salim-barzani

1640 Reputation

9 Badges

1 years, 74 days

MaplePrimes Activity


These are questions asked by salim-barzani

restart

with(PDEtools)

undeclare(prime)

`There is no more prime differentiation variable; all derivatives will be displayed as indexed functions`

(1)

with(DEtools)

NULL

with(DifferentialAlgebra)

"with(Student[ODEs][Solve]): "

with(IntegrationTools)

with(inttrans)

with(PDEtools)

with(Physics)

with(PolynomialTools)

with(RootFinding)

with(SolveTools)

with(LinearAlgebra)

with(sumtools)

pde := I*(diff(psi(x, t), t))+alpha*(diff(psi(x, t), `$`(x, 2)))+(beta[3]*abs(psi(x, t))+beta[4]*abs(psi(x, t))^2)*psi(x, t)+gamma*(diff(abs(psi(x, t))^2, `$`(x, 2)))*psi(x, t)/abs(psi(x, t)) = 0

case1 := {k = k, lambda = sqrt(-1/(18*alpha*beta[4]+18*gamma*beta[4]))*beta[3], w = -(9*alpha*k^2*beta[4]+2*beta[3]^2)/(9*beta[4]), A[0] = -beta[3]/(3*beta[4]), A[1] = beta[3]/(3*beta[4]), B[1] = 0}

" psi(x,t):=U(xi)*exp(I*(-k*x+w*t+theta))"

proc (x, t) options operator, arrow, function_assign; U(xi)*exp(I*(-k*x+w*t+theta)) end proc

(2)

" U(xi):=-(beta[3] (cosh(xi)-sinh(xi)))/(3 beta[4] cosh(xi))"

proc (xi) options operator, arrow, function_assign; -(1/3)*beta[3]*(cosh(xi)-sinh(xi))/(beta[4]*cosh(xi)) end proc

(3)

convert(U(xi), trig)

-(1/3)*beta[3]*(cosh(xi)-sinh(xi))/(beta[4]*cosh(xi))

(4)

xi := sqrt(-1/(18*alpha*beta[4]+18*gamma*beta[4]))*beta[3]*(2*alpha*kt+x)

(-1/(18*alpha*beta[4]+18*gamma*beta[4]))^(1/2)*beta[3]*(2*alpha*kt+x)

(5)

S := psi(x, t)

-(1/3)*beta[3]*(cosh((-1/(18*alpha*beta[4]+18*gamma*beta[4]))^(1/2)*beta[3]*(2*alpha*kt+x))-sinh((-1/(18*alpha*beta[4]+18*gamma*beta[4]))^(1/2)*beta[3]*(2*alpha*kt+x)))*exp(I*(-k*x+t*w+theta))/(beta[4]*cosh((-1/(18*alpha*beta[4]+18*gamma*beta[4]))^(1/2)*beta[3]*(2*alpha*kt+x)))

(6)

solution := subs(case1, S)

-(1/3)*beta[3]*(cosh((-1/(18*alpha*beta[4]+18*gamma*beta[4]))^(1/2)*beta[3]*(2*alpha*kt+x))-sinh((-1/(18*alpha*beta[4]+18*gamma*beta[4]))^(1/2)*beta[3]*(2*alpha*kt+x)))*exp(I*(-k*x-(1/9)*(9*alpha*k^2*beta[4]+2*beta[3]^2)*t/beta[4]+theta))/(beta[4]*cosh((-1/(18*alpha*beta[4]+18*gamma*beta[4]))^(1/2)*beta[3]*(2*alpha*kt+x)))

(7)

pdetest(psi(x, t) = -beta[3]*(cosh(sqrt(-1/(18*alpha*beta[4]+18*gamma*beta[4]))*beta[3]*(2*alpha*k+x))-sinh(sqrt(-1/(18*alpha*beta[4]+18*gamma*beta[4]))*beta[3]*(2*alpha*k+x)))*exp(I*(-k*x-(9*alpha*k^2*beta[4]+2*beta[3]^2)*t/(9*beta[4])+theta))/(3*beta[4]*cosh(sqrt(-1/(18*alpha*beta[4]+18*gamma*beta[4]))*beta[3]*(2*alpha*k+x)))*exp(I*(-k*x-(9*alpha*k^2*beta[4]+2*beta[3]^2)*t/(9*beta[4])+theta)), pde)

Error, (in pdetest) unable to determine the indeterminate function

 

NULL

 

 

 

 

