Maple 16 Questions and Posts Maple 16 Questions and Posts Feed

These are Posts and Questions associated with the product, Maple 16

Increasingly more people are now seeking one of the most efficient way to look also more youthful looking compared to their age. On the various other hand, if you get to the age of thirty, expect that it is natural that your very own skin begins shedding its very own beauty. There is a rise in the manufacturing of collagen along with necessary nutrients and so the routine Collagen Serum would not function effectively. This is the main reason that you have to make use of the most efficient anti-aging representative or Collagen Serum. With the enhanced of different advertisements regarding anti-aging Collagen Serums, it is really hard to pick what the best one is. However, there is one sort of redefining natural formula that could endure amongst the remainder which is Evelina Collagen Serum. Evelina Hydrofirm Serum could buy online from its official website http://www.stadtbett.com/evelina-hydrofirm-serum/

I'm trying to compute the tensor product of two column vectors as

 

with(LinearAlgebra):

A:=Matrix([[1/sqrt(2)],[0],[0],[1/sqrt(2)]]);

KroneckerProduct(A,A);

 

And the output is a column vector with entries: "16 x 1 Matrix", "Data Type: Anything", "Storage: rectangular", "Order: Fortran_order"

 

The Maple documentation indicates that this function should output the result of the kronecker tensor product of the input matrices, and I've followed the same form as the examples in the documentation... Does anyone know why this isn't working as it should?

The page ?type,piecewise shows the example

type(piecewise[](x < 1, a, b), 'piecewise');

and lines 4-8 of showstat(`print/piecewise`) deal with the case of an indexed piecewise. Yet I can find no other reference to indexed piecewise. What is it used for? When I put an index on a piecewise, nothing special seems to happen, either computationally or display-wise:

piecewise[abs](x > 0, x, -x);
piecewise[Carl](x > 0, x, -x);

The code in `print/piecewise` suggests that it serves some purpose.

 Xplosive Vital Ato answer your question, Xplosive Vital it without a doubt depends. no longer all male enhancement pills paintings, however there are a few available that without a doubt do get brilliant outcomes. and those are those that may trade your lifestyles. How? The maximum apparent gain of accurate male enhancement drugs is the increase in length you can experience.  Xplosive Vital The satisfactory male enhancement drugs now not only make your penis longer, additionally they enhance its girth. whether or not he desires to admit it or now not, each guy would really like to increase the scale of his member. http://www.strongtesterone.com/xplosive-vital/

 

 Xplosive Vital Ato answer your question, Xplosive Vital it without a doubt depends. no longer all male enhancement pills paintings, however there are a few available that without a doubt do get brilliant outcomes. and those are those that may trade your lifestyles. How? The maximum apparent gain of accurate male enhancement drugs is the increase in length you can experience.  Xplosive Vital The satisfactory male enhancement drugs now not only make your penis longer, additionally they enhance its girth. whether or not he desires to admit it or now not, each guy would really like to increase the scale of his member. http://www.strongtesterone.com/xplosive-vital/

 

I am working on an iterative code where I need to save a matrix in an intermediate step. My code is long and it uses a separate data file. So, I am trying to state my problem taking a simple example.

At first, I define a column matrix A0. Using A0, I do some calculations and test some conditions. 
In the next step, I want  to do similar calculations and test some conditions but this time by changing the first element of A0. For the purpose of later use, I need to save the matrix A0 in its original form. I am trying to use the following method but both A0 and A1 (modified A0) turn out to be same.

> restart;
> n := 3;
> A0 := Matrix(n, 1, 1);
> #Do some calculation with A0
> A1 := A0;
> A1[1, 1] := A1[1, 1]+.1*A1[1, 1];
> A1;
> print(A0, A1);

This might be because I set A1:=A0 in the third line. But how do I save A0 in its original form?

