salim-barzani

1555 Reputation

9 Badges

1 years, 14 days

MaplePrimes Activity


These are questions asked by salim-barzani

i found solution of PDE but there is some different from my solution and paper solution so there is must be a mistake becuase he solved by maple too he mentioned in the paper i try to figure out but i can't see any mistake from my solution can anyone watch where i did mistake, i change some letter in finding parameter but they are same like p=k&h=A&n=p&w=n

here is paper solution 

parameter-different.mw

i want to plot density i try to use code of [interactive] but didn't give me density 

restart

_local(gamma)

Warning, A new binding for the name `gamma` has been created. The global instance of this name is still accessible using the :- prefix, :-`gamma`.  See ?protect for details.

 

NULL

sol3 := (2*(2*k[2]^2*p[2]^2/p[1]^2+2*k[2]^2))/((-x*k[2]*p[2]/p[1]+y*p[1])^2+(x*k[2]+y*p[2])^2+a[0])-2*(-(2*(-x*k[2]*p[2]/p[1]+y*p[1]))*k[2]*p[2]/p[1]+(2*(x*k[2]+y*p[2]))*k[2])^2/((-x*k[2]*p[2]/p[1]+y*p[1])^2+(x*k[2]+y*p[2])^2+a[0])^2

NULL

lprint(indets(sol3, name))

{x, y, a[0], k[2], p[1], p[2]}

 

P :=   [  a[0]=1.2, k[2]=0.8, p[1]=-0.8, p[2]=0.4]

[a[0] = 1.2, k[2] = .8, p[1] = -.8, p[2] = .4]

(1)

latex(P)

[a_{0} =  1.2, k_{2} =  0.8, p_{1} = - 0.8, p_{2} =  0.4]

 

NULL

Assume some functional form for U(xi)

 

insert numerical values

solnum :=subs(P, sol3);

3.200000000/((.4000000000*x-.8*y)^2+(.8*x+.4*y)^2+1.2)-5.120000000*x^2/((.4000000000*x-.8*y)^2+(.8*x+.4*y)^2+1.2)^2

(2)

CodeGeneration['Matlab']('3.200000000/((.4000000000*x-.8*y)^2+(.8*x+.4*y)^2+1.2)-5.120000000*x^2/((.4000000000*x-.8*y)^2+(.8*x+.4*y)^2+1.2)^2')

cg0 = 0.3200000000e1 / ((0.4000000000e0 * x - 0.8e0 * y) ^ 2 + (0.8e0 * x + 0.4e0 * y) ^ 2 + 0.12e1) - 0.5120000000e1 * x ^ 2 / ((0.4000000000e0 * x - 0.8e0 * y) ^ 2 + (0.8e0 * x + 0.4e0 * y) ^ 2 + 0.12e1) ^ 2;

 

 

P := Array(1 .. 3); P[1] := plot3d(map(Re, solnum), x = -20 .. 20, y = -5 .. 5, title = Re); P[2] := plot3d(map(Im, solnum), x = -20 .. 20, y = -5 .. 5, title = Im); P[3] := plot3d(map(abs, solnum), x = -20 .. 20, y = -5 .. 5, title = abs); plots:-display(P)

 

 

 

 

 

 

``

 

 

Q := Array(1 .. 2); Q[1] := plot3d(map(density, solnum), x = -20 .. 20, y = -5 .. 5, title = den); Q[2] := plot3d(map(contour, solnum), x = -20 .. 20, y = -5 .. 5, title = contour); plots:-display(Q)

Warning, expecting only range variables [x, y] in expression density(3.200000000/((.4000000000*x-.8*y)^2+(.8*x+.4*y)^2+1.2))+density(-5.120000000*x^2/((.4000000000*x-.8*y)^2+(.8*x+.4*y)^2+1.2)^2) to be plotted but found name density

 

Warning, expecting only range variables [x, y] in expression contour(3.200000000/((.4000000000*x-.8*y)^2+(.8*x+.4*y)^2+1.2))+contour(-5.120000000*x^2/((.4000000000*x-.8*y)^2+(.8*x+.4*y)^2+1.2)^2) to be plotted but found name contour