Download pde-solve.mw

restart;
with(PolynomialTools);
with(RootFinding);
with(SolveTools);
with(LinearAlgebra);
NULL;
NULL;
E1 := (-alpha*k^2*A[1] - alpha*k^2*B[1] + 3*A[0]^2*A[1]*beta[4] + 3*A[0]^2*B[1]*beta[4] + A[1]^3*beta[4] + 3*A[1]^2*B[1]*beta[4] + 3*A[1]*B[1]^2*beta[4] + B[1]^3*beta[4] + 2*A[0]*A[1]*beta[3] + 2*A[0]*B[1]*beta[3] - w*A[1] - w*B[1])*cosh(xi)^6 + (-alpha*k^2*A[0] + A[0]^3*beta[4] + 3*A[0]*A[1]^2*beta[4] + 6*A[0]*A[1]*B[1]*beta[4] + 3*A[0]*B[1]^2*beta[4] + A[0]^2*beta[3] + A[1]^2*beta[3] + 2*A[1]*B[1]*beta[3] + B[1]^2*beta[3] - w*A[0])*sinh(xi)*cosh(xi)^5 + (2*alpha*k^2*A[1] + alpha*k^2*B[1] - 2*alpha*lambda^2*A[1] + 2*alpha*lambda^2*B[1] - 2*gamma*lambda^2*A[1] + 2*gamma*lambda^2*B[1] - 6*A[0]^2*A[1]*beta[4] - 3*A[0]^2*B[1]*beta[4] - 3*A[1]^3*beta[4] - 6*A[1]^2*B[1]*beta[4] - 3*A[1]*B[1]^2*beta[4] - 4*A[0]*A[1]*beta[3] - 2*A[0]*B[1]*beta[3] + 2*w*A[1] + w*B[1])*cosh(xi)^4 + (alpha*k^2*A[0] - A[0]^3*beta[4] - 6*A[0]*A[1]^2*beta[4] - 6*A[0]*A[1]*B[1]*beta[4] - A[0]^2*beta[3] - 2*A[1]^2*beta[3] - 2*A[1]*B[1]*beta[3] + w*A[0])*sinh(xi)*cosh(xi)^3 + (-alpha*k^2*A[1] + 4*alpha*lambda^2*A[1] + 4*gamma*lambda^2*A[1] + 3*A[0]^2*A[1]*beta[4] + 3*A[1]^3*beta[4] + 3*A[1]^2*B[1]*beta[4] + 2*A[0]*A[1]*beta[3] - w*A[1])*cosh(xi)^2 + (3*A[0]*A[1]^2*beta[4] + A[1]^2*beta[3])*sinh(xi)*cosh(xi) - 2*alpha*lambda^2*A[1] - 2*gamma*lambda^2*A[1] - A[1]^3*beta[4] = 0;
N := 6;
for i from 0 to N do
    equ[1][i] := coeff(E1, {cosh(xi)^i, sinh(xi)^i}, i) = 0;
end do;
             //        2               2     
equ[1][0] := \\-alpha k  A[1] - alpha k  B[1]

           2                      2                    3        
   + 3 A[0]  A[1] beta[4] + 3 A[0]  B[1] beta[4] + A[1]  beta[4]

           2                           2               3        
   + 3 A[1]  B[1] beta[4] + 3 A[1] B[1]  beta[4] + B[1]  beta[4]

                                                                \ 
   + 2 A[0] A[1] beta[3] + 2 A[0] B[1] beta[3] - w A[1] - w B[1]/ 

          6   /        2            3        
  cosh(xi)  + \-alpha k  A[0] + A[0]  beta[4]

                2                                   
   + 3 A[0] A[1]  beta[4] + 6 A[0] A[1] B[1] beta[4]

                2               2               2        
   + 3 A[0] B[1]  beta[4] + A[0]  beta[3] + A[1]  beta[3]

                               2                 \          
   + 2 A[1] B[1] beta[3] + B[1]  beta[3] - w A[0]/ sinh(xi) 

          5   /         2               2     
  cosh(xi)  + \2 alpha k  A[1] + alpha k  B[1]

                   2                      2     
   - 2 alpha lambda  A[1] + 2 alpha lambda  B[1]

                   2                      2     
   - 2 gamma lambda  A[1] + 2 gamma lambda  B[1]

           2                      2             
   - 6 A[0]  A[1] beta[4] - 3 A[0]  B[1] beta[4]

           3                 2             
   - 3 A[1]  beta[4] - 6 A[1]  B[1] beta[4]

                2                              
   - 3 A[1] B[1]  beta[4] - 4 A[0] A[1] beta[3]

                                            \         4   /      
   - 2 A[0] B[1] beta[3] + 2 w A[1] + w B[1]/ cosh(xi)  + \alpha 

   2            3                      2        
  k  A[0] - A[0]  beta[4] - 6 A[0] A[1]  beta[4]

                                    2                 2        
   - 6 A[0] A[1] B[1] beta[4] - A[0]  beta[3] - 2 A[1]  beta[3]

                                 \                  3   /
   - 2 A[1] B[1] beta[3] + w A[0]/ sinh(xi) cosh(xi)  + \
        2                      2                      2     
-alpha k  A[1] + 4 alpha lambda  A[1] + 4 gamma lambda  A[1]

