salim-barzani

1555 Reputation

9 Badges

1 years, 12 days

MaplePrimes Activity


These are questions asked by salim-barzani

i try find some part of solution of this kind of pde but i can't get results my openion is maybe this pde is wronge when i defined 

pde.mw

 Why you delete my question  most of my equation are same but demand of the questions are different, i can make a 100 account and each time i asked by one of them, and right now most of my question taged like they dublicated but they are don't ، i am not jobles and sick to post a dublicate question, You started a riot.

my solution is a little bit long which when i click on pdetest command i wait at least more than a hour but still is runing and i don't get any result and not give me error , which i don't know my result is true or not so How i can find that my pde by this solution it will be zero or not ?

restart

with(PDEtools)

with(LinearAlgebra)

NULL

with(SolveTools)

undeclare(prime)

`There is no more prime differentiation variable; all derivatives will be displayed as indexed functions`

(1)

declare(u(x, y, t))

u(x, y, t)*`will now be displayed as`*u

(2)

declare(f(x, y, t))

f(x, y, t)*`will now be displayed as`*f

(3)

pde := diff(u(x, y, t), t)-(diff(diff(u(x, y, t), `$`(x, 4))+5*u(x, y, t)*(diff(u(x, y, t), `$`(x, 2)))+(5/3)*u(x, y, t)^3+5*(diff(u(x, y, t), x, y)), x))-5*u(x, y, t)*(diff(u(x, y, t), y))+5*(int(diff(u(x, y, t), `$`(y, 2)), x))-5*(diff(u(x, y, t), x))*(int(diff(u(x, y, t), y), x))

diff(u(x, y, t), t)-(diff(diff(diff(diff(diff(u(x, y, t), x), x), x), x), x))-5*(diff(u(x, y, t), x))*(diff(diff(u(x, y, t), x), x))-5*u(x, y, t)*(diff(diff(diff(u(x, y, t), x), x), x))-5*u(x, y, t)^2*(diff(u(x, y, t), x))-5*(diff(diff(diff(u(x, y, t), x), x), y))-5*u(x, y, t)*(diff(u(x, y, t), y))+5*(int(diff(diff(u(x, y, t), y), y), x))-5*(diff(u(x, y, t), x))*(int(diff(u(x, y, t), y), x))

(4)

pde_nonlinear, pde_linear := selectremove(proc (term) options operator, arrow; has((eval(term, u(x, y, t) = a*u(x, y, t)))/a, a) end proc, pde)

-5*(diff(u(x, y, t), x))*(diff(diff(u(x, y, t), x), x))-5*u(x, y, t)*(diff(diff(diff(u(x, y, t), x), x), x))-5*u(x, y, t)^2*(diff(u(x, y, t), x))-5*u(x, y, t)*(diff(u(x, y, t), y))-5*(diff(u(x, y, t), x))*(int(diff(u(x, y, t), y), x)), diff(u(x, y, t), t)-(diff(diff(diff(diff(diff(u(x, y, t), x), x), x), x), x))-5*(diff(diff(diff(u(x, y, t), x), x), y))+5*(int(diff(diff(u(x, y, t), y), y), x))

(5)

thetai := t*w[i]+y*p[i]+x

t*w[i]+y*p[i]+x

(6)

eqw := w[i] = -5*p[i]^2

w[i] = -5*p[i]^2

(7)

Bij := proc (i, j) options operator, arrow; (-6*p[i]-6*p[j])/(p[i]-p[j])^2 end proc

proc (i, j) options operator, arrow; (-6*p[i]-6*p[j])/(p[i]-p[j])^2 end proc

(8)

NULL

theta1 := normal(eval(eval(thetai, eqw), i = 1)); theta2 := normal(eval(eval(thetai, eqw), i = 2))

-5*t*p[1]^2+y*p[1]+x

 

-5*t*p[2]^2+y*p[2]+x

(9)

eqf := f(x, y, t) = (-5*t*p[1]^2+y*p[1]+x)*(-5*t*p[2]^2+y*p[2]+x)-(6*(p[1]+p[2]))/(p[1]-p[2])^2

f(x, y, t) = (-5*t*p[1]^2+y*p[1]+x)*(-5*t*p[2]^2+y*p[2]+x)-6*(p[1]+p[2])/(p[1]-p[2])^2

