ecterrab

14540 Reputation

24 Badges

20 years, 24 days

MaplePrimes Activity


These are Posts that have been published by ecterrab

And the Nobel prize in physics 2017 went for work in General Relativity ! Actually, experimental work involving sophisticated detectors and Numerical Relativity, one of the branches of GR. The prize was awarded to Rainer Weiss (85 years old, 1/2 of the prize), Barry Barish (81 years old, 1/4 of the prize) and Kip Thorne (77 years old, 1/4 of the prize) who have "shaken the world again" with their work on Ligo experiment, which was able to detect ripples in the fabric of spacetime.

General Relativity continues to be at the center of work in theoretical and experimental physics. I take this opportunity to note that, in Maple 2017, among the several improvements in the Physics package regarding General Relativity, there is a new package, Physics:-ThreePlusOne, all dedicated to the symbolic manipulations necessary to formulate problems in Numerical Relativity.

The GR functionality implemented in Physics, Physics:-Tetrads and Physics:-ThreePlusOne is unique in computer algebra systems and reflects the Maplesoft intention, for several years now, to provide the very best possible computer algebra environment for Physics, regarding current research activity as well as related education in advanced mathematical-physics methods.

For what is going on in theoretical physics nowadays and its connection with General Relativity, in very short: the unification of gravity with the other forces, check for instance this map from Aug/2015 (by the way a very nice summary for whoever is interested):

It is also interesting the article behind this map of topics as well as this brilliant and accessible presentation by Nima Arkani-Hamed (Princeton):  Quantum Mechanics and Spacetime in the 21st Century, given in the Perimeter Institute for Theoretical Physics (Waterloo), November 2014. 

Edgardo S. Cheb-Terrab
Physics, Differential Equations and Mathematical Functions, Maplesoft

I'm back from presenting work in the "23rd Conference on Applications of Computer Algebra -2017" . It was a very interesting event. This fifth presentation, about "The Appell doubly hypergeometric functions", describes a very recent project I've been working at Maple, i.e. the very first complete computational implementation of the Appell doubly hypergeometric functions. This work appeared in Maple 2017. These functions have a tremendous potential in that, at the same time, they have a myriad of properties, and include as particular cases most of the existing mathematical language, and so they have obvious applications in integration, differential equations, and applied mathematics all around. I think these will be the functions of this XXI century, analogously to what happened with hypergeometric functions in the previous century.

At the end, there is a link to the presentation worksheet, with which one could open the sections and reproduce the presentation examples.
 

The four double-hypergeometric Appell functions,

a complete implementation in a computer algebra system

 

Edgardo S. Cheb-Terrab

Physics, Differential Equations and Mathematical Functions, Maplesoft

 

Abstract:
The four multi-parameter Appell functions, AppellF1 , AppellF2 , AppellF3  and AppellF4  are doubly hypergeometric functions that include as particular cases the 2F1 hypergeometric  and some cases of the MeijerG  function, and with them most of the known functions of mathematical physics. Appell functions have been popping up with increasing frequency in applications in quantum mechanics, molecular physics, and general relativity. In this talk, a full implementation of these functions in the Maple computer algebra system, including, for the first time, their numerical evaluation over the whole complex plane, is presented, with details about the symbolic and numerical strategies used.

Appell Functions (symbolic)

 

 

The main references:

• 

P. Appel, J.Kamke de Feriet, "Fonctions hypergeometriques et Hyperspheriques", 1926

• 

H. Srivastava, P.W. Karlsson, "Multiple Gaussian Hypergeometric Series", 1985

• 

24 papers in the literature, ranging from 1882 to 2015

 

Definition and Symmetries

   

Polynomial and Singular Cases

   

Single Power Series with Hypergeometric Coefficients

   

Analytic Extension from the Appell Series to the Appell Functions

   

Euler-Type and Contiguity Identities

   

Appell Differential Equations

   

Putting all together

   

Problem: some formulas in the literature are wrong or miss the conditions indicating when are they valid (exchange with the Mathematics director of the DLMF - NIST)

   

Appell Functions (numeric)

 

 

Goals

 

• 

Compute these Appell functions over the whole complex plane

• 

Considering that this is a research problem, implement different methods and flexible optional arguments to allow for:

a) comparison between methods (both performance and correctness),

b) investigation of a single method in different circumstances.