           2                      3        
   + 3 A[0]  A[1] beta[4] + 3 A[1]  beta[4]

           2                                            \ 
   + 3 A[1]  B[1] beta[4] + 2 A[0] A[1] beta[3] - w A[1]/ 

          2
  cosh(xi) 

     /           2               2        \                  
   + \3 A[0] A[1]  beta[4] + A[1]  beta[3]/ sinh(xi) cosh(xi)

                   2                      2            3           
   - 2 alpha lambda  A[1] - 2 gamma lambda  A[1] - A[1]  beta[4] = 

   \    
  0/ = 0


                       equ[1][1] := 0 = 0

                       equ[1][2] := 0 = 0

                       equ[1][3] := 0 = 0

                       equ[1][4] := 0 = 0

                       equ[1][5] := 0 = 0

                       equ[1][6] := 0 = 0

NULL;
NULL;

Download loop_for_coeficent.mw

i am looking for all outcome of this function how i can do it


phi := (`\`p_1,p__2`, q__1, q__2, xi) -> p__1*exp(q__1*xi) - p__2*exp(q__2*xi);
for p[1 ] in [0,1,-1,I,-I] do ;
for p[2 ] in [0,1,-1,I,-I] do ;

 for q[1 ] in [0,1,-1,I,-I] do ;
 for q[2 ] in [0,1,-1,I,-I] do ;
result1 := evalf(phi(`\`p_1,p__2`, q__1, q__2, xi));
print('result1);

my code is not correct and not run in fact but it is my try

i am looking for special solution i want give the maple equation and give what answer i want with condition for example i just want thus solution which is A_0,A_1,B_1 not equal to zero and other parameter like (w,lambda,k) are free just this three not equal to zero.

restart
with(SolveTools);
with(LinearAlgebra);
eq12 := -alpha*k^2*A[0] - alpha*k^2*A[1] - alpha*k^2*B[1] + A[0]^3*beta[4] + (3*A[0]^2)*A[1]*beta[4] + (3*A[0]^2)*B[1]*beta[4] + (3*A[0])*A[1]^2*beta[4] + (6*A[0])*A[1]*B[1]*beta[4] + (3*A[0])*B[1]^2*beta[4] + A[1]^3*beta[4] + (3*A[1]^2)*B[1]*beta[4] + (3*A[1])*B[1]^2*beta[4] + B[1]^3*beta[4] + A[0]^2*beta[3] + (2*A[0])*A[1]*beta[3] + (2*A[0])*B[1]*beta[3] + A[1]^2*beta[3] + (2*A[1])*B[1]*beta[3] + B[1]^2*beta[3] - w*A[0] - w*A[1] - w*B[1] = 0

eq10 := (2*alpha)*k^2*A[1] - (2*alpha)*k^2*B[1] - (8*alpha)*lambda^2*A[1] + (8*alpha)*lambda^2*B[1] - (8*gamma)*lambda^2*A[1] + (8*gamma)*lambda^2*B[1] - (6*A[0]^2)*A[1]*beta[4] + (6*A[0]^2)*B[1]*beta[4] - (12*A[0])*A[1]^2*beta[4] + (12*A[0])*B[1]^2*beta[4] - (6*A[1]^3)*beta[4] - (6*A[1]^2)*B[1]*beta[4] + (6*A[1])*B[1]^2*beta[4] + (6*B[1]^3)*beta[4] - (4*A[0])*A[1]*beta[3] + (4*A[0])*B[1]*beta[3] - (4*A[1]^2)*beta[3] + (4*B[1]^2)*beta[3] + (2*w)*A[1] - (2*w)*B[1] = 0

eq8 := -(3*A[1]^2)*B[1]*beta[4] - (3*A[1])*B[1]^2*beta[4] - (2*A[0])*A[1]*beta[3] - (2*A[0])*B[1]*beta[3] + w*A[1] + w*B[1] - (3*A[0]^2)*B[1]*beta[4] + alpha*k^2*A[1] + alpha*k^2*B[1] - (3*A[0]^2)*A[1]*beta[4] + (3*alpha)*k^2*A[0] + (32*alpha)*lambda^2*A[1] + (32*alpha)*lambda^2*B[1] + (32*gamma)*lambda^2*A[1] + (32*gamma)*lambda^2*B[1] - (3*A[0]^3)*beta[4] + (15*A[0])*A[1]^2*beta[4] - (18*A[0])*A[1]*B[1]*beta[4] + (15*A[0])*B[1]^2*beta[4] + (15*A[1]^3)*beta[4] + (15*B[1]^3)*beta[4] - (3*A[0]^2)*beta[3] + (5*A[1]^2)*beta[3] - (6*A[1])*B[1]*beta[3] + (5*B[1]^2)*beta[3] + (3*w)*A[0] = 0

