salim-barzani

1555 Reputation

9 Badges

1 years, 14 days

MaplePrimes Activity


These are questions asked by salim-barzani

How i can find parameter after substitution in our pde 

restart

with(PDEtools)

with(LinearAlgebra)

NULL

with(SolveTools)

undeclare(prime)

`There is no more prime differentiation variable; all derivatives will be displayed as indexed functions`

(1)

declare(u(x, t))

u(x, t)*`will now be displayed as`*u

(2)

declare(f(x, t))

f(x, t)*`will now be displayed as`*f

(3)

pde := diff(u(x, t), `$`(x, 3))+6*u(x, t)*(diff(u(x, t), x))+diff(u(x, t), t) = 0

diff(diff(diff(u(x, t), x), x), x)+6*u(x, t)*(diff(u(x, t), x))+diff(u(x, t), t) = 0

(4)

map(int, diff(diff(diff(u(x, t), x), x), x)+6*u(x, t)*(diff(u(x, t), x))+diff(u(x, t), t) = 0, x)

3*u(x, t)^2+diff(diff(u(x, t), x), x)+int(diff(u(x, t), t), x) = 0

(5)

pde1 := %

3*u(x, t)^2+diff(diff(u(x, t), x), x)+int(diff(u(x, t), t), x) = 0

(6)

Y := u(x, t) = 2*(diff(ln(f(x, t)), `$`(x, 2)))

u(x, t) = 2*(diff(diff(f(x, t), x), x))/f(x, t)-2*(diff(f(x, t), x))^2/f(x, t)^2

(7)

L := eval(pde1, Y)

3*(2*(diff(diff(f(x, t), x), x))/f(x, t)-2*(diff(f(x, t), x))^2/f(x, t)^2)^2+2*(diff(diff(diff(diff(f(x, t), x), x), x), x))/f(x, t)-8*(diff(diff(diff(f(x, t), x), x), x))*(diff(f(x, t), x))/f(x, t)^2+24*(diff(diff(f(x, t), x), x))*(diff(f(x, t), x))^2/f(x, t)^3-6*(diff(diff(f(x, t), x), x))^2/f(x, t)^2-12*(diff(f(x, t), x))^4/f(x, t)^4-2*(diff(f(x, t), x))*(diff(f(x, t), t))/f(x, t)^2+2*(diff(diff(f(x, t), t), x))/f(x, t) = 0

(8)

numer(lhs(3*(2*(diff(diff(f(x, t), x), x))/f(x, t)-2*(diff(f(x, t), x))^2/f(x, t)^2)^2+2*(diff(diff(diff(diff(f(x, t), x), x), x), x))/f(x, t)-8*(diff(diff(diff(f(x, t), x), x), x))*(diff(f(x, t), x))/f(x, t)^2+24*(diff(diff(f(x, t), x), x))*(diff(f(x, t), x))^2/f(x, t)^3-6*(diff(diff(f(x, t), x), x))^2/f(x, t)^2-12*(diff(f(x, t), x))^4/f(x, t)^4-2*(diff(f(x, t), x))*(diff(f(x, t), t))/f(x, t)^2+2*(diff(diff(f(x, t), t), x))/f(x, t) = 0))*denom(rhs(3*(2*(diff(diff(f(x, t), x), x))/f(x, t)-2*(diff(f(x, t), x))^2/f(x, t)^2)^2+2*(diff(diff(diff(diff(f(x, t), x), x), x), x))/f(x, t)-8*(diff(diff(diff(f(x, t), x), x), x))*(diff(f(x, t), x))/f(x, t)^2+24*(diff(diff(f(x, t), x), x))*(diff(f(x, t), x))^2/f(x, t)^3-6*(diff(diff(f(x, t), x), x))^2/f(x, t)^2-12*(diff(f(x, t), x))^4/f(x, t)^4-2*(diff(f(x, t), x))*(diff(f(x, t), t))/f(x, t)^2+2*(diff(diff(f(x, t), t), x))/f(x, t) = 0)) = numer(rhs(3*(2*(diff(diff(f(x, t), x), x))/f(x, t)-2*(diff(f(x, t), x))^2/f(x, t)^2)^2+2*(diff(diff(diff(diff(f(x, t), x), x), x), x))/f(x, t)-8*(diff(diff(diff(f(x, t), x), x), x))*(diff(f(x, t), x))/f(x, t)^2+24*(diff(diff(f(x, t), x), x))*(diff(f(x, t), x))^2/f(x, t)^3-6*(diff(diff(f(x, t), x), x))^2/f(x, t)^2-12*(diff(f(x, t), x))^4/f(x, t)^4-2*(diff(f(x, t), x))*(diff(f(x, t), t))/f(x, t)^2+2*(diff(diff(f(x, t), t), x))/f(x, t) = 0))*denom(lhs(3*(2*(diff(diff(f(x, t), x), x))/f(x, t)-2*(diff(f(x, t), x))^2/f(x, t)^2)^2+2*(diff(diff(diff(diff(f(x, t), x), x), x), x))/f(x, t)-8*(diff(diff(diff(f(x, t), x), x), x))*(diff(f(x, t), x))/f(x, t)^2+24*(diff(diff(f(x, t), x), x))*(diff(f(x, t), x))^2/f(x, t)^3-6*(diff(diff(f(x, t), x), x))^2/f(x, t)^2-12*(diff(f(x, t), x))^4/f(x, t)^4-2*(diff(f(x, t), x))*(diff(f(x, t), t))/f(x, t)^2+2*(diff(diff(f(x, t), t), x))/f(x, t) = 0))

2*f(x, t)^2*(3*(diff(diff(f(x, t), x), x))^2+f(x, t)*(diff(diff(diff(diff(f(x, t), x), x), x), x))+f(x, t)*(diff(diff(f(x, t), t), x))-4*(diff(diff(diff(f(x, t), x), x), x))*(diff(f(x, t), x))-(diff(f(x, t), x))*(diff(f(x, t), t))) = 0

(9)

PP := simplify(2*f(x, t)^2*(3*(diff(diff(f(x, t), x), x))^2+f(x, t)*(diff(diff(diff(diff(f(x, t), x), x), x), x))+f(x, t)*(diff(diff(f(x, t), t), x))-4*(diff(diff(diff(f(x, t), x), x), x))*(diff(f(x, t), x))-(diff(f(x, t), x))*(diff(f(x, t), t))) = 0)

2*f(x, t)^2*(3*(diff(diff(f(x, t), x), x))^2+f(x, t)*(diff(diff(diff(diff(f(x, t), x), x), x), x))+f(x, t)*(diff(diff(f(x, t), t), x))-4*(diff(diff(diff(f(x, t), x), x), x))*(diff(f(x, t), x))-(diff(f(x, t), x))*(diff(f(x, t), t))) = 0

(10)

%/(2*f(x, t)^2)

3*(diff(diff(f(x, t), x), x))^2+f(x, t)*(diff(diff(diff(diff(f(x, t), x), x), x), x))+f(x, t)*(diff(diff(f(x, t), t), x))-4*(diff(diff(diff(f(x, t), x), x), x))*(diff(f(x, t), x))-(diff(f(x, t), x))*(diff(f(x, t), t)) = 0

(11)

collect(%, f)

(diff(diff(diff(diff(f(x, t), x), x), x), x)+diff(diff(f(x, t), t), x))*f(x, t)+3*(diff(diff(f(x, t), x), x))^2-4*(diff(diff(diff(f(x, t), x), x), x))*(diff(f(x, t), x))-(diff(f(x, t), x))*(diff(f(x, t), t)) = 0

(12)

pde2 := %

(diff(diff(diff(diff(f(x, t), x), x), x), x)+diff(diff(f(x, t), t), x))*f(x, t)+3*(diff(diff(f(x, t), x), x))^2-4*(diff(diff(diff(f(x, t), x), x), x))*(diff(f(x, t), x))-(diff(f(x, t), x))*(diff(f(x, t), t)) = 0

(13)

N = 1

N = 1

(14)

S := f(x, t) = a[0]+a[1]*exp(t*n[1]+x*k[1])

f(x, t) = a[0]+a[1]*exp(t*n[1]+x*k[1])

(15)

A := eval(pde2, S)

(a[1]*k[1]^4*exp(t*n[1]+x*k[1])+a[1]*n[1]*k[1]*exp(t*n[1]+x*k[1]))*(a[0]+a[1]*exp(t*n[1]+x*k[1]))-a[1]^2*k[1]^4*(exp(t*n[1]+x*k[1]))^2-a[1]^2*k[1]*(exp(t*n[1]+x*k[1]))^2*n[1] = 0

(16)

simplify((a[1]*k[1]^4*exp(t*n[1]+x*k[1])+a[1]*n[1]*k[1]*exp(t*n[1]+x*k[1]))*(a[0]+a[1]*exp(t*n[1]+x*k[1]))-a[1]^2*k[1]^4*(exp(t*n[1]+x*k[1]))^2-a[1]^2*k[1]*(exp(t*n[1]+x*k[1]))^2*n[1] = 0)

a[0]*a[1]*exp(t*n[1]+x*k[1])*k[1]*(k[1]^3+n[1]) = 0

(17)

%/exp(t*n[1]+x*k[1])

(k[1]^3+n[1])*k[1]*a[1]*a[0] = 0

(18)

PPP := %

(k[1]^3+n[1])*k[1]*a[1]*a[0] = 0

(19)

Co := solve(PPP, {a[0], a[1], k[1], n[1]})

{a[0] = a[0], a[1] = a[1], k[1] = k[1], n[1] = -k[1]^3}, {a[0] = a[0], a[1] = a[1], k[1] = 0, n[1] = n[1]}, {a[0] = a[0], a[1] = 0, k[1] = k[1], n[1] = n[1]}, {a[0] = 0, a[1] = a[1], k[1] = k[1], n[1] = n[1]}

(20)

case1 := Co[1]

{a[0] = a[0], a[1] = a[1], k[1] = k[1], n[1] = -k[1]^3}

(21)

F := subs(case1, S)

f(x, t) = a[0]+a[1]*exp(-t*k[1]^3+x*k[1])

(22)

F1 := eval(Y, F)

u(x, t) = 2*a[1]*k[1]^2*exp(-t*k[1]^3+x*k[1])/(a[0]+a[1]*exp(-t*k[1]^3+x*k[1]))-2*a[1]^2*k[1]^2*(exp(-t*k[1]^3+x*k[1]))^2/(a[0]+a[1]*exp(-t*k[1]^3+x*k[1]))^2

(23)

pdetest(F1, pde)

0

(24)

