salim-barzani

1555 Reputation

9 Badges

1 years, 14 days

MaplePrimes Activity


These are questions asked by salim-barzani

every structure is true but my plot not run where is issue?
plot.mw

I’ve spent considerable effort trying to understand how the solution was derived, particularly the approach involving the factoring of G′/G. Despite my attempts, the methodology remains elusive. It seems there’s an innovative idea at play here—something beyond the techniques we’ve applied in similar problems before. While I suspect it involves a novel perspective, I can’t quite pinpoint what it might be.

If anyone has insights into how this factoring is achieved or can shed light on the underlying idea, I’d greatly appreciate your help.


 

restart

with(PDEtools)

with(LinearAlgebra)

with(Physics)

with(SolveTools)

undeclare(prime)

`There is no more prime differentiation variable; all derivatives will be displayed as indexed functions`

(1)

_local(gamma)

Warning, A new binding for the name `gamma` has been created. The global instance of this name is still accessible using the :- prefix, :-`gamma`.  See ?protect for details.

 

declare(Omega(x, t)); declare(U(xi)); declare(u(x, y, z, t)); declare(Q(xi)); declare(V(xi))

Omega(x, t)*`will now be displayed as`*Omega

 

U(xi)*`will now be displayed as`*U

 

u(x, y, z, t)*`will now be displayed as`*u

 

Q(xi)*`will now be displayed as`*Q

 

V(xi)*`will now be displayed as`*V

(2)

``

ode := (-V*a[2]+a[1])*(diff(diff(U(xi), xi), xi))+U(xi)*(((-gamma+sigma)*k+b)*U(xi)^2-a[1]*k^2+(w*a[2]-alpha)*k-w) = 0

(-V*a[2]+a[1])*(diff(diff(U(xi), xi), xi))+U(xi)*(((-gamma+sigma)*k+b)*U(xi)^2-a[1]*k^2+(w*a[2]-alpha)*k-w) = 0

(3)

F := sum(c[i]*(m+(diff(G(xi), xi))/G(xi))^i, i = -1 .. 1)

c[-1]/(m+(diff(G(xi), xi))/G(xi))+c[0]+c[1]*(m+(diff(G(xi), xi))/G(xi))

(4)

D1 := diff(F, xi)

-c[-1]*((diff(diff(G(xi), xi), xi))/G(xi)-(diff(G(xi), xi))^2/G(xi)^2)/(m+(diff(G(xi), xi))/G(xi))^2+c[1]*((diff(diff(G(xi), xi), xi))/G(xi)-(diff(G(xi), xi))^2/G(xi)^2)

(5)

S := diff(G(xi), `$`(xi, 2)) = -(2*m*mu+lambda)*(diff(G(xi), xi))-mu

diff(diff(G(xi), xi), xi) = -(2*m*mu+lambda)*(diff(G(xi), xi))-mu

(6)

E1 := subs(S, D1)

-c[-1]*((-(2*m*mu+lambda)*(diff(G(xi), xi))-mu)/G(xi)-(diff(G(xi), xi))^2/G(xi)^2)/(m+(diff(G(xi), xi))/G(xi))^2+c[1]*((-(2*m*mu+lambda)*(diff(G(xi), xi))-mu)/G(xi)-(diff(G(xi), xi))^2/G(xi)^2)

(7)

D2 := diff(E1, xi)

2*c[-1]*((-(2*m*mu+lambda)*(diff(G(xi), xi))-mu)/G(xi)-(diff(G(xi), xi))^2/G(xi)^2)*((diff(diff(G(xi), xi), xi))/G(xi)-(diff(G(xi), xi))^2/G(xi)^2)/(m+(diff(G(xi), xi))/G(xi))^3-c[-1]*(-(2*m*mu+lambda)*(diff(diff(G(xi), xi), xi))/G(xi)-(-(2*m*mu+lambda)*(diff(G(xi), xi))-mu)*(diff(G(xi), xi))/G(xi)^2-2*(diff(G(xi), xi))*(diff(diff(G(xi), xi), xi))/G(xi)^2+2*(diff(G(xi), xi))^3/G(xi)^3)/(m+(diff(G(xi), xi))/G(xi))^2+c[1]*(-(2*m*mu+lambda)*(diff(diff(G(xi), xi), xi))/G(xi)-(-(2*m*mu+lambda)*(diff(G(xi), xi))-mu)*(diff(G(xi), xi))/G(xi)^2-2*(diff(G(xi), xi))*(diff(diff(G(xi), xi), xi))/G(xi)^2+2*(diff(G(xi), xi))^3/G(xi)^3)

(8)

E2 := subs(S, D2)

