salim-barzani

1640 Reputation

9 Badges

1 years, 74 days

MaplePrimes Activity


These are questions asked by salim-barzani

How i can get this special parameter i try to do substitution in another mw file but stilli can't reach this parameter and without this parameter my PDE is not give me zero so i have to find this r[i] parameter, some letter of my mw file are not similar to paper but r[i]=l[i] as mention is paper al clear and i found all structure just this remain, i am looking for equation (14), thanks for any help 

restart

with(PDEtools)

with(LinearAlgebra)

NULL

with(SolveTools)

_local(gamma)

Warning, A new binding for the name `gamma` has been created. The global instance of this name is still accessible using the :- prefix, :-`gamma`.  See ?protect for details.

 

NULL

declare(u(x, y, z, t))

u(x, y, z, t)*`will now be displayed as`*u

(1)

declare(f(x, y, z, t))

f(x, y, z, t)*`will now be displayed as`*f

(2)

pde1 := a*(diff(u(x, y, z, t), x, t))-((a^4-6*a^2*b^2+b^4)*(1/16))*(diff(u(x, y, z, t), `$`(x, 4)))-(1/4)*(3*(-a^2+b^2))*(diff(u(x, y, z, t)^2, `$`(x, 2)))+alpha*(diff(u(x, y, z, t), `$`(x, 2)))+beta*(diff(u(x, y, z, t), x, y))+delta*(diff(u(x, y, z, t), x, z))+lambda*(diff(u(x, y, z, t), `$`(z, 2)))+mu*(diff(u(x, y, z, t), y, z))+mu^2*(diff(u(x, y, z, t), `$`(y, 2)))/(4*lambda)

a*(diff(diff(u(x, y, z, t), t), x))-(1/16)*(a^4-6*a^2*b^2+b^4)*(diff(diff(diff(diff(u(x, y, z, t), x), x), x), x))-(3/4)*(-a^2+b^2)*(2*(diff(u(x, y, z, t), x))^2+2*u(x, y, z, t)*(diff(diff(u(x, y, z, t), x), x)))+alpha*(diff(diff(u(x, y, z, t), x), x))+beta*(diff(diff(u(x, y, z, t), x), y))+delta*(diff(diff(u(x, y, z, t), x), z))+lambda*(diff(diff(u(x, y, z, t), z), z))+mu*(diff(diff(u(x, y, z, t), y), z))+(1/4)*mu^2*(diff(diff(u(x, y, z, t), y), y))/lambda

(3)

Tr := {beta = alpha, delta = alpha, mu = 2*lambda}

{beta = alpha, delta = alpha, mu = 2*lambda}

(4)

pde := subs(Tr, pde1)

a*(diff(diff(u(x, y, z, t), t), x))-(1/16)*(a^4-6*a^2*b^2+b^4)*(diff(diff(diff(diff(u(x, y, z, t), x), x), x), x))-(3/4)*(-a^2+b^2)*(2*(diff(u(x, y, z, t), x))^2+2*u(x, y, z, t)*(diff(diff(u(x, y, z, t), x), x)))+alpha*(diff(diff(u(x, y, z, t), x), x))+alpha*(diff(diff(u(x, y, z, t), x), y))+alpha*(diff(diff(u(x, y, z, t), x), z))+lambda*(diff(diff(u(x, y, z, t), z), z))+2*lambda*(diff(diff(u(x, y, z, t), y), z))+lambda*(diff(diff(u(x, y, z, t), y), y))