 

 

your next workout.Raw Power XL Try to stretch for about ten minutes at the beginning of your weight lifting regimen. You'll be less likely to get injured lifting heavy weights if you warm up first. By avoiding injury, you ensure that you can work out more consistently and frequently for optimal results.Raw Power XL When doing squats, be wise. Bring the bar down so that it rests near the middle of the traps.

http://www.supplements4us.com/raw-power-xl-reviews/

Electra Hair Straightening Brush

Avoid lugging sharp objects that might damage the inside fabric in the bag. That you simply your Electra Hair Brush reviews is stuffed in a really small pouch. Also use small pouches for hair pins, clothing pins, pencils or pens.
 
Head lice can lay over Electra Hair Brush Reviews 210 eggs inside their lifetime, easy enough to begin an entire colony from your head. This head lice is frequently found in children, ages 4 - 11, especially if they attend after school programs.

 

http://www.seremolynbuy.com/electra-hair-straightening-brush/

Hi everyone. I'm going to solve a problem of an article with hpm. well I wrote some initial codes(I uploaded both codes and article). but now I face with a problem. I cant reach to the correct plot that is in the article. could you please help me???

(dont think I am lazy ;))) I found f and g (by make a system with A1 and B1 and solve it i found f[0] and g[0], with p^3 coefficient in A-->f[1] and then with B2 I foud g[1]) and their plot was correct. but the problem is theta and phi and their plots :(( )

Project.mw

2.pdf   this is article



 

restart;

lambda:=0.5;K[r]:=0.5;Sc:=0.5;Nb:=0.1;Nt:=0.1;Pr:=10;

.5

 

.5

 

.5

 

.1

 

.1

 

10

(1)

EQUATIONS

equ1:=diff(f(eta),eta$4)-R*(diff(f(eta),eta)*diff(f(eta),eta$2)-f(eta)*diff(f(eta),eta$2))-2*K[r]*diff(g(eta),eta)=0;

equ2:=diff(g(eta),eta$2)-R*(diff(f(eta),eta)*g(eta)-f(eta)*diff(g(eta),eta))+2*K[r]*diff(f(eta),eta)=0;

equ3:=diff(theta(eta),eta$2)+Pr*R*f(eta)*diff(theta(eta),eta)+Nb*diff(phi(eta),eta)*diff(theta(eta),eta)+Nt*diff(theta(eta),eta)^2=0;

equ4:=diff(phi(eta),eta$2)+R*Sc*f(eta)*diff(phi(eta),eta)+diff(theta(eta),eta$2)*(Nt/Nb)=0;

diff(diff(diff(diff(f(eta), eta), eta), eta), eta)-R*((diff(f(eta), eta))*(diff(diff(f(eta), eta), eta))-f(eta)*(diff(diff(f(eta), eta), eta)))-1.0*(diff(g(eta), eta)) = 0

 

diff(diff(g(eta), eta), eta)-R*((diff(f(eta), eta))*g(eta)-f(eta)*(diff(g(eta), eta)))+1.0*(diff(f(eta), eta)) = 0

 

diff(diff(theta(eta), eta), eta)+10*R*f(eta)*(diff(theta(eta), eta))+.1*(diff(phi(eta), eta))*(diff(theta(eta), eta))+.1*(diff(theta(eta), eta))^2 = 0

 

diff(diff(phi(eta), eta), eta)+.5*R*f(eta)*(diff(phi(eta), eta))+1.000000000*(diff(diff(theta(eta), eta), eta)) = 0

(2)

BOUNDARY*CONDITIONS

ics:=
f(0)=0,D(f)(0)=1,g(0)=0,theta(0)=1,phi(0)=1;
f(1)=lambda,D(f)(1)=0,g(1)=0,theta(1)=0,phi(1)=0;

f(0) = 0, (D(f))(0) = 1, g(0) = 0, theta(0) = 1, phi(0) = 1

 

f(1) = .5, (D(f))(1) = 0, g(1) = 0, theta(1) = 0, phi(1) = 0

(3)