(10)

eq17 := u(x, y, t) = 6*(diff(diff(f(x, y, t), x), x))/f(x, y, t)-6*(diff(f(x, y, t), x))^2/f(x, y, t)^2

u(x, y, t) = 6*(diff(diff(f(x, y, t), x), x))/f(x, y, t)-6*(diff(f(x, y, t), x))^2/f(x, y, t)^2

(11)

eqt := eval(eq17, eqf)

u(x, y, t) = 12/((-5*t*p[1]^2+y*p[1]+x)*(-5*t*p[2]^2+y*p[2]+x)-6*(p[1]+p[2])/(p[1]-p[2])^2)-6*(-5*t*p[1]^2-5*t*p[2]^2+y*p[1]+y*p[2]+2*x)^2/((-5*t*p[1]^2+y*p[1]+x)*(-5*t*p[2]^2+y*p[2]+x)-6*(p[1]+p[2])/(p[1]-p[2])^2)^2

(12)

``

pdetest(eqt, pde)

NULL

Download test.mw

How apply long wave limit for removing the constant k in such function , i need a general formula 

Limiting process from eq 12 to Bij

restart

NULL

Eq 12.

eij := ((-3*k[i]*(k[i]-k[j])*l[j]+beta)*l[i]^2-(2*(-3*k[j]*(k[i]-k[j])*l[j]*(1/2)+beta))*l[j]*l[i]+beta*l[j]^2)/((-3*k[i]*(k[i]+k[j])*l[j]+beta)*l[i]^2-(2*(3*k[j]*(k[i]+k[j])*l[j]*(1/2)+beta))*l[j]*l[i]+beta*l[j]^2)

((-3*k[i]*(k[i]-k[j])*l[j]+beta)*l[i]^2-2*(-(3/2)*k[j]*(k[i]-k[j])*l[j]+beta)*l[j]*l[i]+beta*l[j]^2)/((-3*k[i]*(k[i]+k[j])*l[j]+beta)*l[i]^2-2*((3/2)*k[j]*(k[i]+k[j])*l[j]+beta)*l[j]*l[i]+beta*l[j]^2)

(1)

eval(eij, k[j] = k[i]); series(%, k[i], 3); convert(%, polynom); eval(%, k[j] = k[i]); Bij := %

(beta*l[i]^2-2*beta*l[i]*l[j]+beta*l[j]^2)/((-6*k[i]^2*l[j]+beta)*l[i]^2-2*(3*k[i]^2*l[j]+beta)*l[j]*l[i]+beta*l[j]^2)

 

series(1+((6*l[i]^2*l[j]+6*l[i]*l[j]^2)/(beta*l[i]^2-2*beta*l[i]*l[j]+beta*l[j]^2))*k[i]^2+O(k[i]^4),k[i],4)

 

1+(6*l[i]^2*l[j]+6*l[i]*l[j]^2)*k[i]^2/(beta*l[i]^2-2*beta*l[i]*l[j]+beta*l[j]^2)

 

1+(6*l[i]^2*l[j]+6*l[i]*l[j]^2)*k[i]^2/(beta*l[i]^2-2*beta*l[i]*l[j]+beta*l[j]^2)

 

1+(6*l[i]^2*l[j]+6*l[i]*l[j]^2)*k[i]^2/(beta*l[i]^2-2*beta*l[i]*l[j]+beta*l[j]^2)

(2)

NULL

NULL

Download b12.mw

i want construct a series trail function for all pdf not just this one but this is a easy one, also after replacing the function How i can collect variable and make algebraic system for finding the constant of series function like a[20],a[10],a[00]. where i is number of derivative by x and n is number of derivative by t also n=0 and m=2 

restart

with(PDEtools)

with(LinearAlgebra)

NULL

with(SolveTools)

undeclare(prime)

`There is no more prime differentiation variable; all derivatives will be displayed as indexed functions`

(1)

declare(u(x, t))

u(x, t)*`will now be displayed as`*u

(2)

declare(w(x, t))

w(x, t)*`will now be displayed as`*w

(3)

pde := diff(u(x, t), t)+u(x, t)*(diff(u(x, t), x))+delta*(diff(u(x, t), `$`(x, 3))) = 0

diff(u(x, t), t)+u(x, t)*(diff(u(x, t), x))+delta*(diff(diff(diff(u(x, t), x), x), x)) = 0