2*c[-1]*((-(2*m*mu+lambda)*(diff(G(xi), xi))-mu)/G(xi)-(diff(G(xi), xi))^2/G(xi)^2)^2/(m+(diff(G(xi), xi))/G(xi))^3-c[-1]*(-(2*m*mu+lambda)*(-(2*m*mu+lambda)*(diff(G(xi), xi))-mu)/G(xi)-3*(-(2*m*mu+lambda)*(diff(G(xi), xi))-mu)*(diff(G(xi), xi))/G(xi)^2+2*(diff(G(xi), xi))^3/G(xi)^3)/(m+(diff(G(xi), xi))/G(xi))^2+c[1]*(-(2*m*mu+lambda)*(-(2*m*mu+lambda)*(diff(G(xi), xi))-mu)/G(xi)-3*(-(2*m*mu+lambda)*(diff(G(xi), xi))-mu)*(diff(G(xi), xi))/G(xi)^2+2*(diff(G(xi), xi))^3/G(xi)^3)

(9)

D3 := diff(E2, xi)

-6*c[-1]*((-(2*m*mu+lambda)*(diff(G(xi), xi))-mu)/G(xi)-(diff(G(xi), xi))^2/G(xi)^2)^2*((diff(diff(G(xi), xi), xi))/G(xi)-(diff(G(xi), xi))^2/G(xi)^2)/(m+(diff(G(xi), xi))/G(xi))^4+4*c[-1]*((-(2*m*mu+lambda)*(diff(G(xi), xi))-mu)/G(xi)-(diff(G(xi), xi))^2/G(xi)^2)*(-(2*m*mu+lambda)*(diff(diff(G(xi), xi), xi))/G(xi)-(-(2*m*mu+lambda)*(diff(G(xi), xi))-mu)*(diff(G(xi), xi))/G(xi)^2-2*(diff(G(xi), xi))*(diff(diff(G(xi), xi), xi))/G(xi)^2+2*(diff(G(xi), xi))^3/G(xi)^3)/(m+(diff(G(xi), xi))/G(xi))^3+2*c[-1]*(-(2*m*mu+lambda)*(-(2*m*mu+lambda)*(diff(G(xi), xi))-mu)/G(xi)-3*(-(2*m*mu+lambda)*(diff(G(xi), xi))-mu)*(diff(G(xi), xi))/G(xi)^2+2*(diff(G(xi), xi))^3/G(xi)^3)*((diff(diff(G(xi), xi), xi))/G(xi)-(diff(G(xi), xi))^2/G(xi)^2)/(m+(diff(G(xi), xi))/G(xi))^3-c[-1]*((2*m*mu+lambda)^2*(diff(diff(G(xi), xi), xi))/G(xi)+(2*m*mu+lambda)*(-(2*m*mu+lambda)*(diff(G(xi), xi))-mu)*(diff(G(xi), xi))/G(xi)^2+3*(2*m*mu+lambda)*(diff(diff(G(xi), xi), xi))*(diff(G(xi), xi))/G(xi)^2+6*(-(2*m*mu+lambda)*(diff(G(xi), xi))-mu)*(diff(G(xi), xi))^2/G(xi)^3-3*(-(2*m*mu+lambda)*(diff(G(xi), xi))-mu)*(diff(diff(G(xi), xi), xi))/G(xi)^2+6*(diff(G(xi), xi))^2*(diff(diff(G(xi), xi), xi))/G(xi)^3-6*(diff(G(xi), xi))^4/G(xi)^4)/(m+(diff(G(xi), xi))/G(xi))^2+c[1]*((2*m*mu+lambda)^2*(diff(diff(G(xi), xi), xi))/G(xi)+(2*m*mu+lambda)*(-(2*m*mu+lambda)*(diff(G(xi), xi))-mu)*(diff(G(xi), xi))/G(xi)^2+3*(2*m*mu+lambda)*(diff(diff(G(xi), xi), xi))*(diff(G(xi), xi))/G(xi)^2+6*(-(2*m*mu+lambda)*(diff(G(xi), xi))-mu)*(diff(G(xi), xi))^2/G(xi)^3-3*(-(2*m*mu+lambda)*(diff(G(xi), xi))-mu)*(diff(diff(G(xi), xi), xi))/G(xi)^2+6*(diff(G(xi), xi))^2*(diff(diff(G(xi), xi), xi))/G(xi)^3-6*(diff(G(xi), xi))^4/G(xi)^4)

(10)

E3 := subs(S, D3)

