salim-barzani

1555 Reputation

9 Badges

1 years, 15 days

MaplePrimes Activity


These are questions asked by salim-barzani

If we calculating it take to much time but if we make a procedure it will be more effectable for such example, i want the exact and approximat and error

restart

with(PDEtools)

with(LinearAlgebra)

NULL

with(inttrans)

with(SolveTools)

undeclare(prime)

`There is no more prime differentiation variable; all derivatives will be displayed as indexed functions`

(1)

NULL

eq := diff(y(x, t), `$`(t, 2))+(1+x)*(diff(y(x, t), x))-y(x, t) = 2*y(x, t)^3

diff(diff(y(x, t), t), t)+(1+x)*(diff(y(x, t), x))-y(x, t) = 2*y(x, t)^3

(2)

eq1 := laplace(eq, t, s)

s^2*laplace(y(x, t), t, s)-s*y(x, 0)+laplace(diff(y(x, t), x), t, s)*x-laplace(y(x, t), t, s)-(D[2](y))(x, 0)+laplace(diff(y(x, t), x), t, s) = 2*laplace(y(x, t)^3, t, s)

(3)

eq2 := subs({y(x, 0) = 1, (D[2](y))(x, 0) = 1}, eq1)

s^2*laplace(y(x, t), t, s)-s+laplace(diff(y(x, t), x), t, s)*x-laplace(y(x, t), t, s)-1+laplace(diff(y(x, t), x), t, s) = 2*laplace(y(x, t)^3, t, s)

(4)

eq3 := s^2*laplace(y(x, t), t, s) = s-laplace(diff(y(x, t), x), t, s)*x+1+laplace(diff(y(x, t), x), t, s)+2*laplace(y(x, t)^3, t, s)+laplace(y(x, t), t, s)

s^2*laplace(y(x, t), t, s) = s-laplace(diff(y(x, t), x), t, s)*x+1+laplace(diff(y(x, t), x), t, s)+2*laplace(y(x, t)^3, t, s)+laplace(y(x, t), t, s)

(5)

eq4 := expand(eq3/s^2)

laplace(y(x, t), t, s) = 1/s-laplace(diff(y(x, t), x), t, s)*x/s^2+1/s^2+laplace(diff(y(x, t), x), t, s)/s^2+2*laplace(y(x, t)^3, t, s)/s^2+laplace(y(x, t), t, s)/s^2

(6)

NULL

"u[0](x):=invlaplace(1/s+1/(s^2),s,x)"

proc (x) options operator, arrow, function_assign; invlaplace(1/s+1/s^2, s, x) end proc

(7)

u[0](x)

1+x

(8)

n := N

N

(9)

k := K

K

(10)

f := proc (u) options operator, arrow; u^3 end proc

proc (u) options operator, arrow; u^3 end proc

(11)

for j from 0 to 3 do A[j] := subs(lambda = 0, (diff(f(seq(sum(lambda^i*u[i](x), i = 0 .. 20), m = 1 .. 2)), [`$`(lambda, j)]))/factorial(j)) end do

(1+x)^3

 

3*(1+x)^2*u[1](x)

 

3*(1+x)*u[1](x)^2+3*(1+x)^2*u[2](x)

 

u[1](x)^3+6*(1+x)*u[1](x)*u[2](x)+3*(1+x)^2*u[3](x)

(12)

A[0]

(1+x)^3

(13)

y[0] := 1+x

1+x

(14)

y[1] := invlaplace(2*laplace(A[0], x, s)/s^2, s, x)-invlaplace(x*laplace(diff(y[0], x), x, s)/s^2, s, x)+invlaplace(laplace(y[0], x, s)/s^2, s, x)-invlaplace(laplace(diff(y[0], x), x, s)/s^2, s, x)

(1/10)*x^2*(x^3+5*x^2+10*x+10)-(1/2)*x^3+(1/6)*x^2*(x+3)-(1/2)*x^2

(15)

y[1] := expand((1/10)*x^2*(x^3+5*x^2+10*x+10)-(1/2)*x^3+(1/6)*x^2*(x+3)-(1/2)*x^2)

(1/10)*x^5+(1/2)*x^4+(2/3)*x^3+x^2

(16)

"u[1](x) :=y[1]  "

proc (x) options operator, arrow, function_assign; y[1] end proc

(17)

NULL

A[1]

3*(1+x)^2*((1/10)*x^5+(1/2)*x^4+(2/3)*x^3+x^2)

(18)

y[2] := invlaplace(2*laplace(A[1], x, s)/s^2, s, x)-invlaplace(x*laplace(diff(y[1], x), x, s)/s^2, s, x)+invlaplace(laplace(y[1], x, s)/s^2, s, x)-invlaplace(laplace(diff(y[1], x), x, s)/s^2, s, x)

(1/840)*x^4*(7*x^5+63*x^4+212*x^3+476*x^2+672*x+420)-(1/60)*x^4*(x^3+6*x^2+10*x+20)+(1/420)*x^4*(x^3+7*x^2+14*x+35)-(1/60)*x^3*(x^3+6*x^2+10*x+20)