• 

Develop a computational structure that can be reused with other special functions (abstract code and provide the main options), and that could also be translated to C (so: only one numerical implementation, not 100 special function numerical implementations)

Limitation: the Maple original evalf command does not accept optional arguments

 

The cost of numerically evaluating an Appell function

 

• 

If it is a special hypergeometric case, then between 1 to 2 hypergeometric functions

• 

Next simplest case (series/recurrence below) 3 to 4 hypergeometric functions plus adding somewhat large formulas that involve only arithmetic operations up to 20,000 times (frequently less than 100 times)

• 

Next simplest case: the formulas themselves are power series with hypergeometric function coefficients; these cases frequently converge rapidly but may involve the numerical evaluation of up to hundreds of hypergeometric functions to get the value of a single Appell function.

 

Strategy for the numerical evaluation of Appell functions (or other functions ...)

 

 

The numerical evaluation flows orderly according to:

1) check whether it is a singular case

2) check whether it is a special value

3) compute the value using a series derived from a recurrence related to the underlying ODE

4) perform an sum using an infinite sum formula, checking for convergence

5) perform the numerical integration of the ODE underlying the given Appell function

6) perform a sequence of concatenated Taylor series expansions

Examples

   

Series/recurrence

   

Numerical integration of an underlying differential equation (ODEs and dsolve/numeric)

   

Concatenated Taylor series expansions covering the whole complex plane

   

Subproducts

 

Improvements in the numerical evaluation of hypergeometric functions

   

Evalf: an organized structure to implement the numerical evaluation of special functions in general

   

To be done

   


 

Download Appell_Functions.mw   
Download Appell_Functions.pdf

Edgardo S. Cheb-Terrab
Physics, Differential Equations and Mathematical Functions, Maplesoft

I'm back from presenting work in the "23rd Conference on Applications of Computer Algebra -2017" . It was a very interesting event. This fourth presentation, about "The FunctionAdvisor: extending information on mathematical functions with computer algebra algorithms", describes the FunctionAdvisor project at Maple, a project I started working during 1998, where the key idea I am trying to explore is that we do not need to collect a gazillion of formulas but just core blocks of mathematical information surrounded by clouds of algorithms able to derive extended information from them. In this sense this is also unique piece of software: it can derive properties for rather general algebraic expressions, not just well known tabulated functions. The examples illustrate the idea.

At the end, there is a link to the presentation worksheet, with which one could open the sections and reproduce the presentation examples.
 

The FunctionAdvisor: extending information on mathematical functions

with computer algebra algorithms

 

Edgardo S. Cheb-Terrab

Physics, Differential Equations and Mathematical Functions, Maplesoft

 

Abstract:

A shift in paradigm is happening, from: encoding information into a database, to: encoding essential blocks of information together with algorithms within a computer algebra system. Then, the information is not only searchable but can also be recreated in many different ways and actually used to compute. This talk focuses on this shift in paradigm over a real case example: the digitizing of information regarding mathematical functions as the FunctionAdvisor project of the Maple computer algebra system.

The FunctionAdvisor (basic)

   

Beyond the concept of a database

 
  

" Mathematical functions, are defined by algebraic expressions. So consider algebraic expressions in general ..."

Formal power series for algebraic expressions

   

Differential polynomial forms for algebraic expressions

   

Branch cuts for algebraic expressions

   

The nth derivative problem for algebraic expressions

   

Conversion network for mathematical and algebraic expressions

   

References

   


 

Download FunctionAdvisor.mw

Download FunctionAdvisor.pdf

Edgardo S. Cheb-Terrab
Physics, Differential Equations and Mathematical Functions, Maplesoft

I'm back from presenting work in the "23rd Conference on Applications of Computer Algebra -2017" . It was a very interesting event. This third presentation, about "Computer Algebra in Theoretical Physics", describes the Physics project at Maplesoft, also my first research project at University, that evolved into the now well-known Maple Physics package. This is a unique piece of software and perhaps the project I most enjoy working.