-6*c[-1]*((-(2*m*mu+lambda)*(diff(G(xi), xi))-mu)/G(xi)-(diff(G(xi), xi))^2/G(xi)^2)^3/(m+(diff(G(xi), xi))/G(xi))^4+6*c[-1]*((-(2*m*mu+lambda)*(diff(G(xi), xi))-mu)/G(xi)-(diff(G(xi), xi))^2/G(xi)^2)*(-(2*m*mu+lambda)*(-(2*m*mu+lambda)*(diff(G(xi), xi))-mu)/G(xi)-3*(-(2*m*mu+lambda)*(diff(G(xi), xi))-mu)*(diff(G(xi), xi))/G(xi)^2+2*(diff(G(xi), xi))^3/G(xi)^3)/(m+(diff(G(xi), xi))/G(xi))^3-c[-1]*((2*m*mu+lambda)^2*(-(2*m*mu+lambda)*(diff(G(xi), xi))-mu)/G(xi)+4*(2*m*mu+lambda)*(-(2*m*mu+lambda)*(diff(G(xi), xi))-mu)*(diff(G(xi), xi))/G(xi)^2+12*(-(2*m*mu+lambda)*(diff(G(xi), xi))-mu)*(diff(G(xi), xi))^2/G(xi)^3-3*(-(2*m*mu+lambda)*(diff(G(xi), xi))-mu)^2/G(xi)^2-6*(diff(G(xi), xi))^4/G(xi)^4)/(m+(diff(G(xi), xi))/G(xi))^2+c[1]*((2*m*mu+lambda)^2*(-(2*m*mu+lambda)*(diff(G(xi), xi))-mu)/G(xi)+4*(2*m*mu+lambda)*(-(2*m*mu+lambda)*(diff(G(xi), xi))-mu)*(diff(G(xi), xi))/G(xi)^2+12*(-(2*m*mu+lambda)*(diff(G(xi), xi))-mu)*(diff(G(xi), xi))^2/G(xi)^3-3*(-(2*m*mu+lambda)*(diff(G(xi), xi))-mu)^2/G(xi)^2-6*(diff(G(xi), xi))^4/G(xi)^4)

(11)

``

NULL

K := U(xi) = F

K1 := diff(U(xi), xi) = E1

K2 := diff(U(xi), `$`(xi, 2)) = E2

K3 := diff(U(xi), `$`(xi, 3)) = E3

``

L := eval(ode, {K, K1, K2, K3})

(-V*a[2]+a[1])*(2*c[-1]*((-(2*m*mu+lambda)*(diff(G(xi), xi))-mu)/G(xi)-(diff(G(xi), xi))^2/G(xi)^2)^2/(m+(diff(G(xi), xi))/G(xi))^3-c[-1]*(-(2*m*mu+lambda)*(-(2*m*mu+lambda)*(diff(G(xi), xi))-mu)/G(xi)-3*(-(2*m*mu+lambda)*(diff(G(xi), xi))-mu)*(diff(G(xi), xi))/G(xi)^2+2*(diff(G(xi), xi))^3/G(xi)^3)/(m+(diff(G(xi), xi))/G(xi))^2+c[1]*(-(2*m*mu+lambda)*(-(2*m*mu+lambda)*(diff(G(xi), xi))-mu)/G(xi)-3*(-(2*m*mu+lambda)*(diff(G(xi), xi))-mu)*(diff(G(xi), xi))/G(xi)^2+2*(diff(G(xi), xi))^3/G(xi)^3))+(c[-1]/(m+(diff(G(xi), xi))/G(xi))+c[0]+c[1]*(m+(diff(G(xi), xi))/G(xi)))*(((-gamma+sigma)*k+b)*(c[-1]/(m+(diff(G(xi), xi))/G(xi))+c[0]+c[1]*(m+(diff(G(xi), xi))/G(xi)))^2-a[1]*k^2+(w*a[2]-alpha)*k-w) = 0

(12)

NULL

# rewritting rule

RR := isolate(m+diff(G(xi), xi)/(G(xi))=Phi, diff(G(xi), xi)/G(xi));

(diff(G(xi), xi))/G(xi) = Phi-m

(13)

# Apply RR and collect wrt Phi

subs(RR, L):
normal(%):
PhiN := collect(numer(lhs(%)), phi):
PhiD := denom(lhs(%%));

Phi^3*G(xi)^4

(14)



with(LargeExpressions):

LLE := collect(PhiN, Phi, Veil[phi] ):
LLE / PhiD = 0;

(Phi^6*phi[1]+3*Phi^5*phi[2]-Phi^4*phi[3]-Phi^3*phi[4]-Phi^2*phi[5]+Phi*phi[6]-phi[7])/(Phi^3*G(xi)^4) = 0

(15)

# phi[i] coefficients


phis := [ seq( phi[i] = simplify(Unveil[phi](phi[i]), size), i=1..LastUsed[phi] ) ]:

print~( phis ):

phi[1] = c[1]^3*G(xi)^4*((-gamma+sigma)*k+b)

 

phi[2] = c[0]*G(xi)^4*c[1]^2*((-gamma+sigma)*k+b)

 

phi[3] = -3*G(xi)^4*c[1]*(-(1/3)*a[1]*k^2+(-c[-1]*(gamma-sigma)*c[1]+(-gamma+sigma)*c[0]^2+(1/3)*w*a[2]-(1/3)*alpha)*k+b*c[-1]*c[1]+b*c[0]^2-(1/3)*w)