 

 

 

 

 

 

 

 

Download graph-density-countour.mw

restart

with(PDEtools)

with(LinearAlgebra)

NULL

with(SolveTools)

undeclare(prime)

`There is no more prime differentiation variable; all derivatives will be displayed as indexed functions`

(1)

declare(u(x, t))

u(x, t)*`will now be displayed as`*u

(2)

declare(f(x, t))

f(x, t)*`will now be displayed as`*f

(3)

pde := diff(u(x, t), `$`(x, 3))+6*u(x, t)*(diff(u(x, t), x))+diff(u(x, t), t) = 0

diff(diff(diff(u(x, t), x), x), x)+6*u(x, t)*(diff(u(x, t), x))+diff(u(x, t), t) = 0

(4)

map(int, diff(diff(diff(u(x, t), x), x), x)+6*u(x, t)*(diff(u(x, t), x))+diff(u(x, t), t) = 0, x)

3*u(x, t)^2+diff(diff(u(x, t), x), x)+int(diff(u(x, t), t), x) = 0

(5)

pde1 := %

3*u(x, t)^2+diff(diff(u(x, t), x), x)+int(diff(u(x, t), t), x) = 0

(6)

Y := u(x, t) = 2*(diff(ln(f(x, t)), `$`(x, 2)))

u(x, t) = 2*(diff(diff(f(x, t), x), x))/f(x, t)-2*(diff(f(x, t), x))^2/f(x, t)^2

(7)

L := eval(pde1, Y)

3*(2*(diff(diff(f(x, t), x), x))/f(x, t)-2*(diff(f(x, t), x))^2/f(x, t)^2)^2+2*(diff(diff(diff(diff(f(x, t), x), x), x), x))/f(x, t)-8*(diff(diff(diff(f(x, t), x), x), x))*(diff(f(x, t), x))/f(x, t)^2+24*(diff(diff(f(x, t), x), x))*(diff(f(x, t), x))^2/f(x, t)^3-6*(diff(diff(f(x, t), x), x))^2/f(x, t)^2-12*(diff(f(x, t), x))^4/f(x, t)^4-2*(diff(f(x, t), x))*(diff(f(x, t), t))/f(x, t)^2+2*(diff(diff(f(x, t), t), x))/f(x, t) = 0

(8)

numer(lhs(3*(2*(diff(diff(f(x, t), x), x))/f(x, t)-2*(diff(f(x, t), x))^2/f(x, t)^2)^2+2*(diff(diff(diff(diff(f(x, t), x), x), x), x))/f(x, t)-8*(diff(diff(diff(f(x, t), x), x), x))*(diff(f(x, t), x))/f(x, t)^2+24*(diff(diff(f(x, t), x), x))*(diff(f(x, t), x))^2/f(x, t)^3-6*(diff(diff(f(x, t), x), x))^2/f(x, t)^2-12*(diff(f(x, t), x))^4/f(x, t)^4-2*(diff(f(x, t), x))*(diff(f(x, t), t))/f(x, t)^2+2*(diff(diff(f(x, t), t), x))/f(x, t) = 0))*denom(rhs(3*(2*(diff(diff(f(x, t), x), x))/f(x, t)-2*(diff(f(x, t), x))^2/f(x, t)^2)^2+2*(diff(diff(diff(diff(f(x, t), x), x), x), x))/f(x, t)-8*(diff(diff(diff(f(x, t), x), x), x))*(diff(f(x, t), x))/f(x, t)^2+24*(diff(diff(f(x, t), x), x))*(diff(f(x, t), x))^2/f(x, t)^3-6*(diff(diff(f(x, t), x), x))^2/f(x, t)^2-12*(diff(f(x, t), x))^4/f(x, t)^4-2*(diff(f(x, t), x))*(diff(f(x, t), t))/f(x, t)^2+2*(diff(diff(f(x, t), t), x))/f(x, t) = 0)) = numer(rhs(3*(2*(diff(diff(f(x, t), x), x))/f(x, t)-2*(diff(f(x, t), x))^2/f(x, t)^2)^2+2*(diff(diff(diff(diff(f(x, t), x), x), x), x))/f(x, t)-8*(diff(diff(diff(f(x, t), x), x), x))*(diff(f(x, t), x))/f(x, t)^2+24*(diff(diff(f(x, t), x), x))*(diff(f(x, t), x))^2/f(x, t)^3-6*(diff(diff(f(x, t), x), x))^2/f(x, t)^2-12*(diff(f(x, t), x))^4/f(x, t)^4-2*(diff(f(x, t), x))*(diff(f(x, t), t))/f(x, t)^2+2*(diff(diff(f(x, t), t), x))/f(x, t) = 0))*denom(lhs(3*(2*(diff(diff(f(x, t), x), x))/f(x, t)-2*(diff(f(x, t), x))^2/f(x, t)^2)^2+2*(diff(diff(diff(diff(f(x, t), x), x), x), x))/f(x, t)-8*(diff(diff(diff(f(x, t), x), x), x))*(diff(f(x, t), x))/f(x, t)^2+24*(diff(diff(f(x, t), x), x))*(diff(f(x, t), x))^2/f(x, t)^3-6*(diff(diff(f(x, t), x), x))^2/f(x, t)^2-12*(diff(f(x, t), x))^4/f(x, t)^4-2*(diff(f(x, t), x))*(diff(f(x, t), t))/f(x, t)^2+2*(diff(diff(f(x, t), t), x))/f(x, t) = 0))