eq6 := -(4*alpha)*k^2*A[1] + (4*alpha)*k^2*B[1] - (48*alpha)*lambda^2*A[1] + (48*alpha)*lambda^2*B[1] - (48*gamma)*lambda^2*A[1] + (48*gamma)*lambda^2*B[1] + (12*A[0]^2)*A[1]*beta[4] - (12*A[0]^2)*B[1]*beta[4] - (20*A[1]^3)*beta[4] + (12*A[1]^2)*B[1]*beta[4] - (12*A[1])*B[1]^2*beta[4] + (20*B[1]^3)*beta[4] + (8*A[0])*A[1]*beta[3] - (8*A[0])*B[1]*beta[3] - (4*w)*A[1] + (4*w)*B[1] = 0

eq4 := -(3*A[1]^2)*B[1]*beta[4] - (3*A[1])*B[1]^2*beta[4] - (2*A[0])*A[1]*beta[3] - (2*A[0])*B[1]*beta[3] + w*A[1] + w*B[1] - (3*A[0]^2)*B[1]*beta[4] + alpha*k^2*A[1] + alpha*k^2*B[1] - (3*A[0]^2)*A[1]*beta[4] - (3*alpha)*k^2*A[0] + (32*alpha)*lambda^2*A[1] + (32*alpha)*lambda^2*B[1] + (32*gamma)*lambda^2*A[1] + (32*gamma)*lambda^2*B[1] + (3*A[0]^3)*beta[4] - (15*A[0])*A[1]^2*beta[4] + (18*A[0])*A[1]*B[1]*beta[4] - (15*A[0])*B[1]^2*beta[4] + (15*A[1]^3)*beta[4] + (15*B[1]^3)*beta[4] + (3*A[0]^2)*beta[3] - (5*A[1]^2)*beta[3] + (6*A[1])*B[1]*beta[3] - (5*B[1]^2)*beta[3] - (3*w)*A[0] = 0

eq2 := (2*alpha)*k^2*A[1] - (2*alpha)*k^2*B[1] - (8*alpha)*lambda^2*A[1] + (8*alpha)*lambda^2*B[1] - (8*gamma)*lambda^2*A[1] + (8*gamma)*lambda^2*B[1] - (6*A[0]^2)*A[1]*beta[4] + (6*A[0]^2)*B[1]*beta[4] + (12*A[0])*A[1]^2*beta[4] - (12*A[0])*B[1]^2*beta[4] - (6*A[1]^3)*beta[4] - (6*A[1]^2)*B[1]*beta[4] + (6*A[1])*B[1]^2*beta[4] + (6*B[1]^3)*beta[4] - (4*A[0])*A[1]*beta[3] + (4*A[0])*B[1]*beta[3] + (4*A[1]^2)*beta[3] - (4*B[1]^2)*beta[3] + (2*w)*A[1] - (2*w)*B[1] = 0

eq0 := alpha*k^2*A[0] - alpha*k^2*A[1] - alpha*k^2*B[1] - A[0]^3*beta[4] + (3*A[0]^2)*A[1]*beta[4] + (3*A[0]^2)*B[1]*beta[4] - (3*A[0])*A[1]^2*beta[4] - (6*A[0])*A[1]*B[1]*beta[4] - (3*A[0])*B[1]^2*beta[4] + A[1]^3*beta[4] + (3*A[1]^2)*B[1]*beta[4] + (3*A[1])*B[1]^2*beta[4] + B[1]^3*beta[4] - A[0]^2*beta[3] + (2*A[0])*A[1]*beta[3] + (2*A[0])*B[1]*beta[3] - A[1]^2*beta[3] - (2*A[1])*B[1]*beta[3] - B[1]^2*beta[3] + w*A[0] - w*A[1] - w*B[1] = 0

COEFFS := solve({eq0, eq10, eq12, eq2, eq4, eq6, eq8}, {k, lambda, w, A[0], A[1], B[1]})

 

restart;
with(DEtools);
ode := diff(y(x), x) = epsilon - y(x)^2;
                       d                       2
               ode := --- y(x) = epsilon - y(x) 
                       dx                       

sol := dsolve(ode);
                  /           (1/2)            (1/2)\        (1/2)
sol := y(x) = tanh\_C1 epsilon      + x epsilon     / epsilon     

P := particularsol(ode);
                          (1/2)                 (1/2)  
       P := y(x) = epsilon     , y(x) = -epsilon     , 

                /    y(x)    \            (1/2)          
         arctanh|------------| - x epsilon      + _C1 = 0
                |       (1/2)|                           
                \epsilon     /                           


i am looking for finding all solution of this equation like this picture below

First 32 33 34 35 Page 34 of 35