 

phi[4] = G(xi)*(2*c[1]*(V*a[2]-a[1])*(diff(G(xi), xi))^3+3*c[1]*G(xi)*(2*m*mu+lambda)*(V*a[2]-a[1])*(diff(G(xi), xi))^2+((2*m*mu+lambda)^2*G(xi)+3*mu)*(V*a[2]-a[1])*G(xi)*c[1]*(diff(G(xi), xi))+G(xi)^2*(-c[0]*(6*c[-1]*((-gamma+sigma)*k+b)*c[1]-a[1]*k^2+k*w*a[2]+((-gamma+sigma)*k+b)*c[0]^2-k*alpha-w)*G(xi)+c[1]*mu*(2*m*mu+lambda)*(V*a[2]-a[1])))

 

phi[5] = -3*G(xi)^4*(-(1/3)*a[1]*k^2+(-c[-1]*(gamma-sigma)*c[1]+(-gamma+sigma)*c[0]^2+(1/3)*w*a[2]-(1/3)*alpha)*k+b*c[-1]*c[1]+b*c[0]^2-(1/3)*w)*c[-1]

 

phi[6] = 4*c[-1]*((1/2)*(V*a[2]-a[1])*(diff(G(xi), xi))^3+(3/2)*(m*mu+(1/2)*lambda)*(V*a[2]-a[1])*G(xi)*(diff(G(xi), xi))^2+(V*a[2]-a[1])*((m*mu+(1/2)*lambda)^2*G(xi)+(3/4)*mu)*G(xi)*(diff(G(xi), xi))+(1/2)*G(xi)^2*((3/2)*c[-1]*((-gamma+sigma)*k+b)*c[0]*G(xi)+(m*mu+(1/2)*lambda)*(V*a[2]-a[1])*mu))*G(xi)

 

phi[7] = 8*((1/4)*(V*a[2]-a[1])*(diff(G(xi), xi))^4+(V*a[2]-a[1])*G(xi)*(m*mu+(1/2)*lambda)*(diff(G(xi), xi))^3+(V*a[2]-a[1])*G(xi)*((m*mu+(1/2)*lambda)^2*G(xi)+(1/2)*mu)*(diff(G(xi), xi))^2+(V*a[2]-a[1])*G(xi)^2*(m*mu+(1/2)*lambda)*mu*(diff(G(xi), xi))+(1/4)*G(xi)^2*(-(1/2)*((-gamma+sigma)*k+b)*c[-1]^2*G(xi)^2+mu^2*(V*a[2]-a[1])))*c[-1]

(16)

# WATCHOUT: you have 9 coefficients and so its desirable to have the same number of unknowns

unknowns := indets(rhs~(phis), name);

COEFFS := solve(rhs~(phis), unknowns)

{V, alpha, b, gamma, k, lambda, m, mu, sigma, w, xi, a[1], a[2], c[-1], c[0], c[1]}

 

Error, (in solve) cannot solve expressions with diff(G(xi),xi) for xi

 

NULL

case1 := COEFFS[4]

{alpha = alpha, beta = gamma, delta = delta, gamma = gamma, k = k, lambda = 0, m = 2*n, mu = mu, n = n, sigma = 32*alpha*mu^2*n^4/a[-1]^2, w = -2*alpha*k^2*n-4*alpha*mu^2*n+delta^2, a[-1] = a[-1], a[0] = 0, a[1] = 0}

(17)

NULL

F1 := subs(case1, F)

a[-1]/(2*n+1/(diff(G(xi), xi)))

(18)

F2 := subs(case1, ode)

128*V(xi)^4*n^6*alpha*mu^2/a[-1]^2+(16*alpha*k^2*n^4-8*delta^2*n^3+8*n^3*(-2*alpha*k^2*n-4*alpha*mu^2*n+delta^2))*V(xi)^2-4*V(xi)*(diff(diff(V(xi), xi), xi))*alpha*n^2 = 0

(19)

W := V(xi) = F1

V(xi) = a[-1]/(2*n+1/(diff(G(xi), xi)))

(20)

NULL

E := diff(G(xi), xi) = -(-2*m*mu-lambda)*exp(-(2*m*mu+lambda)*xi)*c__1/(2*m*mu+lambda)-mu/(2*m*mu+lambda)

diff(G(xi), xi) = -(-2*m*mu-lambda)*exp(-(2*m*mu+lambda)*xi)*c__1/(2*m*mu+lambda)-mu/(2*m*mu+lambda)

(21)

W1 := subs(E, W)

V(xi) = a[-1]/(2*n+1/(-(-2*m*mu-lambda)*exp(-(2*m*mu+lambda)*xi)*c__1/(2*m*mu+lambda)-mu/(2*m*mu+lambda)))

(22)

W2 := subs(case1, W1)