2*f(x, t)^2*(3*(diff(diff(f(x, t), x), x))^2+f(x, t)*(diff(diff(diff(diff(f(x, t), x), x), x), x))+f(x, t)*(diff(diff(f(x, t), t), x))-4*(diff(diff(diff(f(x, t), x), x), x))*(diff(f(x, t), x))-(diff(f(x, t), x))*(diff(f(x, t), t))) = 0

(9)

PP := simplify(2*f(x, t)^2*(3*(diff(diff(f(x, t), x), x))^2+f(x, t)*(diff(diff(diff(diff(f(x, t), x), x), x), x))+f(x, t)*(diff(diff(f(x, t), t), x))-4*(diff(diff(diff(f(x, t), x), x), x))*(diff(f(x, t), x))-(diff(f(x, t), x))*(diff(f(x, t), t))) = 0)

2*f(x, t)^2*(3*(diff(diff(f(x, t), x), x))^2+f(x, t)*(diff(diff(diff(diff(f(x, t), x), x), x), x))+f(x, t)*(diff(diff(f(x, t), t), x))-4*(diff(diff(diff(f(x, t), x), x), x))*(diff(f(x, t), x))-(diff(f(x, t), x))*(diff(f(x, t), t))) = 0

(10)

%/(2*f(x, t)^2)

3*(diff(diff(f(x, t), x), x))^2+f(x, t)*(diff(diff(diff(diff(f(x, t), x), x), x), x))+f(x, t)*(diff(diff(f(x, t), t), x))-4*(diff(diff(diff(f(x, t), x), x), x))*(diff(f(x, t), x))-(diff(f(x, t), x))*(diff(f(x, t), t)) = 0

(11)

collect(%, f)

(diff(diff(diff(diff(f(x, t), x), x), x), x)+diff(diff(f(x, t), t), x))*f(x, t)+3*(diff(diff(f(x, t), x), x))^2-4*(diff(diff(diff(f(x, t), x), x), x))*(diff(f(x, t), x))-(diff(f(x, t), x))*(diff(f(x, t), t)) = 0

(12)

pde2 := %

(diff(diff(diff(diff(f(x, t), x), x), x), x)+diff(diff(f(x, t), t), x))*f(x, t)+3*(diff(diff(f(x, t), x), x))^2-4*(diff(diff(diff(f(x, t), x), x), x))*(diff(f(x, t), x))-(diff(f(x, t), x))*(diff(f(x, t), t)) = 0

(13)

NULL

T := f(x, t) = g(x, t)^2+h(x, t)^2+a[0]

T1 := g(x, t) = t*n[1]+x*k[1]

T2 := h(x, t) = t*n[2]+x*k[2]

