalSearch(rc, {cons1, cons2, rc >= 0,
seq(`and`(vars[i] >= -70, vars[i] <= 70), i = 1 .. 2*n), rc <= 70},
variables = vars, method = quadratic, number = 140, solutions = 1,
evaluationlimit = 20000)

and obtained not so bad rc=69.9609360106765 (whereas www.packomania.com gives rc=58.4005674790451137175957) in about one hour.

Packing_by_DS.mw
For n=50 the memory of my comp cannot allocate calculations or the obtained result by the Search command is far away from the one in packomania.

 

Maplesoft regularly hosts live webinars on a variety of topics. Below you will find details on an upcoming webinar we think may be of interest to the MaplePrimes community.  For the complete list of upcoming webinars, visit our website.

Hollywood Math 2

In this second installment of the Hollywood Math webinar series, we will present some more examples of mathematics being used in Hollywood films and popular hit TV series. For instance, have you wondered how Ben Campbell solved his professor’s challenge so easily in the movie “21”? Or about the details of the Nash equilibrium that John Nash first developed in a “A Beautiful Mind”? We’ve got the answers! These relevant, and exciting examples can be used as material to engage your students with examples familiar to them, or you can just attend the webinar for its entertainment value.

Anyone with an interest in mathematics, especially high school and early college math educators, will be both entertained and informed by attending this webinar. At the end of the webinar you’ll be given an opportunity to download an application containing all of the examples that we demonstrate.

To join us for the live presentation, please click here to register.

If you missed the first webinar in this two part series, you can view the 'Hollywood Math' recording on our website.

The Interactive Embedded Components in Physics are of great importance today and will be even more in the future. Hereand leave a small tutorial of Embedded Components in Physics applied to physics. I hope that somehow you motives to continue the development of science.

 

  Interactive_Embedded_Components_in_Physics.mw      (in spanish)                 

 Ponencia_CRF.pdf

Atte.

Lenin Araujo Castillo

Physics Pure

Computer Science

 

To calculate the day of the week for a given date, first of all we need to find out the number of odd days.

Today I thought of sharing a beautiful problem I learned in my school, though it is easy, it is tricky too.
Odd Days are number of days more than the complete number of weeks in given period.
Leap Year is the year which is divisible by 4.
A normal year has 365 days
A leap year has 366 days
One normal year = 365 days = 52weeks + 1day
One normal year has one odd day

One leap year = 366 days = 52weeks + 2days
One leap year has two odd days

100 years = 76 ordinary years + 24 leap years = 5200 weeks + 124 days = 5217 weeks + 5 days
100 years have 5 odd days

400 years have (20+1) 0 odd days

The number of odd days and the corresponding day of the week is given below

0-Sunday
1-Monday
2-Tuesday
3-Wednesday
4-Thursday
5-Friday
6-Saturday

So by finding out the number of odd days you can find out the day of the week. I hope this procedure Will be helpful in solving math problems in exams.

Thanks.

Announcing the 2014 Maple T.A. User Summit

Maplesoft will be hosting the 2014 Maple T.A. User Summit this October 22-24 in Amsterdam, The Netherlands. This conference discusses important trends in education, how technology is changing, and what all this means for educators and students. This is an opportunity for Maple T.A. users to learn first-hand how Maple T.A. is transforming testing and assessment, and non-users can also benefit by learning about current and future trends in online education.

Conference highlights include:

  • Expert advice from long term users on how they’re using Maple T.A.
  • Comprehensive hands-on Maple T.A. training
  • Demonstration of new features in Maple T.A., and where the technology is heading
  • Social events with Maplesoft staff and other educators from around the world

We invite users who are using Maple T.A. in an innovative way in their classroom to submit a presentation proposal by July 15th, 2014. For details, please visit: https://webstore.maplesoft.com/taconference/MapleTA_Summit_CFP.pdf

For more details, preliminary agenda, and to register, please visit our website: https://webstore.maplesoft.com/taconference/  

Jonny
Maplesoft Product Manager, Maple T.A.

Here in this work and used as the main topic a short description of electrostatics and electrodynamics using the Explore to model the fundamental laws command.

 Corriente_Eléctrica.mw   (in spanish)

 

Atte.

L. Araujo C.

 

With this contribution we opened a breach in the proper use of the program applied Thermodynamics.

 

Introducción_a_la_Termodinámica.mw     (in spanish)

 

Hi,
The FunctionAdvisor project is currently developing at full speed. During the last two months, a significant amount of new conversion routines and mathematical information for Jacobi elliptic and Jacobi Theta functions, on identities, periodicity, transformations, etc. got added to the conversion network for mathematical functions and to the FunctionAdvisor. The previous months was the turn of the set of complex components, added to the network. Developments regarding the simplification and integration of special functions (e.g SphericalY for computing spherical harmonics or Dirac), as well as fixes to the numerical evaluation of JacobiAM, `assuming` and to differential equation subroutines are also part of the update.

These developments are available to everybody as usual in the Maplesoft R&D Differential Equations and Mathematical Functions webpage. Below there is a list of the latest developments as seen in the worksheet that comes in the zip with the DEsAndMathematicalFunctions update.

Edgardo S. Cheb-Terrab
Physics, Differential Equations and Mathematical Functions, Maplesoft

Greetings to all.

As some of you may remember I have posted several announcements concerning Power Group Enumeration and the Polya Enumeration Theorem this past year, e.g. at this MaplePrimes link: Power Group Enumeration.