V(xi) = a[-1]/(2*n+1/(exp(-4*mu*n*xi)*c__1-(1/4)/n))

(23)

W3 := rhs(V(xi) = a[-1]/(2*n+1/(exp(-4*mu*n*xi)*c__1-(1/4)/n)))

a[-1]/(2*n+1/(exp(-4*mu*n*xi)*c__1-(1/4)/n))

(24)

W4 := convert(W3, trig)

a[-1]/(2*n+1/((cosh(4*mu*n*xi)-sinh(4*mu*n*xi))*c__1-(1/4)/n))

(25)

W5 := W4

a[-1]/(2*n+1/((cosh(4*mu*n*xi)-sinh(4*mu*n*xi))*c__1-(1/4)/n))

(26)

odetest(W2, F2)

0

(27)
 

``

Download problem99.mw

When I attempt to solve for a specific parameter in Maple, it results in an error stating that the parameter does not exist. However, if I solve for all parameters, it successfully finds them, as shown in the figure. How can I resolve this issue?

parameter.mw

I did a lot  of time but this time i don't know why not run any one have idea?

restart

with(PDEtools)

with(LinearAlgebra)

with(Physics)

with(SolveTools)

undeclare(prime)

`There is no more prime differentiation variable; all derivatives will be displayed as indexed functions`

(1)

declare(u(x, t)); declare(U(xi)); declare(G(xi))

u(x, t)*`will now be displayed as`*u

 

U(xi)*`will now be displayed as`*U

 

G(xi)*`will now be displayed as`*G

(2)

T := xi = -V*t+x; T1 := u(x, t) = U(-V*t+x)*exp(I*(-k*x+t*w+theta))

xi = -V*t+x

 

u(x, t) = U(-V*t+x)*exp(I*(-k*x+t*w+theta))

(3)

P3 := diff(u(x, t), x, t)

``

(4)

P33 := diff(u(x, t), x)

diff(u(x, t), x)

(5)

P333 := diff(P33, t)

NULL

Download why.mw

I already get the same results, but there's something about the factoring process that I encountered for the first time in this ODE. In the paper, it says that G′ satisfies a certain condition, but I’m not sure exactly what that means. Did the author use it for substitution, or did they change (m+F) into another variable and then solve? I’m not exactly sure what approach was taken. Does anyone have any idea or insight into this?

restart

with(PDEtools)

with(LinearAlgebra)

NULL

with(SolveTools)

undeclare(prime)

`There is no more prime differentiation variable; all derivatives will be displayed as indexed functions`

(1)

declare(Omega(x, t)); declare(U(xi)); declare(u(x, y, z, t)); declare(Q(xi))

Omega(x, t)*`will now be displayed as`*Omega

 

U(xi)*`will now be displayed as`*U

 

u(x, y, z, t)*`will now be displayed as`*u

 

Q(xi)*`will now be displayed as`*Q

(2)

tr := {t = tau, x = (-ZETA*c[3]-tau*c[4]-`Υ`*c[2]+xi)/c[1], y = `Υ`, z = ZETA, u(x, y, z, t) = U(xi)}

{t = tau, x = (-Zeta*c[3]-tau*c[4]-`Υ`*c[2]+xi)/c[1], y = `Υ`, z = Zeta, u(x, y, z, t) = U(xi)}

(3)

pde1 := diff(u(x, y, z, t), `$`(x, 3), z)-4*(diff(u(x, y, z, t), x, t))+4*(diff(u(x, y, z, t), x))*(diff(u(x, y, z, t), x, z))+2*(diff(u(x, y, z, t), `$`(x, 2)))*(diff(u(x, y, z, t), z))+3*(diff(u(x, y, z, t), `$`(y, 2))) = 0

diff(diff(diff(diff(u(x, y, z, t), x), x), x), z)-4*(diff(diff(u(x, y, z, t), t), x))+4*(diff(u(x, y, z, t), x))*(diff(diff(u(x, y, z, t), x), z))+2*(diff(diff(u(x, y, z, t), x), x))*(diff(u(x, y, z, t), z))+3*(diff(diff(u(x, y, z, t), y), y)) = 0

(4)

``

L1 := PDEtools:-dchange(tr, pde1, [xi, `Υ`, ZETA, tau, U])

(diff(diff(diff(diff(U(xi), xi), xi), xi), xi))*c[1]^3*c[3]-4*(diff(diff(U(xi), xi), xi))*c[4]*c[1]+6*(diff(U(xi), xi))*c[1]^2*(diff(diff(U(xi), xi), xi))*c[3]+3*(diff(diff(U(xi), xi), xi))*c[2]^2 = 0