(4)

NULL

K := u(x, t) = a[20]*(diff(ln(w(x, t)), `$`(x, 2)))+a[10]*(diff(ln(w(x, t)), x))+a[0]

u(x, t) = a[20]*((diff(diff(w(x, t), x), x))/w(x, t)-(diff(w(x, t), x))^2/w(x, t)^2)+a[10]*(diff(w(x, t), x))/w(x, t)+a[0]

(5)

K1 := normal(eval(pde, K))

(w(x, t)^4*(diff(diff(w(x, t), x), x))*a[0]*a[10]+w(x, t)^4*(diff(diff(diff(w(x, t), x), x), x))*a[0]*a[20]+w(x, t)^4*(diff(diff(diff(diff(diff(w(x, t), x), x), x), x), x))*delta*a[20]+w(x, t)^4*(diff(diff(diff(diff(w(x, t), x), x), x), x))*delta*a[10]-3*w(x, t)^3*(diff(diff(w(x, t), x), x))^2*delta*a[10]+w(x, t)^3*(diff(diff(w(x, t), x), x))^2*a[10]*a[20]+w(x, t)^3*(diff(diff(w(x, t), x), x))*(diff(w(x, t), x))*a[10]^2+w(x, t)^3*(diff(diff(w(x, t), x), x))*(diff(diff(diff(w(x, t), x), x), x))*a[20]^2-w(x, t)^3*(diff(w(x, t), x))^2*a[0]*a[10]-3*w(x, t)^2*(diff(diff(w(x, t), x), x))^2*(diff(w(x, t), x))*a[20]^2+2*w(x, t)^2*(diff(w(x, t), x))^3*a[0]*a[20]-w(x, t)^2*(diff(w(x, t), x))^2*(diff(diff(diff(w(x, t), x), x), x))*a[20]^2+5*w(x, t)*(diff(diff(w(x, t), x), x))*(diff(w(x, t), x))^3*a[20]^2-6*w(x, t)*(diff(w(x, t), x))^4*delta*a[10]+3*w(x, t)*(diff(w(x, t), x))^4*a[10]*a[20]-w(x, t)^3*(diff(diff(w(x, t), x), x))*(diff(w(x, t), t))*a[20]-a[10]*(diff(w(x, t), x))*(diff(w(x, t), t))*w(x, t)^3-2*w(x, t)^3*(diff(w(x, t), x))*(diff(diff(w(x, t), t), x))*a[20]+2*w(x, t)^2*(diff(w(x, t), t))*(diff(w(x, t), x))^2*a[20]-3*w(x, t)^3*(diff(diff(w(x, t), x), x))*(diff(w(x, t), x))*a[0]*a[20]-10*w(x, t)^3*(diff(diff(w(x, t), x), x))*(diff(diff(diff(w(x, t), x), x), x))*delta*a[20]-4*w(x, t)^3*(diff(w(x, t), x))*(diff(diff(diff(w(x, t), x), x), x))*delta*a[10]+w(x, t)^3*(diff(w(x, t), x))*(diff(diff(diff(w(x, t), x), x), x))*a[10]*a[20]-5*w(x, t)^3*(diff(w(x, t), x))*(diff(diff(diff(diff(w(x, t), x), x), x), x))*delta*a[20]+30*w(x, t)^2*(diff(diff(w(x, t), x), x))^2*(diff(w(x, t), x))*delta*a[20]+12*w(x, t)^2*(diff(diff(w(x, t), x), x))*(diff(w(x, t), x))^2*delta*a[10]-5*w(x, t)^2*(diff(diff(w(x, t), x), x))*(diff(w(x, t), x))^2*a[10]*a[20]+20*w(x, t)^2*(diff(w(x, t), x))^2*(diff(diff(diff(w(x, t), x), x), x))*delta*a[20]-60*w(x, t)*(diff(diff(w(x, t), x), x))*(diff(w(x, t), x))^3*delta*a[20]-w(x, t)^2*(diff(w(x, t), x))^3*a[10]^2+24*(diff(w(x, t), x))^5*delta*a[20]+(diff(diff(diff(w(x, t), t), x), x))*w(x, t)^4*a[20]+a[10]*(diff(diff(w(x, t), t), x))*w(x, t)^4-2*(diff(w(x, t), x))^5*a[20]^2)/w(x, t)^5 = 0