N = 2

N = 2

(25)

S2 := f(x, t) = a[0]+a[1]*exp(t*n[1]+x*k[1])+a[2]*exp(t*n[2]+x*k[2])+a[3]*exp(t*n[1]+t*n[2]+x*k[1]+x*k[2])

f(x, t) = a[0]+a[1]*exp(t*n[1]+x*k[1])+a[2]*exp(t*n[2]+x*k[2])+a[3]*exp(t*n[1]+t*n[2]+x*k[1]+x*k[2])

(26)

eq5 := normal(eval(pde2, S2))

exp(t*n[1]+x*k[1])*a[0]*a[1]*k[1]^4-4*exp(t*n[1]+x*k[1])*exp(t*n[2]+x*k[2])*a[1]*a[2]*k[1]^3*k[2]+6*exp(t*n[1]+x*k[1])*exp(t*n[2]+x*k[2])*a[1]*a[2]*k[1]^2*k[2]^2-4*exp(t*n[1]+x*k[1])*exp(t*n[2]+x*k[2])*a[1]*a[2]*k[1]*k[2]^3+exp(t*n[1]+x*k[1])*exp(t*n[2]+x*k[2])*a[1]*a[2]*k[1]*n[1]-exp(t*n[1]+x*k[1])*exp(t*n[2]+x*k[2])*a[1]*a[2]*k[1]*n[2]-exp(t*n[1]+x*k[1])*exp(t*n[2]+x*k[2])*a[1]*a[2]*k[2]*n[1]+exp(t*n[1]+x*k[1])*exp(t*n[2]+x*k[2])*a[1]*a[2]*k[2]*n[2]+exp(t*n[1]+x*k[1])*exp(t*n[1]+t*n[2]+x*k[1]+x*k[2])*a[1]*a[3]*k[2]*n[2]+exp(t*n[2]+x*k[2])*exp(t*n[1]+t*n[2]+x*k[1]+x*k[2])*a[2]*a[3]*k[1]*n[1]+exp(t*n[1]+x*k[1])*a[0]*a[1]*k[1]*n[1]+exp(t*n[2]+x*k[2])*a[0]*a[2]*k[2]^4+exp(t*n[1]+t*n[2]+x*k[1]+x*k[2])*a[0]*a[3]*k[1]^4+exp(t*n[1]+t*n[2]+x*k[1]+x*k[2])*a[0]*a[3]*k[2]^4+exp(t*n[1]+x*k[1])*exp(t*n[2]+x*k[2])*a[1]*a[2]*k[1]^4+exp(t*n[1]+x*k[1])*exp(t*n[2]+x*k[2])*a[1]*a[2]*k[2]^4+exp(t*n[1]+x*k[1])*exp(t*n[1]+t*n[2]+x*k[1]+x*k[2])*a[1]*a[3]*k[2]^4+exp(t*n[2]+x*k[2])*exp(t*n[1]+t*n[2]+x*k[1]+x*k[2])*a[2]*a[3]*k[1]^4+4*exp(t*n[1]+t*n[2]+x*k[1]+x*k[2])*a[0]*a[3]*k[1]^3*k[2]+6*exp(t*n[1]+t*n[2]+x*k[1]+x*k[2])*a[0]*a[3]*k[1]^2*k[2]^2+4*exp(t*n[1]+t*n[2]+x*k[1]+x*k[2])*a[0]*a[3]*k[1]*k[2]^3+exp(t*n[2]+x*k[2])*a[0]*a[2]*k[2]*n[2]+exp(t*n[1]+t*n[2]+x*k[1]+x*k[2])*a[0]*a[3]*k[1]*n[1]+exp(t*n[1]+t*n[2]+x*k[1]+x*k[2])*a[0]*a[3]*k[1]*n[2]+exp(t*n[1]+t*n[2]+x*k[1]+x*k[2])*a[0]*a[3]*k[2]*n[1]+exp(t*n[1]+t*n[2]+x*k[1]+x*k[2])*a[0]*a[3]*k[2]*n[2] = 0

(27)

indets(eq5)

{t, x, a[0], a[1], a[2], a[3], k[1], k[2], n[1], n[2], exp(t*n[1]+x*k[1]), exp(t*n[2]+x*k[2]), exp(t*n[1]+t*n[2]+x*k[1]+x*k[2])}

(28)

eq6 := eval(eq5, {t*n[1]+x*k[1] = X, t*n[2]+x*k[2] = Y}); indets(eq6)

Error, invalid input: exp expects its 1st argument, x, to be of type algebraic, but received u(x,t) = 2*diff(diff(f(x,t),x),x)/f(x,t)-2*diff(f(x,t),x)^2/f(x,t)^2

 

{eq6}

(29)

``

NULL

NULL

NULL

NULL

S3 := f(x, t) = a[0]+sum(exp(t*n[i]+x*k[i]), i = 1 .. 3)+a[1]*exp(t*n[1]+t*n[2]+x*k[1]+x*k[2])+a[2]*exp(t*n[1]+t*n[3]+x*k[1]+x*k[3])+a[3]*exp(t*n[2]+t*n[3]+x*k[2]+x*k[3])+a[4]*exp(t*n[1]+t*n[2]+t*n[3]+x*k[1]+x*k[2]+x*k[3])

f(x, t) = a[0]+exp(t*n[1]+x*k[1])+exp(t*n[2]+x*k[2])+exp(t*n[3]+x*k[3])+a[1]*exp(t*n[1]+t*n[2]+x*k[1]+x*k[2])+a[2]*exp(t*n[1]+t*n[3]+x*k[1]+x*k[3])+a[3]*exp(t*n[2]+t*n[3]+x*k[2]+x*k[3])+a[4]*exp(t*n[1]+t*n[2]+t*n[3]+x*k[1]+x*k[2]+x*k[3])

(30)

NULL

NULL

eq5 := normal(eval(pde2, S3))

 

``

Download N-soliton.mw

the most paper use another function to get the result and then do substitute i try to get by the way of them but i fail so how about if we can get the results in direct function there is any way for finding thus parameter after substitution of our function in ode?

restart

with(PDEtools)

with(LinearAlgebra)

NULL

with(SolveTools)

undeclare(prime)

`There is no more prime differentiation variable; all derivatives will be displayed as indexed functions`

(1)

"          with(Student[ODEs][Solve]):"

_local(gamma)

Warning, A new binding for the name `gamma` has been created. The global instance of this name is still accessible using the :- prefix, :-`gamma`.  See ?protect for details.

 

ode := beta*U(xi)^2*c^2+(-alpha*c^2+1)*U(xi)+mu^2*c^2*(diff(diff(U(xi), xi), xi)) = 0

beta*U(xi)^2*c^2+(-alpha*c^2+1)*U(xi)+mu^2*c^2*(diff(diff(U(xi), xi), xi)) = 0

(2)

n := 2

2

(3)

F := U(xi) = sum(tanh(xi)^(i-1)*(B[i]*sech(xi)+A[i]*tanh(xi)), i = 1 .. n)+A[0]

U(xi) = B[1]*sech(xi)+A[1]*tanh(xi)+tanh(xi)*(B[2]*sech(xi)+A[2]*tanh(xi))+A[0]

(4)

K1 := eval(ode, F)

beta*(B[1]*sech(xi)+A[1]*tanh(xi)+tanh(xi)*(B[2]*sech(xi)+A[2]*tanh(xi))+A[0])^2*c^2+(-alpha*c^2+1)*(B[1]*sech(xi)+A[1]*tanh(xi)+tanh(xi)*(B[2]*sech(xi)+A[2]*tanh(xi))+A[0])+mu^2*c^2*(B[1]*sech(xi)*tanh(xi)^2-B[1]*sech(xi)*(1-tanh(xi)^2)-2*A[1]*tanh(xi)*(1-tanh(xi)^2)-2*tanh(xi)*(1-tanh(xi)^2)*(B[2]*sech(xi)+A[2]*tanh(xi))+2*(1-tanh(xi)^2)*(-sech(xi)*tanh(xi)*B[2]+A[2]*(1-tanh(xi)^2))+tanh(xi)*(sech(xi)*tanh(xi)^2*B[2]-sech(xi)*(1-tanh(xi)^2)*B[2]-2*A[2]*tanh(xi)*(1-tanh(xi)^2))) = 0

(5)

solve(identity(K1, {xi}), {A[0], A[1], A[2], B[1], B[2]})

Error, (in unknown) incorrect use of identity(<expr>,<name>)

 

Download Find_params.mw

i try to get same result by substituation but i don't know what is mistake after i take second derivative is wronge i don't know how get same result as in paper did can anyone help  to calculate this part is not hard but is complicated ,How calculated second derivative and put in our ode to get the parameters?

restart

with(PDEtools)

with(LinearAlgebra)

NULL

with(SolveTools)

undeclare(prime)

`There is no more prime differentiation variable; all derivatives will be displayed as indexed functions`

(1)

"          with(Student[ODEs][Solve]):"

_local(gamma)

declare(Omega(x, y, t)); declare(U(xi)); declare(u(x, y, t)); declare(Q(xi)); declare(V(xi)); declare(W(xi)); declare(f(xi))

Omega(x, y, t)*`will now be displayed as`*Omega

 

U(xi)*`will now be displayed as`*U

 

u(x, y, t)*`will now be displayed as`*u

 

Q(xi)*`will now be displayed as`*Q

 

V(xi)*`will now be displayed as`*V

 

W(xi)*`will now be displayed as`*W

 

f(xi)*`will now be displayed as`*f

(2)

NULL

ode := -delta*(diff(diff(U(xi), xi), xi))+U(xi)*(w^2-gamma*U(xi)-beta-alpha) = 0

-delta*(diff(diff(U(xi), xi), xi))+U(xi)*(w^2-gamma*U(xi)-beta-alpha) = 0

(3)

ode1 := -delta*(diff(diff(f(xi), xi), xi))+f(xi)*(w^2-gamma*f(xi)-beta-alpha) = 0

-delta*(diff(diff(f(xi), xi), xi))+f(xi)*(w^2-gamma*f(xi)-beta-alpha) = 0

(4)

F := U(xi) = sum(tanh(xi)^(i-1)*(B[i]*sech(xi)+A[i]*tanh(xi)), i = 1 .. n)+A[0]

U(xi) = sum(tanh(xi)^(i-1)*(B[i]*sech(xi)+A[i]*tanh(xi)), i = 1 .. n)+A[0]

(5)

S := U(f(xi)) = sum(cos(f(xi))^(i-1)*(B[i]*sin(f(xi))+A[i]*cos(f(xi))), i = 1 .. n)+A[0]