HPMs

hpm1:=(1-p)*(diff(f(eta),eta$4)-2*K[r]*diff(g(eta),eta))+p*(diff(f(eta),eta$4)-R*(diff(f(eta),eta)*diff(f(eta),eta$2)-f(eta)*diff(f(eta),eta$2))-2*K[r]*diff(g(eta),eta))=0;

hpm2:=(1-p)*(diff(g(eta),eta$2)+2*K[r]*diff(f(eta),eta))+p*(diff(g(eta),eta$2)-R*(diff(f(eta),eta)*g(eta)-f(eta)*diff(g(eta),eta))+2*K[r]*diff(f(eta),eta))=0;

hpm3:=(1-p)*(diff(theta(eta),eta$2))+p*(diff(theta(eta),eta$2)+Pr*R*f(eta)*diff(theta(eta),eta)+Nb*diff(phi(eta),eta)*diff(theta(eta),eta)+Nt*diff(theta(eta),eta)^2)=0;

hpm4:=(1-p)*(diff(phi(eta),eta$2)+diff(theta(eta),eta$2)*(Nt/Nb))+p*(diff(phi(eta),eta$2)+R*Sc*f(eta)*diff(phi(eta),eta)+diff(theta(eta),eta$2)*(Nt/Nb))=0;

(1-p)*(diff(diff(diff(diff(f(eta), eta), eta), eta), eta)-1.0*(diff(g(eta), eta)))+p*(diff(diff(diff(diff(f(eta), eta), eta), eta), eta)-R*((diff(f(eta), eta))*(diff(diff(f(eta), eta), eta))-f(eta)*(diff(diff(f(eta), eta), eta)))-1.0*(diff(g(eta), eta))) = 0

 

(1-p)*(diff(diff(g(eta), eta), eta)+1.0*(diff(f(eta), eta)))+p*(diff(diff(g(eta), eta), eta)-R*((diff(f(eta), eta))*g(eta)-f(eta)*(diff(g(eta), eta)))+1.0*(diff(f(eta), eta))) = 0

 

(1-p)*(diff(diff(theta(eta), eta), eta))+p*(diff(diff(theta(eta), eta), eta)+10*R*f(eta)*(diff(theta(eta), eta))+.1*(diff(phi(eta), eta))*(diff(theta(eta), eta))+.1*(diff(theta(eta), eta))^2) = 0

 

(1-p)*(diff(diff(phi(eta), eta), eta)+1.000000000*(diff(diff(theta(eta), eta), eta)))+p*(diff(diff(phi(eta), eta), eta)+.5*R*f(eta)*(diff(phi(eta), eta))+1.000000000*(diff(diff(theta(eta), eta), eta))) = 0

(4)

f(eta)=sum(f[i](eta)*p^i,i=0..1);

f(eta) = f[0](eta)+f[1](eta)*p

(5)

g(eta)=sum(g[i](eta)*p^i,i=0..1);

g(eta) = g[0](eta)+g[1](eta)*p

(6)

theta(eta)=sum(theta[i](eta)*p^i,i=0..1);

theta(eta) = theta[0](eta)+theta[1](eta)*p

(7)

phi(eta)=sum(phi[i](eta)*p^i,i=0..1);

phi(eta) = phi[0](eta)+phi[1](eta)*p

(8)

FORequ1

A:=collect(expand(subs(f(eta)=f[0](eta)+f[1](eta)*p,g(eta)=g[0](eta)+g[1](eta)*p,hpm1)),p);

(-1.*R*(diff(f[1](eta), eta))*(diff(diff(f[1](eta), eta), eta))+R*f[1](eta)*(diff(diff(f[1](eta), eta), eta)))*p^3+(-1.*R*(diff(f[0](eta), eta))*(diff(diff(f[1](eta), eta), eta))-1.*R*(diff(f[1](eta), eta))*(diff(diff(f[0](eta), eta), eta))+R*f[0](eta)*(diff(diff(f[1](eta), eta), eta))+R*f[1](eta)*(diff(diff(f[0](eta), eta), eta)))*p^2+(diff(diff(diff(diff(f[1](eta), eta), eta), eta), eta)-1.0*(diff(g[1](eta), eta))-1.*R*(diff(f[0](eta), eta))*(diff(diff(f[0](eta), eta), eta))+R*f[0](eta)*(diff(diff(f[0](eta), eta), eta)))*p+diff(diff(diff(diff(f[0](eta), eta), eta), eta), eta)-1.0*(diff(g[0](eta), eta)) = 0