(19)

y[2] := expand(%)

(1/120)*x^9+(3/40)*x^8+(5/21)*x^7+(7/15)*x^6+(17/30)*x^5+(1/12)*x^4-(1/3)*x^3

(20)

" u[2](x):=y[2]"

proc (x) options operator, arrow, function_assign; y[2] end proc

(21)

A[2]

3*(1+x)*((1/10)*x^5+(1/2)*x^4+(2/3)*x^3+x^2)^2+3*(1+x)^2*((1/120)*x^9+(3/40)*x^8+(5/21)*x^7+(7/15)*x^6+(17/30)*x^5+(1/12)*x^4-(1/3)*x^3)

(22)

y[3] := invlaplace(2*laplace(A[2], x, s)/s^2, s, x)-invlaplace(x*laplace(diff(y[2], x), x, s)/s^2, s, x)+invlaplace(laplace(y[2], x, s)/s^2, s, x)-invlaplace(laplace(diff(y[2], x), x, s)/s^2, s, x)

(1/10810800)*x^5*(7623*x^8+99099*x^7+518778*x^6+1634490*x^5+3647930*x^4+5167305*x^3+4221360*x^2+900900*x-1081080)-(1/25200)*x^5*(21*x^6+210*x^5+750*x^4+1680*x^3+2380*x^2+420*x-2100)+(1/831600)*x^5*(63*x^6+693*x^5+2750*x^4+6930*x^3+11220*x^2+2310*x-13860)-(1/25200)*x^4*(21*x^6+210*x^5+750*x^4+1680*x^3+2380*x^2+420*x-2100)

(23)

y[3] := expand(y[3])

(286/945)*x^9+(131/336)*x^8+(1/7)*x^10+(17/70)*x^7-(1/40)*x^6-(1/20)*x^5+(1/12)*x^4+(1091/23100)*x^11+(11/15600)*x^13+(11/1200)*x^12

(24)

NULL

addingterm := y[0]+y[1]+y[2]+y[3]

1+x+(37/60)*x^5+(2/3)*x^4+(1/3)*x^3+x^2+(2351/7560)*x^9+(781/1680)*x^8+(101/210)*x^7+(53/120)*x^6+(1/7)*x^10+(1091/23100)*x^11+(11/15600)*x^13+(11/1200)*x^12

(25)


 

Download aproximate_and_exact_solution.mw

a table like that

 

there is four formula for calculate them which i know them by name of author the first one is adomian second one is (BiazarShafiofAdomian) which one member of mableprimes write code for me,but i don't know how use for all kind function maybe in future i upload this program for fix this issue, the third one is by zhao which is i think i easy for calculate just  i need someone one to wite the program and do some test for some example i  upload some picture in case for getting algorithm to writting and have some example for testing  so  lets see who can do this algorithm is very usfule when we solve ODE or PDE by LDM, also last method is by taking integral have a good method, in this question this algorithm is zhao which is usfull one

I upload picture of solution and i try to solve but i fail i don't know how maple can do that just take laplace of one sidehow posible ?


 

restart

with(PDEtools)

with(LinearAlgebra)

NULL

with(inttrans)

with(SolveTools)

undeclare(prime)

`There is no more prime differentiation variable; all derivatives will be displayed as indexed functions`

(1)

NULL

eq := diff(y(x), `$`(x, 2))+(1+x)*(diff(y(x), x))-y(x) = 2*y(x)^3

diff(diff(y(x), x), x)+(1+x)*(diff(y(x), x))-y(x) = 2*y(x)^3

(2)

eq1 := laplace(eq, x, s)

s^2*laplace(y(x), x, s)-(D(y))(0)-s*y(0)-2*laplace(y(x), x, s)+s*laplace(y(x)*x, x, s)+s*laplace(y(x), x, s)-y(0) = 2*laplace(y(x)^3, x, s)

(3)

NULL

NULL

NULL

NULL

NULL

NULL

NULL

NULL

NULL

restart

with(inttrans)

[addtable, fourier, fouriercos, fouriersin, hankel, hilbert, invfourier, invhilbert, invlaplace, invmellin, laplace, mellin, savetable, setup]

(4)

eq := diff(y(x, t), x)+y(x, t)^2 = 1

diff(y(x, t), x)+y(x, t)^2 = 1

(5)

eq1 := laplace(eq, x, s)

s*laplace(y(x, t), x, s)-y(0, t)+laplace(y(x, t)^2, x, s) = 1/s

(6)

eq2 := subs(y(0, t) = 3, eq1)

s*laplace(y(x, t), x, s)-3+laplace(y(x, t)^2, x, s) = 1/s

(7)

lap := s*laplace(y(x, t), x, s) = 1/s+3-laplace(y(x, t)^2, x, s)

s*laplace(y(x, t), x, s) = 1/s+3-laplace(y(x, t)^2, x, s)