(5)

pde_linear, pde_nonlinear := selectremove(proc (term) options operator, arrow; not has((eval(term, u(x, y, z, t) = T*u(x, y, z, t)))/T, T) end proc, expand(pde))

a*(diff(diff(u(x, y, z, t), t), x))-(1/16)*(diff(diff(diff(diff(u(x, y, z, t), x), x), x), x))*a^4+(3/8)*(diff(diff(diff(diff(u(x, y, z, t), x), x), x), x))*a^2*b^2-(1/16)*(diff(diff(diff(diff(u(x, y, z, t), x), x), x), x))*b^4+alpha*(diff(diff(u(x, y, z, t), x), x))+alpha*(diff(diff(u(x, y, z, t), x), y))+alpha*(diff(diff(u(x, y, z, t), x), z))+lambda*(diff(diff(u(x, y, z, t), z), z))+2*lambda*(diff(diff(u(x, y, z, t), y), z))+lambda*(diff(diff(u(x, y, z, t), y), y)), (3/2)*(diff(u(x, y, z, t), x))^2*a^2-(3/2)*(diff(u(x, y, z, t), x))^2*b^2+(3/2)*u(x, y, z, t)*(diff(diff(u(x, y, z, t), x), x))*a^2-(3/2)*u(x, y, z, t)*(diff(diff(u(x, y, z, t), x), x))*b^2

(6)

NULL

eq17 := u(x, y, z, t) = (-a^4+6*a^2*b^2-b^4)*((diff(diff(f(x, y, z, t), x), x))/f(x, y, z, t)-(diff(f(x, y, z, t), x))^2/f(x, y, z, t)^2)/(2*a^2-2*b^2)

``NULL

betai := k[i]*(t*w[i]+y*l[i]+z*r[i]+x)+eta[i]

k[i]*(t*w[i]+y*l[i]+z*r[i]+x)+eta[i]

(7)

W := w[i] = ((a^4-6*a^2*b^2+b^4)*k[i]^2-16*lambda*l[i]^2+(-32*lambda*r[i]-16*alpha)*l[i]-16*lambda*r[i]^2-16*alpha*r[i]-16*alpha)/(16*a)

AA := A[12] = (16*(l[1]-l[2]+r[1]-r[2])^2*lambda+3*(k[1]-k[2])^2*(a^2+2*a*b-b^2)*(a^2-2*a*b-b^2))/(16*(l[1]-l[2]+r[1]-r[2])^2*lambda+3*(k[1]+k[2])^2*(a^2+2*a*b-b^2)*(a^2-2*a*b-b^2))

F2 := 1+exp(beta[1])+A[1, 2]*exp(beta[1]+beta[2])+exp(beta[2])

1+exp(beta[1])+A[1, 2]*exp(beta[1]+beta[2])+exp(beta[2])

(8)

NULL

F22 := f(x, y, z, t) = 1+exp((a^4*t*k[1]^3-6*a^2*b^2*t*k[1]^3+b^4*t*k[1]^3-16*lambda*t*k[1]*l[1]^2-32*lambda*t*k[1]*l[1]*r[1]-16*lambda*t*k[1]*r[1]^2+16*a*y*k[1]*l[1]+16*a*z*k[1]*r[1]-16*alpha*t*k[1]*l[1]-16*alpha*t*k[1]*r[1]+16*a*x*k[1]-16*alpha*t*k[1]+16*a*eta[1])/(16*a))+exp((a^4*t*k[2]^3-6*a^2*b^2*t*k[2]^3+b^4*t*k[2]^3-16*lambda*t*k[2]*l[2]^2-32*lambda*t*k[2]*l[2]*r[2]-16*lambda*t*k[2]*r[2]^2+16*a*y*k[2]*l[2]+16*a*z*k[2]*r[2]-16*alpha*t*k[2]*l[2]-16*alpha*t*k[2]*r[2]+16*a*x*k[2]-16*alpha*t*k[2]+16*a*eta[2])/(16*a))

eq := eval(eq17, F22)