(9)

A1:=diff(f[0](eta),eta$4)-2*K[r]*(diff(g[0](eta),eta))=0;
A2:=diff(f[1](eta),eta$4)-2*K[r]*(diff(g[1](eta),eta))-R*(diff(f[0](eta),eta))*(diff(f[0](eta),eta$2))+R*f[0](eta)*(diff(f[0](eta),eta$2))=0;

diff(diff(diff(diff(f[0](eta), eta), eta), eta), eta)-1.0*(diff(g[0](eta), eta)) = 0

 

diff(diff(diff(diff(f[1](eta), eta), eta), eta), eta)-1.0*(diff(g[1](eta), eta))-R*(diff(f[0](eta), eta))*(diff(diff(f[0](eta), eta), eta))+R*f[0](eta)*(diff(diff(f[0](eta), eta), eta)) = 0

(10)

icsA1:=f[0](0)=0,D(f[0])(0)=1,g[0](0)=0,f[0](1)=lambda,D(f[0])(1)=0,g[0](1)=0;
icsA2:=f[1](0)=0,D(f[1])(0)=0,g[1](0)=0,f[1](1)=0,D(f[1])(1)=0,g[1](1)=0;

f[0](0) = 0, (D(f[0]))(0) = 1, g[0](0) = 0, f[0](1) = .5, (D(f[0]))(1) = 0, g[0](1) = 0

 

f[1](0) = 0, (D(f[1]))(0) = 0, g[1](0) = 0, f[1](1) = 0, (D(f[1]))(1) = 0, g[1](1) = 0

(11)

NULLFORequ2

B:=collect(expand(subs(f(eta)=f[0](eta)+f[1](eta)*p,g(eta)=g[0](eta)+g[1](eta)*p,hpm2)),p);

(-1.*R*(diff(f[1](eta), eta))*g[1](eta)+R*f[1](eta)*(diff(g[1](eta), eta)))*p^3+(-1.*R*(diff(f[0](eta), eta))*g[1](eta)-1.*R*(diff(f[1](eta), eta))*g[0](eta)+R*f[0](eta)*(diff(g[1](eta), eta))+R*f[1](eta)*(diff(g[0](eta), eta)))*p^2+(diff(diff(g[1](eta), eta), eta)+1.0*(diff(f[1](eta), eta))-1.*R*(diff(f[0](eta), eta))*g[0](eta)+R*f[0](eta)*(diff(g[0](eta), eta)))*p+diff(diff(g[0](eta), eta), eta)+1.0*(diff(f[0](eta), eta)) = 0

(12)

B1:=diff(g[0](eta),eta$2)+2*K[r]*(diff(f[0](eta),eta))=0;
B2:=diff(g[1](eta),eta$2)+2*K[r]*(diff(f[1](eta),eta))-R*(diff(f[0](eta),eta))*g[0](eta)+R*f[0](eta)*(diff(g[0](eta),eta))=0;

diff(diff(g[0](eta), eta), eta)+1.0*(diff(f[0](eta), eta)) = 0

 

diff(diff(g[1](eta), eta), eta)+1.0*(diff(f[1](eta), eta))-R*(diff(f[0](eta), eta))*g[0](eta)+R*f[0](eta)*(diff(g[0](eta), eta)) = 0

(13)

icsB1:=f[0](0)=0,D(f[0])(0)=1,g[0](0)=0,f[0](1)=lambda,D(f[0])(1)=0,g[0](1)=0;
icsB2:=f[1](0)=0,D(f[1])(0)=0,g[1](0)=0,f[1](1)=0,D(f[1])(1)=0,g[1](1)=0;

f[0](0) = 0, (D(f[0]))(0) = 1, g[0](0) = 0, f[0](1) = .5, (D(f[0]))(1) = 0, g[0](1) = 0

 

f[1](0) = 0, (D(f[1]))(0) = 0, g[1](0) = 0, f[1](1) = 0, (D(f[1]))(1) = 0, g[1](1) = 0

(14)