(6)

K2 := expand(%)

(diff(diff(w(x, t), x), x))*a[0]*a[10]/w(x, t)+(diff(diff(diff(w(x, t), x), x), x))*a[0]*a[20]/w(x, t)+(diff(diff(diff(diff(diff(w(x, t), x), x), x), x), x))*delta*a[20]/w(x, t)+(diff(diff(diff(diff(w(x, t), x), x), x), x))*delta*a[10]/w(x, t)-3*(diff(diff(w(x, t), x), x))^2*delta*a[10]/w(x, t)^2+(diff(diff(w(x, t), x), x))^2*a[10]*a[20]/w(x, t)^2+(diff(diff(w(x, t), x), x))*(diff(w(x, t), x))*a[10]^2/w(x, t)^2+(diff(diff(w(x, t), x), x))*(diff(diff(diff(w(x, t), x), x), x))*a[20]^2/w(x, t)^2-(diff(w(x, t), x))^2*a[0]*a[10]/w(x, t)^2-3*(diff(diff(w(x, t), x), x))^2*(diff(w(x, t), x))*a[20]^2/w(x, t)^3+2*(diff(w(x, t), x))^3*a[0]*a[20]/w(x, t)^3-(diff(w(x, t), x))^2*(diff(diff(diff(w(x, t), x), x), x))*a[20]^2/w(x, t)^3+5*(diff(diff(w(x, t), x), x))*(diff(w(x, t), x))^3*a[20]^2/w(x, t)^4-6*(diff(w(x, t), x))^4*delta*a[10]/w(x, t)^4+3*(diff(w(x, t), x))^4*a[10]*a[20]/w(x, t)^4-(diff(diff(w(x, t), x), x))*(diff(w(x, t), t))*a[20]/w(x, t)^2-a[10]*(diff(w(x, t), x))*(diff(w(x, t), t))/w(x, t)^2-2*(diff(w(x, t), x))*(diff(diff(w(x, t), t), x))*a[20]/w(x, t)^2+2*(diff(w(x, t), t))*(diff(w(x, t), x))^2*a[20]/w(x, t)^3+24*(diff(w(x, t), x))^5*delta*a[20]/w(x, t)^5+20*(diff(w(x, t), x))^2*(diff(diff(diff(w(x, t), x), x), x))*delta*a[20]/w(x, t)^3-60*(diff(diff(w(x, t), x), x))*(diff(w(x, t), x))^3*delta*a[20]/w(x, t)^4-3*(diff(diff(w(x, t), x), x))*(diff(w(x, t), x))*a[0]*a[20]/w(x, t)^2-10*(diff(diff(w(x, t), x), x))*(diff(diff(diff(w(x, t), x), x), x))*delta*a[20]/w(x, t)^2-4*(diff(w(x, t), x))*(diff(diff(diff(w(x, t), x), x), x))*delta*a[10]/w(x, t)^2+(diff(w(x, t), x))*(diff(diff(diff(w(x, t), x), x), x))*a[10]*a[20]/w(x, t)^2-5*(diff(w(x, t), x))*(diff(diff(diff(diff(w(x, t), x), x), x), x))*delta*a[20]/w(x, t)^2+30*(diff(diff(w(x, t), x), x))^2*(diff(w(x, t), x))*delta*a[20]/w(x, t)^3+12*(diff(diff(w(x, t), x), x))*(diff(w(x, t), x))^2*delta*a[10]/w(x, t)^3-5*(diff(diff(w(x, t), x), x))*(diff(w(x, t), x))^2*a[10]*a[20]/w(x, t)^3-(diff(w(x, t), x))^3*a[10]^2/w(x, t)^3+(diff(diff(diff(w(x, t), t), x), x))*a[20]/w(x, t)+a[10]*(diff(diff(w(x, t), t), x))/w(x, t)-2*(diff(w(x, t), x))^5*a[20]^2/w(x, t)^5 = 0

(7)

NULL

Download series-finding.mw

First 11 12 13 14 15 16 17 Last Page 13 of 32