U(f(xi)) = sum(cos(f(xi))^(i-1)*(B[i]*sin(f(xi))+A[i]*cos(f(xi))), i = 1 .. n)+A[0]

(6)

``

n := 2

2

(7)

eval(ode1, S)

-delta*(diff(diff(f(xi), xi), xi))+f(xi)*(w^2-gamma*f(xi)-beta-alpha) = 0

(8)

Download complex-issue.mw

every thing is correct but i dont know why my PDE is not be zero, i did by another way is satidy but i change whole equation by sabstitutiin then i did ode test is satisfy by putting case in equation and solution with condition but when i want to use pdetest  test in pde is not satisfy ?

restart

_local(gamma)

with(PDEtools)

NULL

undeclare(prime)

`There is no more prime differentiation variable; all derivatives will be displayed as indexed functions`

(1)

declare(Omega(x, t)); declare(U(xi)); declare(V(xi)); declare(Theta(x, t))

Omega(x, t)*`will now be displayed as`*Omega

 

U(xi)*`will now be displayed as`*U

 

V(xi)*`will now be displayed as`*V

 

Theta(x, t)*`will now be displayed as`*Theta

(2)

xi := -t*tau+x

-t*tau+x

(3)

NULL

NULL

lambda := -tau/c; epsilon := -tau/c; delta := (2*c^2-gamma*tau)/(gamma-2*tau)

-tau/c

 

-tau/c

 

(2*c^2-gamma*tau)/(gamma-2*tau)

(4)

NULL

case1 := [c = RootOf(-gamma^3*tau+2*_Z^2+2*gamma*tau-4*tau^2)/gamma, A[0] = 0, A[1] = RootOf(_Z^2*gamma+2*tau), B[1] = 0]

[c = RootOf(-gamma^3*tau+2*_Z^2+2*gamma*tau-4*tau^2)/gamma, A[0] = 0, A[1] = RootOf(_Z^2*gamma+2*tau), B[1] = 0]

(5)

K := Omega(x, t) = RootOf(_Z^2*gamma+2*tau)*tanh(xi)*exp(I*gamma*(delta*t+x))

Omega(x, t) = -RootOf(_Z^2*gamma+2*tau)*tanh(t*tau-x)*exp(I*gamma*((2*c^2-gamma*tau)*t/(gamma-2*tau)+x))

(6)

NULL

pde1 := I*(diff(Omega(x, t), `$`(t, 2))-c^2*(diff(Omega(x, t), `$`(x, 2))))+diff(U(-t*tau+x)^2*Omega(x, t), t)-lambda*c*(diff(U(-t*tau+x)^2*Omega(x, t), x))+(1/2)*(diff(Omega(x, t), `$`(x, 2), t))-(1/2)*epsilon*c*(diff(Omega(x, t), `$`(x, 3))) = 0

I*(diff(diff(Omega(x, t), t), t)-c^2*(diff(diff(Omega(x, t), x), x)))-2*U(-t*tau+x)*Omega(x, t)*(D(U))(-t*tau+x)*tau+U(-t*tau+x)^2*(diff(Omega(x, t), t))+tau*(2*U(-t*tau+x)*Omega(x, t)*(D(U))(-t*tau+x)+U(-t*tau+x)^2*(diff(Omega(x, t), x)))+(1/2)*(diff(diff(diff(Omega(x, t), t), x), x))+(1/2)*tau*(diff(diff(diff(Omega(x, t), x), x), x)) = 0

(7)

NULL

subs(case1, pde1)

I*(diff(diff(Omega(x, t), t), t)-RootOf(-gamma^3*tau+2*_Z^2+2*gamma*tau-4*tau^2)^2*(diff(diff(Omega(x, t), x), x))/gamma^2)-2*U(-t*tau+x)*Omega(x, t)*(D(U))(-t*tau+x)*tau+U(-t*tau+x)^2*(diff(Omega(x, t), t))+tau*(2*U(-t*tau+x)*Omega(x, t)*(D(U))(-t*tau+x)+U(-t*tau+x)^2*(diff(Omega(x, t), x)))+(1/2)*(diff(diff(diff(Omega(x, t), t), x), x))+(1/2)*tau*(diff(diff(diff(Omega(x, t), x), x), x)) = 0

(8)

T := simplify(I*(diff(diff(Omega(x, t), t), t)-RootOf(-gamma^3*tau+2*_Z^2+2*gamma*tau-4*tau^2)^2*(diff(diff(Omega(x, t), x), x))/gamma^2)-2*U(-t*tau+x)*Omega(x, t)*(D(U))(-t*tau+x)*tau+U(-t*tau+x)^2*(diff(Omega(x, t), t))+tau*(2*U(-t*tau+x)*Omega(x, t)*(D(U))(-t*tau+x)+U(-t*tau+x)^2*(diff(Omega(x, t), x)))+(1/2)*(diff(diff(diff(Omega(x, t), t), x), x))+(1/2)*tau*(diff(diff(diff(Omega(x, t), x), x), x)) = 0)

(1/2)*(2*gamma^2*(tau*(diff(Omega(x, t), x))+diff(Omega(x, t), t))*U(-t*tau+x)^2+(diff(diff(diff(Omega(x, t), t), x), x))*gamma^2+tau*(diff(diff(diff(Omega(x, t), x), x), x))*gamma^2-(4*I)*((1/4)*gamma^3+tau-(1/2)*gamma)*tau*(diff(diff(Omega(x, t), x), x))+(2*I)*(diff(diff(Omega(x, t), t), t))*gamma^2)/gamma^2 = 0

(9)

pdetest(K, T)