(5)

map(int, (diff(diff(diff(diff(U(xi), xi), xi), xi), xi))*c[1]^3*c[3]-4*(diff(diff(U(xi), xi), xi))*c[4]*c[1]+6*(diff(U(xi), xi))*c[1]^2*(diff(diff(U(xi), xi), xi))*c[3]+3*(diff(diff(U(xi), xi), xi))*c[2]^2 = 0, xi)

c[1]^3*c[3]*(diff(diff(diff(U(xi), xi), xi), xi))+3*c[2]^2*(diff(U(xi), xi))-4*c[4]*c[1]*(diff(U(xi), xi))+3*c[1]^2*c[3]*(diff(U(xi), xi))^2 = 0

(6)

ode := %

c[1]^3*c[3]*(diff(diff(diff(U(xi), xi), xi), xi))+3*c[2]^2*(diff(U(xi), xi))-4*c[4]*c[1]*(diff(U(xi), xi))+3*c[1]^2*c[3]*(diff(U(xi), xi))^2 = 0

(7)

F := sum(a[i]*(m+1/(diff(G(xi), xi)))^i, i = -1 .. 1)

a[-1]/(m+1/(diff(G(xi), xi)))+a[0]+a[1]*(m+1/(diff(G(xi), xi)))

(8)

D1 := diff(F, xi)

a[-1]*(diff(diff(G(xi), xi), xi))/((m+1/(diff(G(xi), xi)))^2*(diff(G(xi), xi))^2)-a[1]*(diff(diff(G(xi), xi), xi))/(diff(G(xi), xi))^2

(9)

S := diff(G(xi), `$`(xi, 2)) = -(2*m*mu+lambda)*(diff(G(xi), xi))-mu

diff(diff(G(xi), xi), xi) = -(2*m*mu+lambda)*(diff(G(xi), xi))-mu

(10)

E1 := subs(S, D1)

a[-1]*(-(2*m*mu+lambda)*(diff(G(xi), xi))-mu)/((m+1/(diff(G(xi), xi)))^2*(diff(G(xi), xi))^2)-a[1]*(-(2*m*mu+lambda)*(diff(G(xi), xi))-mu)/(diff(G(xi), xi))^2

(11)

D2 := diff(E1, xi)

2*a[-1]*(-(2*m*mu+lambda)*(diff(G(xi), xi))-mu)*(diff(diff(G(xi), xi), xi))/((m+1/(diff(G(xi), xi)))^3*(diff(G(xi), xi))^4)-2*a[-1]*(-(2*m*mu+lambda)*(diff(G(xi), xi))-mu)*(diff(diff(G(xi), xi), xi))/((m+1/(diff(G(xi), xi)))^2*(diff(G(xi), xi))^3)-a[-1]*(2*m*mu+lambda)*(diff(diff(G(xi), xi), xi))/((m+1/(diff(G(xi), xi)))^2*(diff(G(xi), xi))^2)+2*a[1]*(-(2*m*mu+lambda)*(diff(G(xi), xi))-mu)*(diff(diff(G(xi), xi), xi))/(diff(G(xi), xi))^3+a[1]*(2*m*mu+lambda)*(diff(diff(G(xi), xi), xi))/(diff(G(xi), xi))^2

(12)

E2 := subs(S, D2)

2*a[-1]*(-(2*m*mu+lambda)*(diff(G(xi), xi))-mu)^2/((m+1/(diff(G(xi), xi)))^3*(diff(G(xi), xi))^4)-2*a[-1]*(-(2*m*mu+lambda)*(diff(G(xi), xi))-mu)^2/((m+1/(diff(G(xi), xi)))^2*(diff(G(xi), xi))^3)-a[-1]*(2*m*mu+lambda)*(-(2*m*mu+lambda)*(diff(G(xi), xi))-mu)/((m+1/(diff(G(xi), xi)))^2*(diff(G(xi), xi))^2)+2*a[1]*(-(2*m*mu+lambda)*(diff(G(xi), xi))-mu)^2/(diff(G(xi), xi))^3+a[1]*(2*m*mu+lambda)*(-(2*m*mu+lambda)*(diff(G(xi), xi))-mu)/(diff(G(xi), xi))^2

(13)

D3 := diff(E2, xi)