u(x, y, z, t) = (-a^4+6*a^2*b^2-b^4)*((k[1]^2*exp((1/16)*(a^4*t*k[1]^3-6*a^2*b^2*t*k[1]^3+b^4*t*k[1]^3-16*lambda*t*k[1]*l[1]^2-32*lambda*t*k[1]*l[1]*r[1]-16*lambda*t*k[1]*r[1]^2+16*a*y*k[1]*l[1]+16*a*z*k[1]*r[1]-16*alpha*t*k[1]*l[1]-16*alpha*t*k[1]*r[1]+16*a*x*k[1]-16*alpha*t*k[1]+16*a*eta[1])/a)+k[2]^2*exp((1/16)*(a^4*t*k[2]^3-6*a^2*b^2*t*k[2]^3+b^4*t*k[2]^3-16*lambda*t*k[2]*l[2]^2-32*lambda*t*k[2]*l[2]*r[2]-16*lambda*t*k[2]*r[2]^2+16*a*y*k[2]*l[2]+16*a*z*k[2]*r[2]-16*alpha*t*k[2]*l[2]-16*alpha*t*k[2]*r[2]+16*a*x*k[2]-16*alpha*t*k[2]+16*a*eta[2])/a))/(1+exp((1/16)*(a^4*t*k[1]^3-6*a^2*b^2*t*k[1]^3+b^4*t*k[1]^3-16*lambda*t*k[1]*l[1]^2-32*lambda*t*k[1]*l[1]*r[1]-16*lambda*t*k[1]*r[1]^2+16*a*y*k[1]*l[1]+16*a*z*k[1]*r[1]-16*alpha*t*k[1]*l[1]-16*alpha*t*k[1]*r[1]+16*a*x*k[1]-16*alpha*t*k[1]+16*a*eta[1])/a)+exp((1/16)*(a^4*t*k[2]^3-6*a^2*b^2*t*k[2]^3+b^4*t*k[2]^3-16*lambda*t*k[2]*l[2]^2-32*lambda*t*k[2]*l[2]*r[2]-16*lambda*t*k[2]*r[2]^2+16*a*y*k[2]*l[2]+16*a*z*k[2]*r[2]-16*alpha*t*k[2]*l[2]-16*alpha*t*k[2]*r[2]+16*a*x*k[2]-16*alpha*t*k[2]+16*a*eta[2])/a))-(k[1]*exp((1/16)*(a^4*t*k[1]^3-6*a^2*b^2*t*k[1]^3+b^4*t*k[1]^3-16*lambda*t*k[1]*l[1]^2-32*lambda*t*k[1]*l[1]*r[1]-16*lambda*t*k[1]*r[1]^2+16*a*y*k[1]*l[1]+16*a*z*k[1]*r[1]-16*alpha*t*k[1]*l[1]-16*alpha*t*k[1]*r[1]+16*a*x*k[1]-16*alpha*t*k[1]+16*a*eta[1])/a)+k[2]*exp((1/16)*(a^4*t*k[2]^3-6*a^2*b^2*t*k[2]^3+b^4*t*k[2]^3-16*lambda*t*k[2]*l[2]^2-32*lambda*t*k[2]*l[2]*r[2]-16*lambda*t*k[2]*r[2]^2+16*a*y*k[2]*l[2]+16*a*z*k[2]*r[2]-16*alpha*t*k[2]*l[2]-16*alpha*t*k[2]*r[2]+16*a*x*k[2]-16*alpha*t*k[2]+16*a*eta[2])/a))^2/(1+exp((1/16)*(a^4*t*k[1]^3-6*a^2*b^2*t*k[1]^3+b^4*t*k[1]^3-16*lambda*t*k[1]*l[1]^2-32*lambda*t*k[1]*l[1]*r[1]-16*lambda*t*k[1]*r[1]^2+16*a*y*k[1]*l[1]+16*a*z*k[1]*r[1]-16*alpha*t*k[1]*l[1]-16*alpha*t*k[1]*r[1]+16*a*x*k[1]-16*alpha*t*k[1]+16*a*eta[1])/a)+exp((1/16)*(a^4*t*k[2]^3-6*a^2*b^2*t*k[2]^3+b^4*t*k[2]^3-16*lambda*t*k[2]*l[2]^2-32*lambda*t*k[2]*l[2]*r[2]-16*lambda*t*k[2]*r[2]^2+16*a*y*k[2]*l[2]+16*a*z*k[2]*r[2]-16*alpha*t*k[2]*l[2]-16*alpha*t*k[2]*r[2]+16*a*x*k[2]-16*alpha*t*k[2]+16*a*eta[2])/a))^2)/(2*a^2-2*b^2)