-(1/2)*2^(1/2)*(-tau/gamma)^(1/2)*(-32*gamma^4*tau^3*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+4*gamma*t*tau-8*t*tau^2+2*x*gamma-4*x*tau)/(gamma-2*tau))+16*gamma^5*c^2*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+2*gamma*t*tau-4*t*tau^2+4*x*gamma-8*x*tau)/(gamma-2*tau))-8*gamma^6*tau*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+2*gamma*t*tau-4*t*tau^2+4*x*gamma-8*x*tau)/(gamma-2*tau))+32*gamma^5*tau^2*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+2*gamma*t*tau-4*t*tau^2+4*x*gamma-8*x*tau)/(gamma-2*tau))-32*gamma^4*tau^3*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+2*gamma*t*tau-4*t*tau^2+4*x*gamma-8*x*tau)/(gamma-2*tau))+16*gamma^4*tau*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+4*gamma*t*tau-8*t*tau^2+2*x*gamma-4*x*tau)/(gamma-2*tau))-96*gamma^3*tau^2*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+4*gamma*t*tau-8*t*tau^2+2*x*gamma-4*x*tau)/(gamma-2*tau))+192*gamma^2*tau^3*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+4*gamma*t*tau-8*t*tau^2+2*x*gamma-4*x*tau)/(gamma-2*tau))-128*tau^4*gamma*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+4*gamma*t*tau-8*t*tau^2+2*x*gamma-4*x*tau)/(gamma-2*tau))+16*gamma^4*tau*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+2*gamma*t*tau-4*t*tau^2+4*x*gamma-8*x*tau)/(gamma-2*tau))-96*gamma^3*tau^2*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+2*gamma*t*tau-4*t*tau^2+4*x*gamma-8*x*tau)/(gamma-2*tau))+192*gamma^2*tau^3*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+2*gamma*t*tau-4*t*tau^2+4*x*gamma-8*x*tau)/(gamma-2*tau))-128*tau^4*gamma*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+2*gamma*t*tau-4*t*tau^2+4*x*gamma-8*x*tau)/(gamma-2*tau))+16*gamma^5*c^2*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+4*gamma*t*tau-8*t*tau^2+2*x*gamma-4*x*tau)/(gamma-2*tau))-8*gamma^6*tau*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+4*gamma*t*tau-8*t*tau^2+2*x*gamma-4*x*tau)/(gamma-2*tau))-(4*I)*U(-t*tau+x)^2*gamma^4*c^2*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+6*x*gamma-12*x*tau)/(gamma-2*tau))+(4*I)*U(-t*tau+x)^2*gamma^4*tau^2*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+6*x*gamma-12*x*tau)/(gamma-2*tau))-(8*I)*U(-t*tau+x)^2*gamma^3*tau^3*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+6*x*gamma-12*x*tau)/(gamma-2*tau))-(12*I)*gamma^5*c^2*tau*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+6*x*gamma-12*x*tau)/(gamma-2*tau))+(4*I)*U(-t*tau+x)^2*gamma^4*c^2*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+6*gamma*t*tau-12*t*tau^2)/(gamma-2*tau))-(4*I)*U(-t*tau+x)^2*gamma^4*tau^2*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+6*gamma*t*tau-12*t*tau^2)/(gamma-2*tau))+(8*I)*U(-t*tau+x)^2*gamma^3*tau^3*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+6*gamma*t*tau-12*t*tau^2)/(gamma-2*tau))+(12*I)*gamma^5*c^2*tau*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+6*gamma*t*tau-12*t*tau^2)/(gamma-2*tau))+(4*I)*U(-t*tau+x)^2*gamma^4*c^2*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+4*gamma*t*tau-8*t*tau^2+2*x*gamma-4*x*tau)/(gamma-2*tau))-(4*I)*U(-t*tau+x)^2*gamma^4*tau^2*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+4*gamma*t*tau-8*t*tau^2+2*x*gamma-4*x*tau)/(gamma-2*tau))+(8*I)*U(-t*tau+x)^2*gamma^3*tau^3*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+4*gamma*t*tau-8*t*tau^2+2*x*gamma-4*x*tau)/(gamma-2*tau))+(12*I)*gamma^5*c^2*tau*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+4*gamma*t*tau-8*t*tau^2+2*x*gamma-4*x*tau)/(gamma-2*tau))-(4*I)*U(-t*tau+x)^2*gamma^4*c^2*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+2*gamma*t*tau-4*t*tau^2+4*x*gamma-8*x*tau)/(gamma-2*tau))+(4*I)*U(-t*tau+x)^2*gamma^4*tau^2*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+2*gamma*t*tau-4*t*tau^2+4*x*gamma-8*x*tau)/(gamma-2*tau))-(8*I)*U(-t*tau+x)^2*gamma^3*tau^3*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+2*gamma*t*tau-4*t*tau^2+4*x*gamma-8*x*tau)/(gamma-2*tau))-(12*I)*gamma^5*c^2*tau*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+2*gamma*t*tau-4*t*tau^2+4*x*gamma-8*x*tau)/(gamma-2*tau))+(32*I)*gamma^3*c^2*tau*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+4*gamma*t*tau-8*t*tau^2+2*x*gamma-4*x*tau)/(gamma-2*tau))-(32*I)*gamma^3*c^2*tau*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+2*gamma*t*tau-4*t*tau^2+4*x*gamma-8*x*tau)/(gamma-2*tau))-64*gamma^4*c^2*tau*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+2*gamma*t*tau-4*t*tau^2+4*x*gamma-8*x*tau)/(gamma-2*tau))+64*gamma^3*tau^2*c^2*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+2*gamma*t*tau-4*t*tau^2+4*x*gamma-8*x*tau)/(gamma-2*tau))+I*tau*gamma^7*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+4*gamma*t*tau-8*t*tau^2+2*x*gamma-4*x*tau)/(gamma-2*tau))-64*gamma^4*c^2*tau*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+4*gamma*t*tau-8*t*tau^2+2*x*gamma-4*x*tau)/(gamma-2*tau))+64*gamma^3*tau^2*c^2*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+4*gamma*t*tau-8*t*tau^2+2*x*gamma-4*x*tau)/(gamma-2*tau))+I*tau*gamma^7*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+6*gamma*t*tau-12*t*tau^2)/(gamma-2*tau))+(192*I)*tau^3*gamma*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+2*gamma*t*tau-4*t*tau^2+4*x*gamma-8*x*tau)/(gamma-2*tau))-(8*I)*c^4*gamma^4*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+4*gamma*t*tau-8*t*tau^2+2*x*gamma-4*x*tau)/(gamma-2*tau))-(2*I)*c^2*gamma^6*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+4*gamma*t*tau-8*t*tau^2+2*x*gamma-4*x*tau)/(gamma-2*tau))-(4*I)*tau^2*gamma^6*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+4*gamma*t*tau-8*t*tau^2+2*x*gamma-4*x*tau)/(gamma-2*tau))+(8*I)*c^4*gamma^4*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+2*gamma*t*tau-4*t*tau^2+4*x*gamma-8*x*tau)/(gamma-2*tau))+(2*I)*c^2*gamma^6*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+2*gamma*t*tau-4*t*tau^2+4*x*gamma-8*x*tau)/(gamma-2*tau))-I*tau*gamma^7*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+2*gamma*t*tau-4*t*tau^2+4*x*gamma-8*x*tau)/(gamma-2*tau))+(4*I)*tau^2*gamma^6*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+2*gamma*t*tau-4*t*tau^2+4*x*gamma-8*x*tau)/(gamma-2*tau))-(16*I)*gamma^4*c^2*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+4*gamma*t*tau-8*t*tau^2+2*x*gamma-4*x*tau)/(gamma-2*tau))+(6*I)*tau*gamma^5*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+4*gamma*t*tau-8*t*tau^2+2*x*gamma-4*x*tau)/(gamma-2*tau))-(20*I)*gamma^4*tau^2*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+4*gamma*t*tau-8*t*tau^2+2*x*gamma-4*x*tau)/(gamma-2*tau))+(40*I)*gamma^3*tau^3*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+4*gamma*t*tau-8*t*tau^2+2*x*gamma-4*x*tau)/(gamma-2*tau))-(48*I)*gamma^2*tau^4*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+4*gamma*t*tau-8*t*tau^2+2*x*gamma-4*x*tau)/(gamma-2*tau))+(16*I)*gamma^4*c^2*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+2*gamma*t*tau-4*t*tau^2+4*x*gamma-8*x*tau)/(gamma-2*tau))-(6*I)*tau*gamma^5*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+2*gamma*t*tau-4*t*tau^2+4*x*gamma-8*x*tau)/(gamma-2*tau))+(20*I)*gamma^4*tau^2*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+2*gamma*t*tau-4*t*tau^2+4*x*gamma-8*x*tau)/(gamma-2*tau))-(40*I)*gamma^3*tau^3*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+2*gamma*t*tau-4*t*tau^2+4*x*gamma-8*x*tau)/(gamma-2*tau))+(48*I)*gamma^2*tau^4*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+2*gamma*t*tau-4*t*tau^2+4*x*gamma-8*x*tau)/(gamma-2*tau))-(16*I)*gamma^3*tau*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+4*gamma*t*tau-8*t*tau^2+2*x*gamma-4*x*tau)/(gamma-2*tau))+(96*I)*gamma^2*tau^2*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+4*gamma*t*tau-8*t*tau^2+2*x*gamma-4*x*tau)/(gamma-2*tau))-(192*I)*tau^3*gamma*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+4*gamma*t*tau-8*t*tau^2+2*x*gamma-4*x*tau)/(gamma-2*tau))+(16*I)*gamma^3*tau*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+2*gamma*t*tau-4*t*tau^2+4*x*gamma-8*x*tau)/(gamma-2*tau))-(96*I)*gamma^2*tau^2*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+2*gamma*t*tau-4*t*tau^2+4*x*gamma-8*x*tau)/(gamma-2*tau))-I*tau*gamma^7*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+6*x*gamma-12*x*tau)/(gamma-2*tau))+(4*I)*tau^2*gamma^6*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+6*x*gamma-12*x*tau)/(gamma-2*tau))-(8*I)*c^4*gamma^4*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+6*gamma*t*tau-12*t*tau^2)/(gamma-2*tau))-(2*I)*c^2*gamma^6*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+6*gamma*t*tau-12*t*tau^2)/(gamma-2*tau))-(4*I)*tau^2*gamma^6*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+6*gamma*t*tau-12*t*tau^2)/(gamma-2*tau))+(8*I)*c^4*gamma^4*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+6*x*gamma-12*x*tau)/(gamma-2*tau))+(2*I)*tau*gamma^5*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+6*x*gamma-12*x*tau)/(gamma-2*tau))-(12*I)*gamma^4*tau^2*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+6*x*gamma-12*x*tau)/(gamma-2*tau))+(24*I)*gamma^3*tau^3*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+6*x*gamma-12*x*tau)/(gamma-2*tau))-(16*I)*gamma^2*tau^4*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+6*x*gamma-12*x*tau)/(gamma-2*tau))-(2*I)*tau*gamma^5*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+6*gamma*t*tau-12*t*tau^2)/(gamma-2*tau))+(12*I)*gamma^4*tau^2*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+6*gamma*t*tau-12*t*tau^2)/(gamma-2*tau))-(24*I)*gamma^3*tau^3*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+6*gamma*t*tau-12*t*tau^2)/(gamma-2*tau))+(16*I)*gamma^2*tau^4*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+6*gamma*t*tau-12*t*tau^2)/(gamma-2*tau))+(2*I)*c^2*gamma^6*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+6*x*gamma-12*x*tau)/(gamma-2*tau))+32*gamma^5*tau^2*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+4*gamma*t*tau-8*t*tau^2+2*x*gamma-4*x*tau)/(gamma-2*tau))+(128*I)*tau^4*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+4*gamma*t*tau-8*t*tau^2+2*x*gamma-4*x*tau)/(gamma-2*tau))-(128*I)*tau^4*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+2*gamma*t*tau-4*t*tau^2+4*x*gamma-8*x*tau)/(gamma-2*tau))-(8*I)*tau*c^2*U(-t*tau+x)^2*gamma^3*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+6*gamma*t*tau-12*t*tau^2)/(gamma-2*tau))+(8*I)*tau*c^2*U(-t*tau+x)^2*gamma^3*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+6*x*gamma-12*x*tau)/(gamma-2*tau))-(8*I)*tau*c^2*U(-t*tau+x)^2*gamma^3*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+4*gamma*t*tau-8*t*tau^2+2*x*gamma-4*x*tau)/(gamma-2*tau))+(8*I)*tau*c^2*U(-t*tau+x)^2*gamma^3*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+2*gamma*t*tau-4*t*tau^2+4*x*gamma-8*x*tau)/(gamma-2*tau)))/(gamma^2*(gamma-2*tau)^2*(exp(2*t*tau)+exp(2*x))^3)

(10)