FORequ3

C:=collect(expand(subs(theta(eta)=theta[0](eta)+theta[1](eta)*p,phi(eta)=phi[0](eta)+phi[1](eta)*p,f(eta)=f[0](eta)+f[1](eta)*p,hpm3)),p);

(10.*R*f[1](eta)*(diff(theta[1](eta), eta))+.1*(diff(phi[1](eta), eta))*(diff(theta[1](eta), eta))+.1*(diff(theta[1](eta), eta))^2)*p^3+(10.*R*f[0](eta)*(diff(theta[1](eta), eta))+10.*R*f[1](eta)*(diff(theta[0](eta), eta))+.1*(diff(phi[0](eta), eta))*(diff(theta[1](eta), eta))+.1*(diff(phi[1](eta), eta))*(diff(theta[0](eta), eta))+.2*(diff(theta[0](eta), eta))*(diff(theta[1](eta), eta)))*p^2+(diff(diff(theta[1](eta), eta), eta)+10.*R*f[0](eta)*(diff(theta[0](eta), eta))+.1*(diff(phi[0](eta), eta))*(diff(theta[0](eta), eta))+.1*(diff(theta[0](eta), eta))^2)*p+diff(diff(theta[0](eta), eta), eta) = 0

(15)

C1:=diff(theta[0](eta),eta$2)=0;
C2:=diff(theta[1](eta), eta, eta)+Pr*R*f[0](eta)*(diff(theta[0](eta), eta))+Nb*(diff(phi[0](eta), eta))*(diff(theta[0](eta), eta))+Nt*(diff(theta[0](eta), eta))^2=0;

diff(diff(theta[0](eta), eta), eta) = 0

 

diff(diff(theta[1](eta), eta), eta)+10*R*f[0](eta)*(diff(theta[0](eta), eta))+.1*(diff(phi[0](eta), eta))*(diff(theta[0](eta), eta))+.1*(diff(theta[0](eta), eta))^2 = 0

(16)

icsC1:=theta[0](0)=1,theta[0](1)=0;
icsC2:=f[0](0)=0,D(f[0])(0)=1,f[1](1)=0,D(f[1])(1)=0,theta[1](0)=0,theta[1](1)=0,phi[0](0)=0,phi[0](1)=0;

theta[0](0) = 1, theta[0](1) = 0

 

f[0](0) = 0, (D(f[0]))(0) = 1, f[1](1) = 0, (D(f[1]))(1) = 0, theta[1](0) = 0, theta[1](1) = 0, phi[0](0) = 0, phi[0](1) = 0

(17)

FORequ4

E:=collect(expand(subs(theta(eta)=theta[0](eta)+theta[1](eta)*p,phi(eta)=phi[0](eta)+phi[1](eta)*p,f(eta)=f[0](eta)+f[1](eta)*p,hpm4)),p);

.5*R*f[1](eta)*p^3*(diff(phi[1](eta), eta))+(.5*R*f[0](eta)*(diff(phi[1](eta), eta))+.5*R*f[1](eta)*(diff(phi[0](eta), eta)))*p^2+(diff(diff(phi[1](eta), eta), eta)+1.000000000*(diff(diff(theta[1](eta), eta), eta))+.5*R*f[0](eta)*(diff(phi[0](eta), eta)))*p+diff(diff(phi[0](eta), eta), eta)+1.000000000*(diff(diff(theta[0](eta), eta), eta)) = 0

(18)

E1:=diff(phi[0](eta),eta$2)+Nt*(diff(theta[0](eta),eta$2))/Nb=0;
E2:=diff(phi[1](eta),eta$2)+Nt*(diff(theta[1](eta),eta$2))/Nb+R*Sc*f[0](eta)*(diff(phi[0](eta),eta))=0;

diff(diff(phi[0](eta), eta), eta)+1.000000000*(diff(diff(theta[0](eta), eta), eta)) = 0

 

diff(diff(phi[1](eta), eta), eta)+1.000000000*(diff(diff(theta[1](eta), eta), eta))+.5*R*f[0](eta)*(diff(phi[0](eta), eta)) = 0