At the end, there is a link to the presentation worksheet, with which one could open the sections and reproduce the presentation examples.
 

 

 

Computer Algebra in Theoretical Physics

 

Edgardo S. Cheb-Terrab

Physics, Differential Equations and Mathematical Functions, Maplesoft

 

Abstract:

 

Generally speaking, physicists still experience that computing with paper and pencil is in most cases simpler than computing on a Computer Algebra worksheet. On the other hand, recent developments in the Maple system have implemented most of the mathematical objects and mathematics used in theoretical physics computations, and have dramatically approximated the notation used in the computer to the one used with paper and pencil, diminishing the learning gap and computer-syntax distraction to a strict minimum.

 

In this talk, the Physics project at Maplesoft is presented and the resulting Physics package is illustrated by tackling problems in classical and quantum mechanics, using tensor and Dirac's Bra-Ket notation, general relativity, including the equivalence problem, and classical field theory, deriving field equations using variational principles.

 

 

 

 

... and why computer algebra?

 

We can concentrate more on the ideas instead of on the algebraic manipulations

 

We can extend results with ease

 

We can explore the mathematics surrounding a problem

 

We can share results in a reproducible way

 

Representation issues that were preventing the use of computer algebra in Physics

   

Classical Mechanics

 

*Inertia tensor for a triatomic molecule

   

Quantum mechanics

 

*The quantum operator components of  `#mover(mi("L",mathcolor = "olive"),mo("→",fontstyle = "italic"))` satisfy "[L[j],L[k]][-]=i `ε`[j,k,m] L[m]"

   

*Unitary Operators in Quantum Mechanics

 

*Eigenvalues of an unitary operator and exponential of Hermitian operators

   

*Properties of unitary operators

 

 

Consider two set of kets " | a[n] >" and "| b[n] >", each of them constituting a complete orthonormal basis of the same space.

*Verify that "U=(&sum;) | b[k] >< a[k] |" , maps one basis to the other, i.e.: "| b[n] >=U | a[n] >"

   

*Show that "U=(&sum;) | b[k] > < a[k] | "is unitary

   

*Show that the matrix elements of U in the "| a[n] >" and  "| b[n] >" basis are equal

   

Show that A and `&Ascr;` = U*A*`#msup(mi("U"),mo("&dagger;"))`have the same spectrum (eigenvalues)

   

Schrödinger equation and unitary transform

   

Translation operators using Dirac notation

   

*Quantization of the energy of a particle in a magnetic field

   

Classical Field Theory

 

The field equations for the lambda*Phi^4 model

   

*Maxwell equations departing from the 4-dimensional Action for Electrodynamics

   

*The Gross-Pitaevskii field equations for a quantum system of identical particles

   

General Relativity

 

Exact Solutions to Einstein's Equations  Lambda*g[mu, nu]+G[mu, nu] = 8*Pi*T[mu, nu]

   

*"Physical Review D" 87, 044053 (2013)

   

The Equivalence problem between two metrics

   

*On the 3+1 split of the 4D Einstein equations

   

Tetrads and Weyl scalars in canonical form

   

 

 


 

Download Physics.mw

Download Physics.pdf

Edgardo S. Cheb-Terrab
Physics, Differential Equations and Mathematical Functions, Maplesoft

I'm back from presenting work in the "23rd Conference on Applications of Computer Algebra - 2017" . It was a very interesting event. This second presentation, about "Differential algebra with mathematical functions, symbolic powers and anticommutative variables", describes a project I started working in 1997 and that is at the root of Maple's dsolve and pdsolve performance with systems of equations. It is a unique approach. Not yet emulated in any other computer algebra system.