simplify(-(1/2)*2^(1/2)*(-tau/gamma)^(1/2)*((8*I)*tau*c^2*U(-t*tau+x)^2*gamma^3*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+6*x*gamma-12*x*tau)/(gamma-2*tau))+(8*I)*tau*c^2*U(-t*tau+x)^2*gamma^3*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+2*gamma*t*tau-4*t*tau^2+4*x*gamma-8*x*tau)/(gamma-2*tau))-(8*I)*tau*c^2*U(-t*tau+x)^2*gamma^3*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+6*gamma*t*tau-12*t*tau^2)/(gamma-2*tau))-(8*I)*tau*c^2*U(-t*tau+x)^2*gamma^3*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+4*gamma*t*tau-8*t*tau^2+2*x*gamma-4*x*tau)/(gamma-2*tau))-(128*I)*tau^4*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+2*gamma*t*tau-4*t*tau^2+4*x*gamma-8*x*tau)/(gamma-2*tau))+32*gamma^5*tau^2*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+4*gamma*t*tau-8*t*tau^2+2*x*gamma-4*x*tau)/(gamma-2*tau))+192*gamma^2*tau^3*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+2*gamma*t*tau-4*t*tau^2+4*x*gamma-8*x*tau)/(gamma-2*tau))-128*tau^4*gamma*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+2*gamma*t*tau-4*t*tau^2+4*x*gamma-8*x*tau)/(gamma-2*tau))+16*gamma^5*c^2*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+4*gamma*t*tau-8*t*tau^2+2*x*gamma-4*x*tau)/(gamma-2*tau))-8*gamma^6*tau*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+4*gamma*t*tau-8*t*tau^2+2*x*gamma-4*x*tau)/(gamma-2*tau))+32*gamma^5*tau^2*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+2*gamma*t*tau-4*t*tau^2+4*x*gamma-8*x*tau)/(gamma-2*tau))-32*gamma^4*tau^3*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+2*gamma*t*tau-4*t*tau^2+4*x*gamma-8*x*tau)/(gamma-2*tau))+16*gamma^4*tau*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+4*gamma*t*tau-8*t*tau^2+2*x*gamma-4*x*tau)/(gamma-2*tau))-96*gamma^3*tau^2*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+4*gamma*t*tau-8*t*tau^2+2*x*gamma-4*x*tau)/(gamma-2*tau))+192*gamma^2*tau^3*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+4*gamma*t*tau-8*t*tau^2+2*x*gamma-4*x*tau)/(gamma-2*tau))-128*tau^4*gamma*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+4*gamma*t*tau-8*t*tau^2+2*x*gamma-4*x*tau)/(gamma-2*tau))+16*gamma^4*tau*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+2*gamma*t*tau-4*t*tau^2+4*x*gamma-8*x*tau)/(gamma-2*tau))-96*gamma^3*tau^2*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+2*gamma*t*tau-4*t*tau^2+4*x*gamma-8*x*tau)/(gamma-2*tau))+(128*I)*tau^4*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+4*gamma*t*tau-8*t*tau^2+2*x*gamma-4*x*tau)/(gamma-2*tau))-32*gamma^4*tau^3*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+4*gamma*t*tau-8*t*tau^2+2*x*gamma-4*x*tau)/(gamma-2*tau))+16*gamma^5*c^2*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+2*gamma*t*tau-4*t*tau^2+4*x*gamma-8*x*tau)/(gamma-2*tau))-8*gamma^6*tau*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+2*gamma*t*tau-4*t*tau^2+4*x*gamma-8*x*tau)/(gamma-2*tau))-(32*I)*gamma^3*c^2*tau*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+2*gamma*t*tau-4*t*tau^2+4*x*gamma-8*x*tau)/(gamma-2*tau))+(4*I)*U(-t*tau+x)^2*gamma^4*tau^2*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+6*x*gamma-12*x*tau)/(gamma-2*tau))+(4*I)*U(-t*tau+x)^2*gamma^4*c^2*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+6*gamma*t*tau-12*t*tau^2)/(gamma-2*tau))+(8*I)*U(-t*tau+x)^2*gamma^3*tau^3*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+6*gamma*t*tau-12*t*tau^2)/(gamma-2*tau))+(12*I)*gamma^5*c^2*tau*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+6*gamma*t*tau-12*t*tau^2)/(gamma-2*tau))+(4*I)*U(-t*tau+x)^2*gamma^4*c^2*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+4*gamma*t*tau-8*t*tau^2+2*x*gamma-4*x*tau)/(gamma-2*tau))+(8*I)*U(-t*tau+x)^2*gamma^3*tau^3*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+4*gamma*t*tau-8*t*tau^2+2*x*gamma-4*x*tau)/(gamma-2*tau))+(12*I)*gamma^5*c^2*tau*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+4*gamma*t*tau-8*t*tau^2+2*x*gamma-4*x*tau)/(gamma-2*tau))+(4*I)*U(-t*tau+x)^2*gamma^4*tau^2*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+2*gamma*t*tau-4*t*tau^2+4*x*gamma-8*x*tau)/(gamma-2*tau))+(32*I)*gamma^3*c^2*tau*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+4*gamma*t*tau-8*t*tau^2+2*x*gamma-4*x*tau)/(gamma-2*tau))-(4*I)*U(-t*tau+x)^2*gamma^4*c^2*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+6*x*gamma-12*x*tau)/(gamma-2*tau))-(8*I)*U(-t*tau+x)^2*gamma^3*tau^3*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+6*x*gamma-12*x*tau)/(gamma-2*tau))-(12*I)*gamma^5*c^2*tau*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+6*x*gamma-12*x*tau)/(gamma-2*tau))-(4*I)*U(-t*tau+x)^2*gamma^4*tau^2*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+6*gamma*t*tau-12*t*tau^2)/(gamma-2*tau))-(4*I)*U(-t*tau+x)^2*gamma^4*tau^2*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+4*gamma*t*tau-8*t*tau^2+2*x*gamma-4*x*tau)/(gamma-2*tau))-(4*I)*U(-t*tau+x)^2*gamma^4*c^2*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+2*gamma*t*tau-4*t*tau^2+4*x*gamma-8*x*tau)/(gamma-2*tau))-(8*I)*U(-t*tau+x)^2*gamma^3*tau^3*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+2*gamma*t*tau-4*t*tau^2+4*x*gamma-8*x*tau)/(gamma-2*tau))-(12*I)*gamma^5*c^2*tau*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+2*gamma*t*tau-4*t*tau^2+4*x*gamma-8*x*tau)/(gamma-2*tau))-(8*I)*c^4*gamma^4*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+4*gamma*t*tau-8*t*tau^2+2*x*gamma-4*x*tau)/(gamma-2*tau))-(2*I)*c^2*gamma^6*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+4*gamma*t*tau-8*t*tau^2+2*x*gamma-4*x*tau)/(gamma-2*tau))-(4*I)*tau^2*gamma^6*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+4*gamma*t*tau-8*t*tau^2+2*x*gamma-4*x*tau)/(gamma-2*tau))-I*tau*gamma^7*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+2*gamma*t*tau-4*t*tau^2+4*x*gamma-8*x*tau)/(gamma-2*tau))-(16*I)*gamma^4*c^2*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+4*gamma*t*tau-8*t*tau^2+2*x*gamma-4*x*tau)/(gamma-2*tau))-(20*I)*gamma^4*tau^2*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+4*gamma*t*tau-8*t*tau^2+2*x*gamma-4*x*tau)/(gamma-2*tau))-(48*I)*gamma^2*tau^4*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+4*gamma*t*tau-8*t*tau^2+2*x*gamma-4*x*tau)/(gamma-2*tau))-(6*I)*tau*gamma^5*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+2*gamma*t*tau-4*t*tau^2+4*x*gamma-8*x*tau)/(gamma-2*tau))-(40*I)*gamma^3*tau^3*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+2*gamma*t*tau-4*t*tau^2+4*x*gamma-8*x*tau)/(gamma-2*tau))-(16*I)*gamma^3*tau*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+4*gamma*t*tau-8*t*tau^2+2*x*gamma-4*x*tau)/(gamma-2*tau))-(192*I)*tau^3*gamma*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+4*gamma*t*tau-8*t*tau^2+2*x*gamma-4*x*tau)/(gamma-2*tau))-(96*I)*gamma^2*tau^2*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+2*gamma*t*tau-4*t*tau^2+4*x*gamma-8*x*tau)/(gamma-2*tau))-I*tau*gamma^7*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+6*x*gamma-12*x*tau)/(gamma-2*tau))-(8*I)*c^4*gamma^4*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+6*gamma*t*tau-12*t*tau^2)/(gamma-2*tau))-(2*I)*c^2*gamma^6*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+6*gamma*t*tau-12*t*tau^2)/(gamma-2*tau))-(4*I)*tau^2*gamma^6*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+6*gamma*t*tau-12*t*tau^2)/(gamma-2*tau))-(12*I)*gamma^4*tau^2*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+6*x*gamma-12*x*tau)/(gamma-2*tau))-(16*I)*gamma^2*tau^4*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+6*x*gamma-12*x*tau)/(gamma-2*tau))-(2*I)*tau*gamma^5*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+6*gamma*t*tau-12*t*tau^2)/(gamma-2*tau))-(24*I)*gamma^3*tau^3*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+6*gamma*t*tau-12*t*tau^2)/(gamma-2*tau))-64*gamma^4*c^2*tau*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+2*gamma*t*tau-4*t*tau^2+4*x*gamma-8*x*tau)/(gamma-2*tau))+64*gamma^3*tau^2*c^2*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+2*gamma*t*tau-4*t*tau^2+4*x*gamma-8*x*tau)/(gamma-2*tau))-64*gamma^4*c^2*tau*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+4*gamma*t*tau-8*t*tau^2+2*x*gamma-4*x*tau)/(gamma-2*tau))+64*gamma^3*tau^2*c^2*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+4*gamma*t*tau-8*t*tau^2+2*x*gamma-4*x*tau)/(gamma-2*tau))+(8*I)*c^4*gamma^4*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+6*x*gamma-12*x*tau)/(gamma-2*tau))+(2*I)*tau*gamma^5*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+6*x*gamma-12*x*tau)/(gamma-2*tau))+(24*I)*gamma^3*tau^3*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+6*x*gamma-12*x*tau)/(gamma-2*tau))+(12*I)*gamma^4*tau^2*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+6*gamma*t*tau-12*t*tau^2)/(gamma-2*tau))+(16*I)*gamma^2*tau^4*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+6*gamma*t*tau-12*t*tau^2)/(gamma-2*tau))+(2*I)*c^2*gamma^6*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+6*x*gamma-12*x*tau)/(gamma-2*tau))+(48*I)*gamma^2*tau^4*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+2*gamma*t*tau-4*t*tau^2+4*x*gamma-8*x*tau)/(gamma-2*tau))+(96*I)*gamma^2*tau^2*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+4*gamma*t*tau-8*t*tau^2+2*x*gamma-4*x*tau)/(gamma-2*tau))+(16*I)*gamma^3*tau*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+2*gamma*t*tau-4*t*tau^2+4*x*gamma-8*x*tau)/(gamma-2*tau))+(4*I)*tau^2*gamma^6*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+6*x*gamma-12*x*tau)/(gamma-2*tau))+(2*I)*c^2*gamma^6*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+2*gamma*t*tau-4*t*tau^2+4*x*gamma-8*x*tau)/(gamma-2*tau))+(4*I)*tau^2*gamma^6*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+2*gamma*t*tau-4*t*tau^2+4*x*gamma-8*x*tau)/(gamma-2*tau))+(6*I)*tau*gamma^5*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+4*gamma*t*tau-8*t*tau^2+2*x*gamma-4*x*tau)/(gamma-2*tau))+(40*I)*gamma^3*tau^3*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+4*gamma*t*tau-8*t*tau^2+2*x*gamma-4*x*tau)/(gamma-2*tau))+(16*I)*gamma^4*c^2*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+2*gamma*t*tau-4*t*tau^2+4*x*gamma-8*x*tau)/(gamma-2*tau))+(20*I)*gamma^4*tau^2*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+2*gamma*t*tau-4*t*tau^2+4*x*gamma-8*x*tau)/(gamma-2*tau))+I*tau*gamma^7*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+4*gamma*t*tau-8*t*tau^2+2*x*gamma-4*x*tau)/(gamma-2*tau))+I*tau*gamma^7*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+6*gamma*t*tau-12*t*tau^2)/(gamma-2*tau))+(192*I)*tau^3*gamma*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+2*gamma*t*tau-4*t*tau^2+4*x*gamma-8*x*tau)/(gamma-2*tau))+(8*I)*c^4*gamma^4*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+2*gamma*t*tau-4*t*tau^2+4*x*gamma-8*x*tau)/(gamma-2*tau)))/(gamma^2*(gamma-2*tau)^2*(exp(2*tau*t)+exp(2*x))^3))