6*a[-1]*(-(2*m*mu+lambda)*(diff(G(xi), xi))-mu)^2*(diff(diff(G(xi), xi), xi))/((m+1/(diff(G(xi), xi)))^4*(diff(G(xi), xi))^6)-12*a[-1]*(-(2*m*mu+lambda)*(diff(G(xi), xi))-mu)^2*(diff(diff(G(xi), xi), xi))/((m+1/(diff(G(xi), xi)))^3*(diff(G(xi), xi))^5)-6*a[-1]*(-(2*m*mu+lambda)*(diff(G(xi), xi))-mu)*(2*m*mu+lambda)*(diff(diff(G(xi), xi), xi))/((m+1/(diff(G(xi), xi)))^3*(diff(G(xi), xi))^4)+6*a[-1]*(-(2*m*mu+lambda)*(diff(G(xi), xi))-mu)^2*(diff(diff(G(xi), xi), xi))/((m+1/(diff(G(xi), xi)))^2*(diff(G(xi), xi))^4)+6*a[-1]*(-(2*m*mu+lambda)*(diff(G(xi), xi))-mu)*(2*m*mu+lambda)*(diff(diff(G(xi), xi), xi))/((m+1/(diff(G(xi), xi)))^2*(diff(G(xi), xi))^3)+a[-1]*(2*m*mu+lambda)^2*(diff(diff(G(xi), xi), xi))/((m+1/(diff(G(xi), xi)))^2*(diff(G(xi), xi))^2)-6*a[1]*(-(2*m*mu+lambda)*(diff(G(xi), xi))-mu)^2*(diff(diff(G(xi), xi), xi))/(diff(G(xi), xi))^4-6*a[1]*(-(2*m*mu+lambda)*(diff(G(xi), xi))-mu)*(2*m*mu+lambda)*(diff(diff(G(xi), xi), xi))/(diff(G(xi), xi))^3-a[1]*(2*m*mu+lambda)^2*(diff(diff(G(xi), xi), xi))/(diff(G(xi), xi))^2

(14)

E3 := subs(S, D3)

6*a[-1]*(-(2*m*mu+lambda)*(diff(G(xi), xi))-mu)^3/((m+1/(diff(G(xi), xi)))^4*(diff(G(xi), xi))^6)-12*a[-1]*(-(2*m*mu+lambda)*(diff(G(xi), xi))-mu)^3/((m+1/(diff(G(xi), xi)))^3*(diff(G(xi), xi))^5)-6*a[-1]*(-(2*m*mu+lambda)*(diff(G(xi), xi))-mu)^2*(2*m*mu+lambda)/((m+1/(diff(G(xi), xi)))^3*(diff(G(xi), xi))^4)+6*a[-1]*(-(2*m*mu+lambda)*(diff(G(xi), xi))-mu)^3/((m+1/(diff(G(xi), xi)))^2*(diff(G(xi), xi))^4)+6*a[-1]*(-(2*m*mu+lambda)*(diff(G(xi), xi))-mu)^2*(2*m*mu+lambda)/((m+1/(diff(G(xi), xi)))^2*(diff(G(xi), xi))^3)+a[-1]*(2*m*mu+lambda)^2*(-(2*m*mu+lambda)*(diff(G(xi), xi))-mu)/((m+1/(diff(G(xi), xi)))^2*(diff(G(xi), xi))^2)-6*a[1]*(-(2*m*mu+lambda)*(diff(G(xi), xi))-mu)^3/(diff(G(xi), xi))^4-6*a[1]*(-(2*m*mu+lambda)*(diff(G(xi), xi))-mu)^2*(2*m*mu+lambda)/(diff(G(xi), xi))^3-a[1]*(2*m*mu+lambda)^2*(-(2*m*mu+lambda)*(diff(G(xi), xi))-mu)/(diff(G(xi), xi))^2

(15)

NULL

NULL

K := U(xi) = F

U(xi) = a[-1]/(m+1/(diff(G(xi), xi)))+a[0]+a[1]*(m+1/(diff(G(xi), xi)))

(16)

K1 := diff(U(xi), xi) = E1

diff(U(xi), xi) = a[-1]*(-(2*m*mu+lambda)*(diff(G(xi), xi))-mu)/((m+1/(diff(G(xi), xi)))^2*(diff(G(xi), xi))^2)-a[1]*(-(2*m*mu+lambda)*(diff(G(xi), xi))-mu)/(diff(G(xi), xi))^2

(17)

K2 := diff(U(xi), `$`(xi, 2)) = E2

diff(diff(U(xi), xi), xi) = 2*a[-1]*(-(2*m*mu+lambda)*(diff(G(xi), xi))-mu)^2/((m+1/(diff(G(xi), xi)))^3*(diff(G(xi), xi))^4)-2*a[-1]*(-(2*m*mu+lambda)*(diff(G(xi), xi))-mu)^2/((m+1/(diff(G(xi), xi)))^2*(diff(G(xi), xi))^3)-a[-1]*(2*m*mu+lambda)*(-(2*m*mu+lambda)*(diff(G(xi), xi))-mu)/((m+1/(diff(G(xi), xi)))^2*(diff(G(xi), xi))^2)+2*a[1]*(-(2*m*mu+lambda)*(diff(G(xi), xi))-mu)^2/(diff(G(xi), xi))^3+a[1]*(2*m*mu+lambda)*(-(2*m*mu+lambda)*(diff(G(xi), xi))-mu)/(diff(G(xi), xi))^2

(18)