L2 := subs({T1, T2}, T)

f(x, t) = (t*n[1]+x*k[1])^2+(t*n[2]+x*k[2])^2+a[0]

(14)

L3 := eval(pde2, L2)

(2*k[1]*n[1]+2*k[2]*n[2])*((t*n[1]+x*k[1])^2+(t*n[2]+x*k[2])^2+a[0])+3*(2*k[1]^2+2*k[2]^2)^2-(2*(t*n[1]+x*k[1])*k[1]+2*(t*n[2]+x*k[2])*k[2])*(2*(t*n[1]+x*k[1])*n[1]+2*(t*n[2]+x*k[2])*n[2]) = 0

(15)

L4 := collect(L3, [x, t], 'distributed')

((2*k[1]*n[1]+2*k[2]*n[2])*(k[1]^2+k[2]^2)-(2*k[1]^2+2*k[2]^2)*(2*k[1]*n[1]+2*k[2]*n[2]))*x^2-(2*k[1]^2+2*k[2]^2)*(2*n[1]^2+2*n[2]^2)*x*t+((2*k[1]*n[1]+2*k[2]*n[2])*(n[1]^2+n[2]^2)-(2*k[1]*n[1]+2*k[2]*n[2])*(2*n[1]^2+2*n[2]^2))*t^2+(2*k[1]*n[1]+2*k[2]*n[2])*a[0]+3*(2*k[1]^2+2*k[2]^2)^2 = 0

(16)

eqs := {coeffs(L4, [x, t])}

Error, invalid arguments to coeffs

 

NULL

NULL

ans := solve(eqs, vars)

{a[2] = a[2], a[3] = a[3], a[4] = 0, a[5] = a[5], a[7] = a[7]}

(17)

NULL

eqI := ans

{a[2] = a[2], a[3] = a[3], a[4] = 0, a[5] = a[5], a[7] = a[7]}

(18)

eqpsi := eval(L2, eqI)

f(x, t) = (t*a[2]+a[3])^2+a[5]^2*t^2+a[7]

(19)

eqphi := eval(Y, eqpsi)

w(x, t) = 0

(20)

simplify(eval(pde, eqphi))

 

NULL

Download F-params.mw

there is must be a problem but i didn't figure out ?  in this command didn't give me my parameter why?
vars1 := indets(eqs1);
ans := solve(eqs1, {a[0], a[1], a[2], a[3], a[4], e[1], k[1], n[1], p[1]});

parameter.mw


 

restart

_local(gamma)

Warning, A new binding for the name `gamma` has been created. The global instance of this name is still accessible using the :- prefix, :-`gamma`.  See ?protect for details.

 

with(plots)

NULL

sol3 := sqrt(2)*sqrt(-tau*gamma)*tanh(x-tau*t^alpha/alpha)*exp(I*gamma*(x+((2*gamma^3*tau-4*gamma*tau+8*tau^2)/(2*gamma^2)-tau*gamma)*t^alpha/((gamma-2*tau)*alpha)))/gamma

NULL

lprint(indets(sol3, name))

{alpha, gamma, t, tau, x}

 

NULL

P :=   [ alpha=1, gamma=-2,  tau=3]

[alpha = 1, gamma = -2, tau = 3]

(1)

PP := convert(sol3, polar)

polar(2^(1/2)*abs(tau*gamma)^(1/2)*exp(-Im(gamma*(x+((1/2)*(2*gamma^3*tau-4*gamma*tau+8*tau^2)/gamma^2-tau*gamma)*t^alpha/((gamma-2*tau)*alpha))))*abs(tanh(x-tau*t^alpha/alpha)/gamma), argument((-tau*gamma)^(1/2)*tanh(x-tau*t^alpha/alpha)*exp(I*gamma*(x+((1/2)*(2*gamma^3*tau-4*gamma*tau+8*tau^2)/gamma^2-tau*gamma)*t^alpha/((gamma-2*tau)*alpha)))/gamma))

(2)

polarplot(sol3, x = -20 .. 20, t = 0 .. 10, axis[radial] = [color = "Blue"])

NULL

Download polar.mw

First 15 16 17 18 19 20 21 Last Page 17 of 32