At the end, there is a link to the presentation worksheet, with which one could open the sections and reproduce the presentation examples.
 

Differential algebra with mathematical functions,

symbolic powers and anticommutative variables

 

Edgardo S. Cheb-Terrab

Physics, Differential Equations and Mathematical Functions, Maplesoft

 

Abstract:
Computer algebra implementations of Differential Algebra typically require that the systems of equations to be tackled be rational in the independent and dependent variables and their partial derivatives, and of course that A*B = A*B, everything is commutative.

 

It is possible, however, to extend this computational domain and apply Differential Algebra techniques to systems of equations that involve arbitrary compositions of mathematical functions (elementary or special), fractional and symbolic powers, as well as anticommutative variables and functions. This is the subject of this presentation, with examples of the implementation of these ideas in the Maple computer algebra system and its ODE and PDE solvers.

 

 

restartwith(PDEtools); interface(imaginaryunit = i)

sys := [diff(xi(x, y), y, y) = 0, -6*(diff(xi(x, y), y))*y+diff(eta(x, y), y, y)-2*(diff(xi(x, y), x, y)) = 0, -12*(diff(xi(x, y), y))*a^2*y-9*(diff(xi(x, y), y))*a*y^2-3*(diff(xi(x, y), y))*b-3*(diff(xi(x, y), x))*y-3*eta(x, y)+2*(diff(eta(x, y), x, y))-(diff(xi(x, y), x, x)) = 0, -8*(diff(xi(x, y), x))*a^2*y-6*(diff(xi(x, y), x))*a*y^2+4*(diff(eta(x, y), y))*a^2*y+3*(diff(eta(x, y), y))*a*y^2-4*eta(x, y)*a^2-6*eta(x, y)*a*y-2*(diff(xi(x, y), x))*b+(diff(eta(x, y), y))*b-3*(diff(eta(x, y), x))*y+diff(eta(x, y), x, x) = 0]

 

declare((xi, eta)(x, y))

xi(x, y)*`will now be displayed as`*xi

 

eta(x, y)*`will now be displayed as`*eta

(1)

for eq in sys do eq end do

diff(diff(xi(x, y), y), y) = 0

 

-6*(diff(xi(x, y), y))*y+diff(diff(eta(x, y), y), y)-2*(diff(diff(xi(x, y), x), y)) = 0

 

-12*(diff(xi(x, y), y))*a^2*y-9*(diff(xi(x, y), y))*a*y^2-3*(diff(xi(x, y), y))*b-3*(diff(xi(x, y), x))*y-3*eta(x, y)+2*(diff(diff(eta(x, y), x), y))-(diff(diff(xi(x, y), x), x)) = 0

 

-8*(diff(xi(x, y), x))*a^2*y-6*(diff(xi(x, y), x))*a*y^2+4*(diff(eta(x, y), y))*a^2*y+3*(diff(eta(x, y), y))*a*y^2-4*eta(x, y)*a^2-6*eta(x, y)*a*y-2*(diff(xi(x, y), x))*b+(diff(eta(x, y), y))*b-3*(diff(eta(x, y), x))*y+diff(diff(eta(x, y), x), x) = 0

(2)

casesplit(sys)

`casesplit/ans`([eta(x, y) = 0, diff(xi(x, y), x) = 0, diff(xi(x, y), y) = 0], [])

(3)

NULL

Differential polynomial forms for mathematical functions (basic)

   

Differential polynomial forms for compositions of mathematical functions

   

Generalization to many variables

   

Arbitrary functions of algebraic expressions

   

Examples of the use of this extension to include mathematical functions

   

Differential Algebra with anticommutative variables

   


 

Download DifferentialAlgebra.mw

Download DifferentialAlgebra.pdf

Edgardo S. Cheb-Terrab
Physics, Differential Equations and Mathematical Functions, Maplesoft

 

First 8 9 10 11 12 13 14 Last Page 10 of 18