I have continued to work in this field and for those of you who have followed the earlier threads I would like to present some links to my more recent work using the Burnside lemma. Of course all of these are programmed in Maple and include the Maple code and it is with the demonstration of Maple's group theory capabilities in mind that I present them to you (math.stackexchange links).

The third and fourth to last link in particular include advanced Maple code.

The second entry is new as of October 30 2015.

With my best wishes for happy group theory computing with Maple,

Regards,

Marko Riedel

I learned about this problem from Aser's post   See  page of tasks still without  Maple implementation. 

The procedure  game24  solves the problem. In the procedure Acer's  procedure  MyHandler is  used, which prevents the program to stop in case of 0 in the denominator.

 

game24:=proc(a,b,c,d)

local MyHandler,It, K, M, i, P;

uses StringTools, combinat;

 MyHandler := proc(operator,operands,default_value)

      NumericStatus( division_by_zero = false );

      return infinity;

   end proc;

   NumericEventHandler(division_by_zero=MyHandler); 

It:=proc(L1,L2)

local i, j, L;

L:=[];

for i in L1 do

for j in L2 do

L:=[op(L), op([Substitute(Substitute("( i + j )","i",convert(i,string)),"j",convert(j,string)),Substitute(Substitute("( i - j )","i",convert(i,string)),"j",convert(j,string)),Substitute(Substitute("( i * j )","i",convert(i,string)),"j",convert(j,string)),Substitute(Substitute("( i / j )","i",convert(i,string)),"j",convert(j,string))])];

od; od;

L;

end proc; 

P:=permute([a,b,c,d]); 

K:=[];

for i in P do

K:=[op(K),op(It(It(It([i[1]],[i[2]]),[i[3]]),[i[4]])), op(It(It([i[1]],It([i[2]],[i[3]])),[i[4]])), op(It([i[1]],It(It([i[2]],[i[3]]),[i[4]]))), op(It([i[1]],It([i[2]],It([i[3]],[i[4]])))), op(It(It([i[1]],[i[2]]),It([i[3]],[i[4]])))];

od;

M:=[];

for i in K do

if parse(i)=24 then M:=[op(M), i] fi;

od;

if nops(M)=0 then return `No solutions` else

for i in M do

print(SubString(i,2..length(i)-1));

od; fi; 

end proc:

 

Two examples:

game24(2,3,8,9);

 

game24(2,3,3,4);

        No solutions

 

24.mws

 

 

Maplesoft regularly hosts live webinars on a variety of topics. Below you will find details on some upcoming webinars we think may be of interest to the MaplePrimes community.  For the complete list of upcoming webinars, visit our website.

 

Bring Statistics Education to Life!

This exciting new webinar will demonstrate some of the ways that educators can take advantage of Maple’s symbolic and numeric approach for statistics education. Examples will include basic statistics theory including descriptive statistics such as measures of central tendency and spread, hypothesis testing, as well as discrete and continuous random variables.

Many examples presented in this webinar will be taken from the new Student Statistics package that was introduced in Maple 18. The Student Statistics was designed with classroom use in mind, and features detailed explanations and instructions, interactive demonstrations, and visualizations, all of which are great learning tools for teaching a course involving probability and statistics.

To join us for the live presentation, please click here to register.

 

Symbolic Computing for Engineering

As engineering applications become more complex, it is becoming increasingly difficult to satisfy the often-conflicting project constraints using traditional tools. As a result, we’ve found there is a growing interest within the engineering community for tools that make engineering calculations transparent and capture not just results but also the knowledge and analysis used throughout the engineering workflow. Engineering organizations are achieving this goal by making symbolic techniques an integral part of their tool set.

In this webinar, Laurent Bernardin will demonstrate how to enhance the early-stage design phase by making mathematical computations explicit and transparent, and then integrating the results into an existing tool chain.

To join us for the live presentation, please click here to register.

Maplesoft regularly hosts live webinars on a variety of topics. Below you will find details on some upcoming webinars we think may be of interest to the MaplePrimes community.  For the complete list of upcoming webinars, visit our website.

 

Bring Statistics Education to Life!

This exciting new webinar will demonstrate some of the ways that educators can take advantage of Maple’s symbolic and numeric approach for statistics education. Examples will include basic statistics theory including descriptive statistics such as measures of central tendency and spread, hypothesis testing, as well as discrete and continuous random variables.

Many examples presented in this webinar will be taken from the new Student Statistics package that was introduced in Maple 18. The Student Statistics was designed with classroom use in mind, and features detailed explanations and instructions, interactive demonstrations, and visualizations, all of which are great learning tools for teaching a course involving probability and statistics.

To join us for the live presentation, please click here to register.

 

Symbolic Computing for Engineering

As engineering applications become more complex, it is becoming increasingly difficult to satisfy the often-conflicting project constraints using traditional tools. As a result, we’ve found there is a growing interest within the engineering community for tools that make engineering calculations transparent and capture not just results but also the knowledge and analysis used throughout the engineering workflow. Engineering organizations are achieving this goal by making symbolic techniques an integral part of their tool set.

In this webinar, Laurent Bernardin will demonstrate how to enhance the early-stage design phase by making mathematical computations explicit and transparent, and then integrating the results into an existing tool chain.

To join us for the live presentation, please click here to register.

Take a look at this link.

First 36 37 38 39 40 41 42 Last Page 38 of 59