(9)

pdetest(eq, pde)

Download fusion-undon.mw

i want to find critical point but becuase the equation is ong the result not shown up i try to put variable and then result show up but the number are to ugly and so long i want make them be 1 number without any decimal can we do that?

short-Dc.mw

As shown in the paper, and in many similar ones, the authors use a particular method that I believe is related to the long wave limit. I’m familiar with other approaches, but the traditional methods haven’t been successful in this case. This author, along with a few others, has tried applying this long wave limit approach, though many papers don’t explicitly mention the substitutions they use to arrive at the lump solution.

I’ve been able to separately find the lump series, but for some of the other solutions, we first need to figure out how to derive this key result. Once that part is clear, the rest should be easier to handle. I've been working through everything step by step and have managed to reproduce many of the solutions from the paper.

Also i don't know how finding (eq17) in paper, which they found by apply long wave limit to (eq7) in paper

additionaly How finding line which i think they found by finding velocity?

Please, if you have any information or insight into how we can obtain this more difficult result, I would really appreciate your help.

restart

with(PDEtools)

with(LinearAlgebra)

NULL

with(SolveTools)

_local(gamma)

NULL

declare(u(x, y, z, t))

u(x, y, z, t)*`will now be displayed as`*u

(1)

declare(f(x, y, z, t))

f(x, y, z, t)*`will now be displayed as`*f

(2)

alpha := 1; beta := 1; delta := 1; lambda := 1

1

 

1

 

1

 

1

(3)

pde := diff(diff(u(x, y, z, t), t)+6*u(x, y, z, t)*(diff(u(x, y, z, t), x))+diff(u(x, y, z, t), `$`(x, 3)), x)-lambda*(diff(u(x, y, z, t), `$`(y, 2)))+diff(alpha*(diff(u(x, y, z, t), x))+beta*(diff(u(x, y, z, t), y))+delta*(diff(u(x, y, z, t), z)), x)

diff(diff(u(x, y, z, t), t), x)+6*(diff(u(x, y, z, t), x))^2+6*u(x, y, z, t)*(diff(diff(u(x, y, z, t), x), x))+diff(diff(diff(diff(u(x, y, z, t), x), x), x), x)-(diff(diff(u(x, y, z, t), y), y))+diff(diff(u(x, y, z, t), x), x)+diff(diff(u(x, y, z, t), x), y)+diff(diff(u(x, y, z, t), x), z)

(4)

thetai := t*w[i]+x*k[i]+y*l[i]+z*r[i]+eta[i]

eq15 := w[i] = -(k[i]^4+k[i]^2+k[i]*l[i]+k[i]*r[i]-l[i]^2)/k[i]

eq17 := u(x, y, z, t) = 2*(diff(diff(f(x, y, z, t), x), x))/f(x, y, z, t)-2*(diff(f(x, y, z, t), x))^2/f(x, y, z, t)^2

A[sj] := (3*k[i]^4*k[j]^2-6*k[i]^3*k[j]^3+(3*k[j]^4+l[j]^2)*k[i]^2-2*k[i]*k[j]*l[i]*l[j]+k[j]^2*l[i]^2)/(3*k[i]^4*k[j]^2+6*k[i]^3*k[j]^3+(3*k[j]^4+l[j]^2)*k[i]^2-2*k[i]*k[j]*l[i]*l[j]+k[j]^2*l[i]^2)

F2 := 1+exp(eta[1])+b[1, 2]*exp(eta[1]+eta[2])+exp(eta[2])

1+exp(eta[1])+b[1, 2]*exp(eta[1]+eta[2])+exp(eta[2])

(5)