-(-tau/gamma)^(1/2)*((I*gamma^3*(-(1/2)*gamma+tau)*(c-tau)*(c+tau)*U(-t*tau+x)^2-((1/8)*I)*tau*gamma^7+(((1/4)*I)*c^2+((1/2)*I)*tau^2-tau)*gamma^6+(4*tau^2+(-((3/2)*I)*c^2-(3/4)*I)*tau+2*c^2)*gamma^5+(-4*tau^3+((5/2)*I)*tau^2+(-8*c^2+2)*tau+I*(c^2+2)*c^2)*gamma^4-4*(((5/4)*I)*tau^2+(-2*c^2+3)*tau+I*c^2-(1/2)*I)*tau*gamma^3+6*(I*tau^2-2*I+4*tau)*tau^2*gamma^2+((24*I)*tau^3-16*tau^4)*gamma-(16*I)*tau^4)*exp((I*(t*tau-x)*gamma^2+2*((I*x-t)*tau-I*c^2*t-2*x)*gamma+4*t*tau^2+8*x*tau)/(-gamma+2*tau))+(-I*gamma^3*(-(1/2)*gamma+tau)*(c-tau)*(c+tau)*U(-t*tau+x)^2+((1/8)*I)*tau*gamma^7+(-((1/4)*I)*c^2-((1/2)*I)*tau^2-tau)*gamma^6+(4*tau^2+(((3/2)*I)*c^2+(3/4)*I)*tau+2*c^2)*gamma^5+(-4*tau^3-((5/2)*I)*tau^2+(-8*c^2+2)*tau-I*(c^2+2)*c^2)*gamma^4+4*(((5/4)*I)*tau^2+tau*(2*c^2-3)+I*c^2-(1/2)*I)*tau*gamma^3-6*(I*tau^2-2*I-4*tau)*tau^2*gamma^2+(-(24*I)*tau^3-16*tau^4)*gamma+(16*I)*tau^4)*exp((I*(t*tau-x)*gamma^2+2*((I*x-2*t)*tau-I*c^2*t-x)*gamma+8*t*tau^2+4*x*tau)/(-gamma+2*tau))+I*gamma^2*(exp((I*(t*tau-x)*gamma^2+2*(-I*c^2*t+I*x*tau-3*x)*gamma+12*x*tau)/(-gamma+2*tau))-exp((I*(t*tau-x)*gamma^2+2*((I*x-3*t)*tau-I*c^2*t)*gamma+12*t*tau^2)/(-gamma+2*tau)))*(gamma*(-(1/2)*gamma+tau)*(c-tau)*(c+tau)*U(-t*tau+x)^2-(1/8)*tau*gamma^5+((1/4)*c^2+(1/2)*tau^2)*gamma^4+tau*(-(3/2)*c^2+1/4)*gamma^3+(c^4-(3/2)*tau^2)*gamma^2+3*tau^3*gamma-2*tau^4))*2^(1/2)/(gamma^2*(exp(2*t*tau)+exp(2*x))^3*(-(1/2)*gamma+tau)^2)

(11)
 

 

Download pdetest.mw

i want to factoring the (m+G'/G) in my long equation but i use some trick but still i can't get the exactly system and still G will remain in my system what should i factoring for remove this G(xi) from my system is all about factoring , my system of equation are wrong contain G(xi) How i can remove it by taking a factoring or any other technique,

not parameter is arbitrary except V and sigma''

restart

with(PDEtools)

with(LinearAlgebra)

with(Physics)

with(SolveTools)

undeclare(prime)

`There is no more prime differentiation variable; all derivatives will be displayed as indexed functions`

(1)

_local(gamma)

Warning, A new binding for the name `gamma` has been created. The global instance of this name is still accessible using the :- prefix, :-`gamma`.  See ?protect for details.

 

declare(Omega(x, t)); declare(U(xi)); declare(u(x, y, z, t)); declare(Q(xi)); declare(V(xi))

Omega(x, t)*`will now be displayed as`*Omega

 

U(xi)*`will now be displayed as`*U

 

u(x, y, z, t)*`will now be displayed as`*u

 

Q(xi)*`will now be displayed as`*Q

 

V(xi)*`will now be displayed as`*V

(2)

NULL

ode := (-V*a[2]+a[1])*(diff(diff(U(xi), xi), xi))+U(xi)*(((-gamma+sigma)*k+b)*U(xi)^2-a[1]*k^2+(w*a[2]-alpha)*k-w) = 0

(-V*a[2]+a[1])*(diff(diff(U(xi), xi), xi))+U(xi)*(((-gamma+sigma)*k+b)*U(xi)^2-a[1]*k^2+(w*a[2]-alpha)*k-w) = 0

(3)

F := sum(e[i]*(m+(diff(G(xi), xi))/G(xi))^i, i = -1 .. 1)

e[-1]/(m+(diff(G(xi), xi))/G(xi))+e[0]+e[1]*(m+(diff(G(xi), xi))/G(xi))

(4)

D1 := diff(F, xi)

-e[-1]*((diff(diff(G(xi), xi), xi))/G(xi)-(diff(G(xi), xi))^2/G(xi)^2)/(m+(diff(G(xi), xi))/G(xi))^2+e[1]*((diff(diff(G(xi), xi), xi))/G(xi)-(diff(G(xi), xi))^2/G(xi)^2)

(5)

NULL

S := diff(G(xi), `$`(xi, 2)) = -(2*m*mu+lambda)*(diff(G(xi), xi))-mu

diff(diff(G(xi), xi), xi) = -(2*m*mu+lambda)*(diff(G(xi), xi))-mu

(6)

E1 := subs(S, D1)

-e[-1]*((-(2*m*mu+lambda)*(diff(G(xi), xi))-mu)/G(xi)-(diff(G(xi), xi))^2/G(xi)^2)/(m+(diff(G(xi), xi))/G(xi))^2+e[1]*((-(2*m*mu+lambda)*(diff(G(xi), xi))-mu)/G(xi)-(diff(G(xi), xi))^2/G(xi)^2)

(7)

D2 := diff(E1, xi)

2*e[-1]*((-(2*m*mu+lambda)*(diff(G(xi), xi))-mu)/G(xi)-(diff(G(xi), xi))^2/G(xi)^2)*((diff(diff(G(xi), xi), xi))/G(xi)-(diff(G(xi), xi))^2/G(xi)^2)/(m+(diff(G(xi), xi))/G(xi))^3-e[-1]*(-(2*m*mu+lambda)*(diff(diff(G(xi), xi), xi))/G(xi)-(-(2*m*mu+lambda)*(diff(G(xi), xi))-mu)*(diff(G(xi), xi))/G(xi)^2-2*(diff(G(xi), xi))*(diff(diff(G(xi), xi), xi))/G(xi)^2+2*(diff(G(xi), xi))^3/G(xi)^3)/(m+(diff(G(xi), xi))/G(xi))^2+e[1]*(-(2*m*mu+lambda)*(diff(diff(G(xi), xi), xi))/G(xi)-(-(2*m*mu+lambda)*(diff(G(xi), xi))-mu)*(diff(G(xi), xi))/G(xi)^2-2*(diff(G(xi), xi))*(diff(diff(G(xi), xi), xi))/G(xi)^2+2*(diff(G(xi), xi))^3/G(xi)^3)

(8)

E2 := subs(S, D2)

2*e[-1]*((-(2*m*mu+lambda)*(diff(G(xi), xi))-mu)/G(xi)-(diff(G(xi), xi))^2/G(xi)^2)^2/(m+(diff(G(xi), xi))/G(xi))^3-e[-1]*(-(2*m*mu+lambda)*(-(2*m*mu+lambda)*(diff(G(xi), xi))-mu)/G(xi)-3*(-(2*m*mu+lambda)*(diff(G(xi), xi))-mu)*(diff(G(xi), xi))/G(xi)^2+2*(diff(G(xi), xi))^3/G(xi)^3)/(m+(diff(G(xi), xi))/G(xi))^2+e[1]*(-(2*m*mu+lambda)*(-(2*m*mu+lambda)*(diff(G(xi), xi))-mu)/G(xi)-3*(-(2*m*mu+lambda)*(diff(G(xi), xi))-mu)*(diff(G(xi), xi))/G(xi)^2+2*(diff(G(xi), xi))^3/G(xi)^3)

(9)

D3 := diff(E2, xi)

-6*e[-1]*((-(2*m*mu+lambda)*(diff(G(xi), xi))-mu)/G(xi)-(diff(G(xi), xi))^2/G(xi)^2)^2*((diff(diff(G(xi), xi), xi))/G(xi)-(diff(G(xi), xi))^2/G(xi)^2)/(m+(diff(G(xi), xi))/G(xi))^4+4*e[-1]*((-(2*m*mu+lambda)*(diff(G(xi), xi))-mu)/G(xi)-(diff(G(xi), xi))^2/G(xi)^2)*(-(2*m*mu+lambda)*(diff(diff(G(xi), xi), xi))/G(xi)-(-(2*m*mu+lambda)*(diff(G(xi), xi))-mu)*(diff(G(xi), xi))/G(xi)^2-2*(diff(G(xi), xi))*(diff(diff(G(xi), xi), xi))/G(xi)^2+2*(diff(G(xi), xi))^3/G(xi)^3)/(m+(diff(G(xi), xi))/G(xi))^3+2*e[-1]*(-(2*m*mu+lambda)*(-(2*m*mu+lambda)*(diff(G(xi), xi))-mu)/G(xi)-3*(-(2*m*mu+lambda)*(diff(G(xi), xi))-mu)*(diff(G(xi), xi))/G(xi)^2+2*(diff(G(xi), xi))^3/G(xi)^3)*((diff(diff(G(xi), xi), xi))/G(xi)-(diff(G(xi), xi))^2/G(xi)^2)/(m+(diff(G(xi), xi))/G(xi))^3-e[-1]*((2*m*mu+lambda)^2*(diff(diff(G(xi), xi), xi))/G(xi)+(2*m*mu+lambda)*(-(2*m*mu+lambda)*(diff(G(xi), xi))-mu)*(diff(G(xi), xi))/G(xi)^2+3*(2*m*mu+lambda)*(diff(diff(G(xi), xi), xi))*(diff(G(xi), xi))/G(xi)^2+6*(-(2*m*mu+lambda)*(diff(G(xi), xi))-mu)*(diff(G(xi), xi))^2/G(xi)^3-3*(-(2*m*mu+lambda)*(diff(G(xi), xi))-mu)*(diff(diff(G(xi), xi), xi))/G(xi)^2+6*(diff(G(xi), xi))^2*(diff(diff(G(xi), xi), xi))/G(xi)^3-6*(diff(G(xi), xi))^4/G(xi)^4)/(m+(diff(G(xi), xi))/G(xi))^2+e[1]*((2*m*mu+lambda)^2*(diff(diff(G(xi), xi), xi))/G(xi)+(2*m*mu+lambda)*(-(2*m*mu+lambda)*(diff(G(xi), xi))-mu)*(diff(G(xi), xi))/G(xi)^2+3*(2*m*mu+lambda)*(diff(diff(G(xi), xi), xi))*(diff(G(xi), xi))/G(xi)^2+6*(-(2*m*mu+lambda)*(diff(G(xi), xi))-mu)*(diff(G(xi), xi))^2/G(xi)^3-3*(-(2*m*mu+lambda)*(diff(G(xi), xi))-mu)*(diff(diff(G(xi), xi), xi))/G(xi)^2+6*(diff(G(xi), xi))^2*(diff(diff(G(xi), xi), xi))/G(xi)^3-6*(diff(G(xi), xi))^4/G(xi)^4)