K3 := diff(U(xi), `$`(xi, 3)) = E3

diff(diff(diff(U(xi), xi), xi), xi) = 6*a[-1]*(-(2*m*mu+lambda)*(diff(G(xi), xi))-mu)^3/((m+1/(diff(G(xi), xi)))^4*(diff(G(xi), xi))^6)-12*a[-1]*(-(2*m*mu+lambda)*(diff(G(xi), xi))-mu)^3/((m+1/(diff(G(xi), xi)))^3*(diff(G(xi), xi))^5)-6*a[-1]*(-(2*m*mu+lambda)*(diff(G(xi), xi))-mu)^2*(2*m*mu+lambda)/((m+1/(diff(G(xi), xi)))^3*(diff(G(xi), xi))^4)+6*a[-1]*(-(2*m*mu+lambda)*(diff(G(xi), xi))-mu)^3/((m+1/(diff(G(xi), xi)))^2*(diff(G(xi), xi))^4)+6*a[-1]*(-(2*m*mu+lambda)*(diff(G(xi), xi))-mu)^2*(2*m*mu+lambda)/((m+1/(diff(G(xi), xi)))^2*(diff(G(xi), xi))^3)+a[-1]*(2*m*mu+lambda)^2*(-(2*m*mu+lambda)*(diff(G(xi), xi))-mu)/((m+1/(diff(G(xi), xi)))^2*(diff(G(xi), xi))^2)-6*a[1]*(-(2*m*mu+lambda)*(diff(G(xi), xi))-mu)^3/(diff(G(xi), xi))^4-6*a[1]*(-(2*m*mu+lambda)*(diff(G(xi), xi))-mu)^2*(2*m*mu+lambda)/(diff(G(xi), xi))^3-a[1]*(2*m*mu+lambda)^2*(-(2*m*mu+lambda)*(diff(G(xi), xi))-mu)/(diff(G(xi), xi))^2

(19)

NULL

L := eval(ode, {K, K1, K2, K3})

c[1]^3*c[3]*(6*a[-1]*(-(2*m*mu+lambda)*(diff(G(xi), xi))-mu)^3/((m+1/(diff(G(xi), xi)))^4*(diff(G(xi), xi))^6)-12*a[-1]*(-(2*m*mu+lambda)*(diff(G(xi), xi))-mu)^3/((m+1/(diff(G(xi), xi)))^3*(diff(G(xi), xi))^5)-6*a[-1]*(-(2*m*mu+lambda)*(diff(G(xi), xi))-mu)^2*(2*m*mu+lambda)/((m+1/(diff(G(xi), xi)))^3*(diff(G(xi), xi))^4)+6*a[-1]*(-(2*m*mu+lambda)*(diff(G(xi), xi))-mu)^3/((m+1/(diff(G(xi), xi)))^2*(diff(G(xi), xi))^4)+6*a[-1]*(-(2*m*mu+lambda)*(diff(G(xi), xi))-mu)^2*(2*m*mu+lambda)/((m+1/(diff(G(xi), xi)))^2*(diff(G(xi), xi))^3)+a[-1]*(2*m*mu+lambda)^2*(-(2*m*mu+lambda)*(diff(G(xi), xi))-mu)/((m+1/(diff(G(xi), xi)))^2*(diff(G(xi), xi))^2)-6*a[1]*(-(2*m*mu+lambda)*(diff(G(xi), xi))-mu)^3/(diff(G(xi), xi))^4-6*a[1]*(-(2*m*mu+lambda)*(diff(G(xi), xi))-mu)^2*(2*m*mu+lambda)/(diff(G(xi), xi))^3-a[1]*(2*m*mu+lambda)^2*(-(2*m*mu+lambda)*(diff(G(xi), xi))-mu)/(diff(G(xi), xi))^2)+3*c[2]^2*(a[-1]*(-(2*m*mu+lambda)*(diff(G(xi), xi))-mu)/((m+1/(diff(G(xi), xi)))^2*(diff(G(xi), xi))^2)-a[1]*(-(2*m*mu+lambda)*(diff(G(xi), xi))-mu)/(diff(G(xi), xi))^2)-4*c[4]*c[1]*(a[-1]*(-(2*m*mu+lambda)*(diff(G(xi), xi))-mu)/((m+1/(diff(G(xi), xi)))^2*(diff(G(xi), xi))^2)-a[1]*(-(2*m*mu+lambda)*(diff(G(xi), xi))-mu)/(diff(G(xi), xi))^2)+3*c[1]^2*c[3]*(a[-1]*(-(2*m*mu+lambda)*(diff(G(xi), xi))-mu)/((m+1/(diff(G(xi), xi)))^2*(diff(G(xi), xi))^2)-a[1]*(-(2*m*mu+lambda)*(diff(G(xi), xi))-mu)/(diff(G(xi), xi))^2)^2 = 0

(20)

"collect(L,(m+1/(diff(G(xi),xi))))^( )"

Error, (in collect) cannot collect m+1/diff(G(xi),xi)

 
 

NULL

Download factoring.mw

First 17 18 19 20 21 22 23 Last Page 19 of 32