F22 := 1+exp(eta[1])+(3*k[1]^4*k[2]^2-6*k[1]^3*k[2]^3+(3*k[2]^4+l[2]^2)*k[1]^2-2*k[1]*k[2]*l[1]*l[2]+k[2]^2*l[1]^2)*exp(eta[1]+eta[2])/(3*k[1]^4*k[2]^2+6*k[1]^3*k[2]^3+(3*k[2]^4+l[2]^2)*k[1]^2-2*k[1]*k[2]*l[1]*l[2]+k[2]^2*l[1]^2)+exp(eta[2])

1+exp(eta[1])+(3*k[1]^4*k[2]^2-6*k[1]^3*k[2]^3+(3*k[2]^4+l[2]^2)*k[1]^2-2*k[1]*k[2]*l[1]*l[2]+k[2]^2*l[1]^2)*exp(eta[1]+eta[2])/(3*k[1]^4*k[2]^2+6*k[1]^3*k[2]^3+(3*k[2]^4+l[2]^2)*k[1]^2-2*k[1]*k[2]*l[1]*l[2]+k[2]^2*l[1]^2)+exp(eta[2])

(6)

NULL

NULL

F222 := exp(-(t*k[1]^4+t*k[1]^2+t*k[1]*l[1]+t*k[1]*r[1]-t*l[1]^2-x*k[1]^2-y*k[1]*l[1]-eta[1]*k[1])/k[1])+(3*k[1]^4*k[2]^2-6*k[1]^3*k[2]^3+(3*k[2]^4+l[2]^2)*k[1]^2-2*k[1]*k[2]*l[1]*l[2]+k[2]^2*l[1]^2)*exp(-(t*k[1]^4+t*k[1]^2+t*k[1]*l[1]+t*k[1]*r[1]-t*l[1]^2-x*k[1]^2-y*k[1]*l[1]-eta[1]*k[1])/k[1]-(t*k[2]^4+t*k[2]^2+t*k[2]*l[2]+t*k[2]*r[2]-t*l[2]^2-x*k[2]^2-y*k[2]*l[2]-eta[2]*k[2])/k[2])/(3*k[1]^4*k[2]^2+6*k[1]^3*k[2]^3+(3*k[2]^4+l[2]^2)*k[1]^2-2*k[1]*k[2]*l[1]*l[2]+k[2]^2*l[1]^2)+exp(-(t*k[2]^4+t*k[2]^2+t*k[2]*l[2]+t*k[2]*r[2]-t*l[2]^2-x*k[2]^2-y*k[2]*l[2]-eta[2]*k[2])/k[2])

exp(-(t*k[1]^4+t*k[1]^2+t*k[1]*l[1]+t*k[1]*r[1]-t*l[1]^2-x*k[1]^2-y*k[1]*l[1]-eta[1]*k[1])/k[1])+(3*k[1]^4*k[2]^2-6*k[1]^3*k[2]^3+(3*k[2]^4+l[2]^2)*k[1]^2-2*k[1]*k[2]*l[1]*l[2]+k[2]^2*l[1]^2)*exp(-(t*k[1]^4+t*k[1]^2+t*k[1]*l[1]+t*k[1]*r[1]-t*l[1]^2-x*k[1]^2-y*k[1]*l[1]-eta[1]*k[1])/k[1]-(t*k[2]^4+t*k[2]^2+t*k[2]*l[2]+t*k[2]*r[2]-t*l[2]^2-x*k[2]^2-y*k[2]*l[2]-eta[2]*k[2])/k[2])/(3*k[1]^4*k[2]^2+6*k[1]^3*k[2]^3+(3*k[2]^4+l[2]^2)*k[1]^2-2*k[1]*k[2]*l[1]*l[2]+k[2]^2*l[1]^2)+exp(-(t*k[2]^4+t*k[2]^2+t*k[2]*l[2]+t*k[2]*r[2]-t*l[2]^2-x*k[2]^2-y*k[2]*l[2]-eta[2]*k[2])/k[2])

(7)

indets(F222)