(10)

E3 := subs(S, D3)

-6*e[-1]*((-(2*m*mu+lambda)*(diff(G(xi), xi))-mu)/G(xi)-(diff(G(xi), xi))^2/G(xi)^2)^3/(m+(diff(G(xi), xi))/G(xi))^4+6*e[-1]*((-(2*m*mu+lambda)*(diff(G(xi), xi))-mu)/G(xi)-(diff(G(xi), xi))^2/G(xi)^2)*(-(2*m*mu+lambda)*(-(2*m*mu+lambda)*(diff(G(xi), xi))-mu)/G(xi)-3*(-(2*m*mu+lambda)*(diff(G(xi), xi))-mu)*(diff(G(xi), xi))/G(xi)^2+2*(diff(G(xi), xi))^3/G(xi)^3)/(m+(diff(G(xi), xi))/G(xi))^3-e[-1]*((2*m*mu+lambda)^2*(-(2*m*mu+lambda)*(diff(G(xi), xi))-mu)/G(xi)+4*(2*m*mu+lambda)*(-(2*m*mu+lambda)*(diff(G(xi), xi))-mu)*(diff(G(xi), xi))/G(xi)^2+12*(-(2*m*mu+lambda)*(diff(G(xi), xi))-mu)*(diff(G(xi), xi))^2/G(xi)^3-3*(-(2*m*mu+lambda)*(diff(G(xi), xi))-mu)^2/G(xi)^2-6*(diff(G(xi), xi))^4/G(xi)^4)/(m+(diff(G(xi), xi))/G(xi))^2+e[1]*((2*m*mu+lambda)^2*(-(2*m*mu+lambda)*(diff(G(xi), xi))-mu)/G(xi)+4*(2*m*mu+lambda)*(-(2*m*mu+lambda)*(diff(G(xi), xi))-mu)*(diff(G(xi), xi))/G(xi)^2+12*(-(2*m*mu+lambda)*(diff(G(xi), xi))-mu)*(diff(G(xi), xi))^2/G(xi)^3-3*(-(2*m*mu+lambda)*(diff(G(xi), xi))-mu)^2/G(xi)^2-6*(diff(G(xi), xi))^4/G(xi)^4)

(11)

NULL

NULL

K := U(xi) = F

K1 := diff(U(xi), xi) = E1

K2 := diff(U(xi), `$`(xi, 2)) = E2

K3 := diff(U(xi), `$`(xi, 3)) = E3

NULL

L := eval(ode, {K, K1, K2, K3})

(-V*a[2]+a[1])*(2*e[-1]*((-(2*m*mu+lambda)*(diff(G(xi), xi))-mu)/G(xi)-(diff(G(xi), xi))^2/G(xi)^2)^2/(m+(diff(G(xi), xi))/G(xi))^3-e[-1]*(-(2*m*mu+lambda)*(-(2*m*mu+lambda)*(diff(G(xi), xi))-mu)/G(xi)-3*(-(2*m*mu+lambda)*(diff(G(xi), xi))-mu)*(diff(G(xi), xi))/G(xi)^2+2*(diff(G(xi), xi))^3/G(xi)^3)/(m+(diff(G(xi), xi))/G(xi))^2+e[1]*(-(2*m*mu+lambda)*(-(2*m*mu+lambda)*(diff(G(xi), xi))-mu)/G(xi)-3*(-(2*m*mu+lambda)*(diff(G(xi), xi))-mu)*(diff(G(xi), xi))/G(xi)^2+2*(diff(G(xi), xi))^3/G(xi)^3))+(e[-1]/(m+(diff(G(xi), xi))/G(xi))+e[0]+e[1]*(m+(diff(G(xi), xi))/G(xi)))*(((-gamma+sigma)*k+b)*(e[-1]/(m+(diff(G(xi), xi))/G(xi))+e[0]+e[1]*(m+(diff(G(xi), xi))/G(xi)))^2-a[1]*k^2+(w*a[2]-alpha)*k-w) = 0

(12)

NULL

# rewritting rule

RR := isolate(m+diff(G(xi), xi)/(G(xi))=Phi, diff(G(xi), xi)/G(xi));

(diff(G(xi), xi))/G(xi) = Phi-m

(13)

# Apply RR and collect wrt Phi

subs(RR, L):
normal(%):
PhiN := collect(numer(lhs(%)), phi):
PhiD := denom(lhs(%%));

Phi^3*G(xi)^4

(14)



with(LargeExpressions):

LLE := collect(PhiN, Phi, Veil[phi] ):
LLE / PhiD = 0;

(Phi^6*phi[1]+3*Phi^5*phi[2]-Phi^4*phi[3]-Phi^3*phi[4]-Phi^2*phi[5]+Phi*phi[6]-phi[7])/(Phi^3*G(xi)^4) = 0

(15)

# phi[i] coefficients


phis := [ seq( phi[i] = simplify(Unveil[phi](phi[i]), size), i=1..LastUsed[phi] ) ]:

print~( phis ):

phi[1] = G(xi)^4*e[1]^3*((-gamma+sigma)*k+b)

 

phi[2] = e[1]^2*G(xi)^4*e[0]*((-gamma+sigma)*k+b)

 

phi[3] = -3*e[1]*G(xi)^4*(-(1/3)*a[1]*k^2+(-e[-1]*(gamma-sigma)*e[1]+(-gamma+sigma)*e[0]^2+(1/3)*w*a[2]-(1/3)*alpha)*k+b*e[-1]*e[1]+b*e[0]^2-(1/3)*w)

 

phi[4] = (2*e[1]*(V*a[2]-a[1])*(diff(G(xi), xi))^3+3*e[1]*G(xi)*(2*m*mu+lambda)*(V*a[2]-a[1])*(diff(G(xi), xi))^2+e[1]*(V*a[2]-a[1])*G(xi)*((2*m*mu+lambda)^2*G(xi)+3*mu)*(diff(G(xi), xi))+G(xi)^2*(-(6*e[-1]*((-gamma+sigma)*k+b)*e[1]-a[1]*k^2+k*w*a[2]+((-gamma+sigma)*k+b)*e[0]^2-k*alpha-w)*e[0]*G(xi)+e[1]*mu*(2*m*mu+lambda)*(V*a[2]-a[1])))*G(xi)

 

phi[5] = -3*e[-1]*G(xi)^4*(-(1/3)*a[1]*k^2+(-e[-1]*(gamma-sigma)*e[1]+(-gamma+sigma)*e[0]^2+(1/3)*w*a[2]-(1/3)*alpha)*k+b*e[-1]*e[1]+b*e[0]^2-(1/3)*w)

 

phi[6] = 4*((1/2)*(V*a[2]-a[1])*(diff(G(xi), xi))^3+(3/2)*(V*a[2]-a[1])*(m*mu+(1/2)*lambda)*G(xi)*(diff(G(xi), xi))^2+(V*a[2]-a[1])*((m*mu+(1/2)*lambda)^2*G(xi)+(3/4)*mu)*G(xi)*(diff(G(xi), xi))+(1/2)*((3/2)*e[0]*((-gamma+sigma)*k+b)*e[-1]*G(xi)+(V*a[2]-a[1])*(m*mu+(1/2)*lambda)*mu)*G(xi)^2)*e[-1]*G(xi)

 

phi[7] = 8*e[-1]*((1/4)*(V*a[2]-a[1])*(diff(G(xi), xi))^4+(V*a[2]-a[1])*(m*mu+(1/2)*lambda)*G(xi)*(diff(G(xi), xi))^3+(V*a[2]-a[1])*((m*mu+(1/2)*lambda)^2*G(xi)+(1/2)*mu)*G(xi)*(diff(G(xi), xi))^2+(V*a[2]-a[1])*(m*mu+(1/2)*lambda)*mu*G(xi)^2*(diff(G(xi), xi))+(1/4)*(-(1/2)*((-gamma+sigma)*k+b)*e[-1]^2*G(xi)^2+mu^2*(V*a[2]-a[1]))*G(xi)^2)

(16)

# WATCHOUT: you have 9 coefficients and so its desirable to have the same number of unknowns

unknowns := indets(rhs~(phis), {e[-1],e[0],e[1],'identical'(mu),'identical'(lambda),'identical'(a[1]),'identical'(alpha)});

COEFFS := solve(rhs~(phis), unknowns)

{alpha, lambda, mu, a[1], e[-1], e[0], e[1]}

 