(19)

icsE1:=phi[0](0)=1,phi[0](1)=0;
icsE2:=f[0](0)=0,D(f[0])(0)=1,f[1](1)=0,D(f[1])(1)=0,theta[1](0)=0,theta[1](1)=0,phi[1](0)=0,phi[1](1)=0;

phi[0](0) = 1, phi[0](1) = 0

 

f[0](0) = 0, (D(f[0]))(0) = 1, f[1](1) = 0, (D(f[1]))(1) = 0, theta[1](0) = 0, theta[1](1) = 0, phi[1](0) = 0, phi[1](1) = 0

(20)

``

NULL



Download Project.mw


Project.mw

Download Project.mw

thanks for your favorits

Please check this:

N:=3;

sum1 := lcm(N, 0)+lcm(N, 1)+lcm(N, 2)+lcm(N, 3);

sum2 := sum(lcm(N, k), k = 0 .. N);

 

Why is sum2 wrong?

 

Regards,

César Lozada

 

Hi everyone.

I'm going to solve a problem with HPM in Maple. I wrote some initial codes but now I'm confused becouse of P^0 coefficients in A1 and B1. I mean I can't reach to f0 and g0.

I upload that file. these are codes that i typed. could you please help me how can I reach to them(f0 & g0)?

http://www.filehosting.org/file/details/573095/Maple%20Project+.mw

The following code is part of my attempt to answer the recent Question about the bifurcation of the map f:= x-> exp(x^2*(a-x)). Two very weird things are happening. They can be seen by applying trace to f. The first is that the input argument to f seems to be changed to a very large integer. The second is that for some real values of a and x, I get imaginary results from this obviously real-valued function. Why are these things happening?

restart:

f:= x-> exp(x^2*(a-x)):

trace(f):

Iterate:= proc(a, x0:= 1., n:= 2000)
local A:= hfarray(1..n, [x0]), f:= subs(:-a= a, eval(:-f));          
     #evalhf(
          proc(f, A, n)
          local k;
               for k from 2 to n do A[k]:= f(A[k-1]) end do
          end proc
          (f, A, n);
     #);
     evalf[4]~(convert(A[1000..], set))
end proc:

Iterate(1.05);

{--> enter f, args = 4607182418800017408

 

HFloat(1.0512710963760241)

 

<-- exit f (now in unknown) = 4607413323290551347}
{--> enter f, args = 4607413323290551347

 

HFloat(0.9985962074909431)

 

<-- exit f (now in unknown) = 4607169774561176020}
{--> enter f, args = 4607169774561176020

 

HFloat(1.0525960836530153)

 

Warning,  computation interrupted

 

Iterate(.75);

{--> enter f, args = 4607182418800017408

 

.754589752755861+.192678397202388*I

 

<-- exit f (now in unknown) = HFloat(0.7545897527558614)+HFloat(0.19267839720238844)*I}

Error, (in unknown) unable to store 'HFloat(0.7545897527558614)+HFloat(0.19267839720238844)*I' when datatype=float[8]

 

 

 

Download bifurcation.mw

Hi!

In a paper due to Borwein

http://www.cecm.sfu.ca/personal/pborwein/PAPERS/P172.pdf

it is shown a (very beautiful) graph of the zeros of a partial sum of the Zeta-Riemann, where he indicates that the plot is "the normalized zeros of the 5th partial sum of the Zeta function". Somebody know how one can plot this with Maple?

Thank you!

✐♦❝❄t✉⑥♠❧❄❞❢❤❡⑦⑧❛❋⑨⑤⑦⑧❛✯ts❝⑩❦✑❝❄❜❚qs❴❇❛ ✈❇❜❶q✉❴❷♥♦❧❄t✇q✉❤❡❧❄❞★❦sr❇⑥✤❝❄❜✫qs❴❇❛❹❸✫❤❡❛⑧⑥✜❧❺✐❇✐❻⑦⑧❛⑧q✉❧❈❼❽❜❀r❇✐♦♣✒qs❤❡❝❄✐

Here is my Maple 16 code:

 I expected to get outuput

a [a,b,c]

a [a,c,b]

But I get no output.

Why?

 

 

 

1 2 3 4 5 6 7 Last Page 1 of 39