{t, x, y, eta[1], eta[2], k[1], k[2], l[1], l[2], r[1], r[2], exp(-(t*k[1]^4+t*k[1]^2+t*k[1]*l[1]+t*k[1]*r[1]-t*l[1]^2-x*k[1]^2-y*k[1]*l[1]-eta[1]*k[1])/k[1]), exp(-(t*k[2]^4+t*k[2]^2+t*k[2]*l[2]+t*k[2]*r[2]-t*l[2]^2-x*k[2]^2-y*k[2]*l[2]-eta[2]*k[2])/k[2]), exp(-(t*k[1]^4+t*k[1]^2+t*k[1]*l[1]+t*k[1]*r[1]-t*l[1]^2-x*k[1]^2-y*k[1]*l[1]-eta[1]*k[1])/k[1]-(t*k[2]^4+t*k[2]^2+t*k[2]*l[2]+t*k[2]*r[2]-t*l[2]^2-x*k[2]^2-y*k[2]*l[2]-eta[2]*k[2])/k[2])}

(8)

eq1 := eval(F222, {eta[1] = -1, eta[2] = -1, k[1] = K[1]*epsilon, l[1] = L[1]*epsilon, r[1] = R[1]*epsilon})

exp(-(epsilon^4*t*K[1]^4+epsilon^2*t*K[1]^2+epsilon^2*t*K[1]*L[1]+epsilon^2*t*K[1]*R[1]-epsilon^2*t*L[1]^2-epsilon^2*x*K[1]^2-epsilon^2*y*K[1]*L[1]+epsilon*K[1])/(K[1]*epsilon))+(3*K[1]^4*epsilon^4*k[2]^2-6*K[1]^3*epsilon^3*k[2]^3+(3*k[2]^4+l[2]^2)*K[1]^2*epsilon^2-2*K[1]*epsilon^2*k[2]*L[1]*l[2]+k[2]^2*L[1]^2*epsilon^2)*exp(-(epsilon^4*t*K[1]^4+epsilon^2*t*K[1]^2+epsilon^2*t*K[1]*L[1]+epsilon^2*t*K[1]*R[1]-epsilon^2*t*L[1]^2-epsilon^2*x*K[1]^2-epsilon^2*y*K[1]*L[1]+epsilon*K[1])/(K[1]*epsilon)-(t*k[2]^4+t*k[2]^2+t*k[2]*l[2]+t*k[2]*r[2]-t*l[2]^2-x*k[2]^2-y*k[2]*l[2]+k[2])/k[2])/(3*K[1]^4*epsilon^4*k[2]^2+6*K[1]^3*epsilon^3*k[2]^3+(3*k[2]^4+l[2]^2)*K[1]^2*epsilon^2-2*K[1]*epsilon^2*k[2]*L[1]*l[2]+k[2]^2*L[1]^2*epsilon^2)+exp(-(t*k[2]^4+t*k[2]^2+t*k[2]*l[2]+t*k[2]*r[2]-t*l[2]^2-x*k[2]^2-y*k[2]*l[2]+k[2])/k[2])

(9)

G := limit(eq1, epsilon = 0)

exp(-(t*k[2]^4+t*k[2]^2+t*k[2]*l[2]+t*k[2]*r[2]-t*l[2]^2-x*k[2]^2-y*k[2]*l[2]+2*k[2])/k[2])+exp(-1)+exp(-(t*k[2]^4+t*k[2]^2+t*k[2]*l[2]+t*k[2]*r[2]-t*l[2]^2-x*k[2]^2-y*k[2]*l[2]+k[2])/k[2])

(10)

Download LWL.mw

in try to figure out why in some function i can find this critical point for ploting i need that point , untill now i just find in one function and other i can't and my program not runing for other and really this is make problem for my invistigation i want to fixed that and i upload that file i did and that file i can't find it for , thanks for any help?

line-undone.mw

Line-1-Done.mw

I'm not currently working on the topic of fluids and I'm not very familiar with it. However, my partner is working on it and is using other software. They have a question about whether Maple can handle this kind of work. Are there any examples available? I’d appreciate any help

thanks!

First 9 10 11 12 13 14 15 Last Page 11 of 35