{alpha = alpha, lambda = lambda, mu = mu, a[1] = a[1], e[-1] = 0, e[0] = 0, e[1] = 0}, {alpha = alpha, lambda = lambda, mu = mu, a[1] = -(gamma*k*e[0]^2-k*sigma*e[0]^2-b*e[0]^2-k*w*a[2]+alpha*k+w)/k^2, e[-1] = 0, e[0] = e[0], e[1] = 0}, {alpha = (1/2)*(-G(xi)^4*gamma*k^3*e[-1]^2+G(xi)^4*k^3*sigma*e[-1]^2-4*G(xi)^2*(diff(G(xi), xi))*V*k^2*m*mu^2*a[2]+4*G(xi)*(diff(G(xi), xi))^3*V*k^2*m*mu*a[2]+G(xi)^4*b*k^2*e[-1]^2+4*G(xi)^2*(diff(G(xi), xi))*k*m*mu^2*w*a[2]-4*G(xi)*(diff(G(xi), xi))^3*k*m*mu*w*a[2]-2*G(xi)^2*V*k^2*mu^2*a[2]+2*G(xi)*(diff(G(xi), xi))^2*V*k^2*mu*a[2]-2*G(xi)*(diff(G(xi), xi))*RootOf(4*m^2*mu^2*(diff(G(xi), xi))*G(xi)^2+2*m*mu^2*G(xi)^2+6*m*mu*(diff(G(xi), xi))^2*G(xi)+3*mu*(diff(G(xi), xi))*G(xi)+2*(diff(G(xi), xi))^3+(4*m*mu*(diff(G(xi), xi))*G(xi)+mu*G(xi)+3*(diff(G(xi), xi))^2)*_Z+(diff(G(xi), xi))*_Z^2)*V*k^2*mu*a[2]+2*(diff(G(xi), xi))^4*V*k^2*a[2]+2*(diff(G(xi), xi))^3*RootOf(4*m^2*mu^2*(diff(G(xi), xi))*G(xi)^2+2*m*mu^2*G(xi)^2+6*m*mu*(diff(G(xi), xi))^2*G(xi)+3*mu*(diff(G(xi), xi))*G(xi)+2*(diff(G(xi), xi))^3+(4*m*mu*(diff(G(xi), xi))*G(xi)+mu*G(xi)+3*(diff(G(xi), xi))^2)*_Z+(diff(G(xi), xi))*_Z^2)*V*k^2*a[2]-4*G(xi)^2*(diff(G(xi), xi))*m*mu^2*w+2*G(xi)^2*k*mu^2*w*a[2]+4*G(xi)*(diff(G(xi), xi))^3*m*mu*w-2*G(xi)*(diff(G(xi), xi))^2*k*mu*w*a[2]+2*G(xi)*(diff(G(xi), xi))*RootOf(4*m^2*mu^2*(diff(G(xi), xi))*G(xi)^2+2*m*mu^2*G(xi)^2+6*m*mu*(diff(G(xi), xi))^2*G(xi)+3*mu*(diff(G(xi), xi))*G(xi)+2*(diff(G(xi), xi))^3+(4*m*mu*(diff(G(xi), xi))*G(xi)+mu*G(xi)+3*(diff(G(xi), xi))^2)*_Z+(diff(G(xi), xi))*_Z^2)*k*mu*w*a[2]-2*(diff(G(xi), xi))^4*k*w*a[2]-2*(diff(G(xi), xi))^3*RootOf(4*m^2*mu^2*(diff(G(xi), xi))*G(xi)^2+2*m*mu^2*G(xi)^2+6*m*mu*(diff(G(xi), xi))^2*G(xi)+3*mu*(diff(G(xi), xi))*G(xi)+2*(diff(G(xi), xi))^3+(4*m*mu*(diff(G(xi), xi))*G(xi)+mu*G(xi)+3*(diff(G(xi), xi))^2)*_Z+(diff(G(xi), xi))*_Z^2)*k*w*a[2]-2*G(xi)^2*mu^2*w+2*G(xi)*(diff(G(xi), xi))^2*mu*w-2*G(xi)*(diff(G(xi), xi))*RootOf(4*m^2*mu^2*(diff(G(xi), xi))*G(xi)^2+2*m*mu^2*G(xi)^2+6*m*mu*(diff(G(xi), xi))^2*G(xi)+3*mu*(diff(G(xi), xi))*G(xi)+2*(diff(G(xi), xi))^3+(4*m*mu*(diff(G(xi), xi))*G(xi)+mu*G(xi)+3*(diff(G(xi), xi))^2)*_Z+(diff(G(xi), xi))*_Z^2)*mu*w+2*(diff(G(xi), xi))^4*w+2*(diff(G(xi), xi))^3*RootOf(4*m^2*mu^2*(diff(G(xi), xi))*G(xi)^2+2*m*mu^2*G(xi)^2+6*m*mu*(diff(G(xi), xi))^2*G(xi)+3*mu*(diff(G(xi), xi))*G(xi)+2*(diff(G(xi), xi))^3+(4*m*mu*(diff(G(xi), xi))*G(xi)+mu*G(xi)+3*(diff(G(xi), xi))^2)*_Z+(diff(G(xi), xi))*_Z^2)*w)/((2*m*mu^2*(diff(G(xi), xi))*G(xi)^2-2*m*mu*(diff(G(xi), xi))^3*G(xi)+mu*(diff(G(xi), xi))*G(xi)*RootOf(4*m^2*mu^2*(diff(G(xi), xi))*G(xi)^2+2*m*mu^2*G(xi)^2+6*m*mu*(diff(G(xi), xi))^2*G(xi)+3*mu*(diff(G(xi), xi))*G(xi)+2*(diff(G(xi), xi))^3+(4*m*mu*(diff(G(xi), xi))*G(xi)+mu*G(xi)+3*(diff(G(xi), xi))^2)*_Z+(diff(G(xi), xi))*_Z^2)-(diff(G(xi), xi))^3*RootOf(4*m^2*mu^2*(diff(G(xi), xi))*G(xi)^2+2*m*mu^2*G(xi)^2+6*m*mu*(diff(G(xi), xi))^2*G(xi)+3*mu*(diff(G(xi), xi))*G(xi)+2*(diff(G(xi), xi))^3+(4*m*mu*(diff(G(xi), xi))*G(xi)+mu*G(xi)+3*(diff(G(xi), xi))^2)*_Z+(diff(G(xi), xi))*_Z^2)+mu^2*G(xi)^2-mu*(diff(G(xi), xi))^2*G(xi)-(diff(G(xi), xi))^4)*k), lambda = RootOf(4*m^2*mu^2*(diff(G(xi), xi))*G(xi)^2+2*m*mu^2*G(xi)^2+6*m*mu*(diff(G(xi), xi))^2*G(xi)+3*mu*(diff(G(xi), xi))*G(xi)+2*(diff(G(xi), xi))^3+(4*m*mu*(diff(G(xi), xi))*G(xi)+mu*G(xi)+3*(diff(G(xi), xi))^2)*_Z+(diff(G(xi), xi))*_Z^2)/G(xi), mu = mu, a[1] = -(1/2)*(-G(xi)^4*gamma*k*e[-1]^2+G(xi)^4*k*sigma*e[-1]^2-4*G(xi)^2*(diff(G(xi), xi))*V*m*mu^2*a[2]+4*G(xi)*(diff(G(xi), xi))^3*V*m*mu*a[2]+G(xi)^4*b*e[-1]^2-2*G(xi)^2*V*mu^2*a[2]+2*G(xi)*(diff(G(xi), xi))^2*V*mu*a[2]-2*mu*G(xi)*(diff(G(xi), xi))*V*RootOf(4*m^2*mu^2*(diff(G(xi), xi))*G(xi)^2+2*m*mu^2*G(xi)^2+6*m*mu*(diff(G(xi), xi))^2*G(xi)+3*mu*(diff(G(xi), xi))*G(xi)+2*(diff(G(xi), xi))^3+(4*m*mu*(diff(G(xi), xi))*G(xi)+mu*G(xi)+3*(diff(G(xi), xi))^2)*_Z+(diff(G(xi), xi))*_Z^2)*a[2]+2*(diff(G(xi), xi))^4*V*a[2]+2*(diff(G(xi), xi))^3*V*RootOf(4*m^2*mu^2*(diff(G(xi), xi))*G(xi)^2+2*m*mu^2*G(xi)^2+6*m*mu*(diff(G(xi), xi))^2*G(xi)+3*mu*(diff(G(xi), xi))*G(xi)+2*(diff(G(xi), xi))^3+(4*m*mu*(diff(G(xi), xi))*G(xi)+mu*G(xi)+3*(diff(G(xi), xi))^2)*_Z+(diff(G(xi), xi))*_Z^2)*a[2])/(2*m*mu^2*(diff(G(xi), xi))*G(xi)^2-2*m*mu*(diff(G(xi), xi))^3*G(xi)+mu*(diff(G(xi), xi))*G(xi)*RootOf(4*m^2*mu^2*(diff(G(xi), xi))*G(xi)^2+2*m*mu^2*G(xi)^2+6*m*mu*(diff(G(xi), xi))^2*G(xi)+3*mu*(diff(G(xi), xi))*G(xi)+2*(diff(G(xi), xi))^3+(4*m*mu*(diff(G(xi), xi))*G(xi)+mu*G(xi)+3*(diff(G(xi), xi))^2)*_Z+(diff(G(xi), xi))*_Z^2)-(diff(G(xi), xi))^3*RootOf(4*m^2*mu^2*(diff(G(xi), xi))*G(xi)^2+2*m*mu^2*G(xi)^2+6*m*mu*(diff(G(xi), xi))^2*G(xi)+3*mu*(diff(G(xi), xi))*G(xi)+2*(diff(G(xi), xi))^3+(4*m*mu*(diff(G(xi), xi))*G(xi)+mu*G(xi)+3*(diff(G(xi), xi))^2)*_Z+(diff(G(xi), xi))*_Z^2)+mu^2*G(xi)^2-mu*(diff(G(xi), xi))^2*G(xi)-(diff(G(xi), xi))^4), e[-1] = e[-1], e[0] = 0, e[1] = 0}

(17)

case1 := COEFFS[2]

{alpha = alpha, lambda = lambda, mu = mu, a[1] = -(gamma*k*e[0]^2-k*sigma*e[0]^2-b*e[0]^2-k*w*a[2]+alpha*k+w)/k^2, e[-1] = 0, e[0] = e[0], e[1] = 0}

(18)

NULL

F1 := subs(case1, F)

e[0]

(19)

F2 := subs(case1, ode)

(-a[2]*V-(gamma*k*e[0]^2-k*sigma*e[0]^2-b*e[0]^2-k*w*a[2]+alpha*k+w)/k^2)*(diff(diff(U(xi), xi), xi))+U(xi)*(((-gamma+sigma)*k+b)*U(xi)^2+k*e[0]^2*gamma-k*e[0]^2*sigma-b*e[0]^2-k*w*a[2]+k*alpha+(w*a[2]-alpha)*k) = 0

(20)

W := U(xi) = F1

U(xi) = e[0]

(21)

NULL

E := diff(G(xi), xi) = -(-2*m*mu-lambda)*exp(-(2*m*mu+lambda)*xi)*c__1/(2*m*mu+lambda)-mu/(2*m*mu+lambda)

diff(G(xi), xi) = -(-2*m*mu-lambda)*exp(-(2*m*mu+lambda)*xi)*c__1/(2*m*mu+lambda)-mu/(2*m*mu+lambda)

(22)

W1 := subs(E, W)

U(xi) = e[0]

(23)

W2 := subs(case1, W1)

U(xi) = e[0]

(24)

W3 := rhs(U(xi) = e[0])

e[0]

(25)

W4 := convert(W3, trig)

e[0]

(26)

W5 := W4

e[0]

(27)

odetest(W2, F2)

0

(28)

Download G-factoring.mw

First 16 17 18 19 20 21 22 Last Page 18 of 32