(8)

eq3 := lap/s

laplace(y(x, t), x, s) = (1/s+3-laplace(y(x, t)^2, x, s))/s

(9)

expand(%)

laplace(y(x, t), x, s) = 1/s^2+3/s-laplace(y(x, t)^2, x, s)/s

(10)

Geq := y(x, t) = invlaplace(1/s^2+3/s, s, x)-invlaplace(laplace(y(x, t)^2, x, s)/s, x, s)

y(x, t) = x+3-invlaplace(laplace(y(x, t)^2, x, s), x, s)/s

(11)

NULL

k := K

K

(12)

f := proc (y) options operator, arrow; y^2 end proc

proc (y) options operator, arrow; y^2 end proc

(13)

for j from 0 to 4 do A[j] := subs(lambda = 0, (diff(f(sum(lambda^i*y[i](x), i = 0 .. 20)), [`$`(lambda, j)]))/factorial(j)) end do

y[0](x)^2

 

2*y[0](x)*y[1](x)

 

y[1](x)^2+2*y[0](x)*y[2](x)

 

2*y[1](x)*y[2](x)+2*y[0](x)*y[3](x)

 

y[2](x)^2+2*y[1](x)*y[3](x)+2*y[0](x)*y[4](x)

(14)

" y[0](x):=x+3"

proc (x) options operator, arrow, function_assign; 3+x end proc

(15)

lapy[1] := -laplace(A[0], x, s)/s

-(9*s^2+6*s+2)/s^4

(16)

simplify(%)

(-9*s^2-6*s-2)/s^4

(17)

invlaplace(%, s, x)

-(1/3)*x*(x^2+9*x+27)

(18)

simplify(-(1/3)*x*(x^2+9*x+27))

-(1/3)*x*(x^2+9*x+27)

(19)

normal(-(1/3)*x*(x^2+9*x+27), ':-expanded')

-(1/3)*x^3-3*x^2-9*x

(20)

"y[1](x):=-1/3 x^3-3 x^2-9 x"

proc (x) options operator, arrow, function_assign; -(1/3)*x^3-3*x^2-9*x end proc

(21)

lapy[2] := -laplace(A[1], x, s)/s

-(-72/s^3-48/s^4-16/s^5-54/s^2)/s

(22)

simplify(-(-72/s^3-48/s^4-16/s^5-54/s^2)/s)

(54*s^3+72*s^2+48*s+16)/s^6

(23)

expand(%)

54/s^3+72/s^4+48/s^5+16/s^6

(24)

invlaplace(%, s, x)

(1/15)*x^2*(2*x^3+30*x^2+180*x+405)

(25)

expand(%)

(2/15)*x^5+2*x^4+12*x^3+27*x^2

(26)

NULL

NULL


 

Download laplace_of_special_ode.mw

example 1 i could't solve but example to i did

i am not jobles to post in here and you delete them one by one, when i post i am waiting for response not you delete them, with this cuase my question are repeat or something like that 
this time delete my post i will upload 1000 of nonsense question and post  and go delete all of them ...

this example is easiest one for getting solution but i can't collect each part and do like elite i can do each part seperatly but it take to much time i want collect solution and do by easier way if possible this is a laplace adomian decomposition methd which contain adomian polynomial too i want upgrade the code, can any one help the  process for get better vision of this topic 
i do upload some picture and my mw. for more undrestanding

and please can any one explan why when i take laplace why is write D[2](u)(x, 0) must be D[1]?

restart

with(inttrans)

with(PDEtools)

with(LinearAlgebra)

NULL

with(SolveTools)

undeclare(prime)

`There is no more prime differentiation variable; all derivatives will be displayed as indexed functions`

(1)

with(PDEtools)

declare()

`Declared :`

 

u(x, t)*`to be displayed as`*u

 

`The prime differentiation variable has not been declared yet`

 

`Displayed derivatives and declared functions will be copied and pasted "as they were entered"`

(2)

declare(u(x, t))

u(x, t)*`will now be displayed as`*u

(3)

eq := diff(u(x, t), `$`(t, 2))+u(x, t)^2-(diff(u(x, t), x))^2 = 0

diff(diff(u(x, t), t), t)+u(x, t)^2-(diff(u(x, t), x))^2 = 0

(4)

NULL

eqs := laplace(eq, t, s)

s^2*laplace(u(x, t), t, s)-(D[2](u))(x, 0)-s*u(x, 0)+laplace(u(x, t)^2, t, s)-laplace((diff(u(x, t), x))^2, t, s) = 0

(5)

solve({eqs}, {laplace(u(x, t), t, s)})

{laplace(u(x, t), t, s) = (s*u(x, 0)+(D[2](u))(x, 0)-laplace(u(x, t)^2, t, s)+laplace((diff(u(x, t), x))^2, t, s))/s^2}

(6)

subs({u(x, 0) = 0, (D[2](u))(x, 0) = exp(x)}, %)

{laplace(u(x, t), t, s) = (exp(x)-laplace(u(x, t)^2, t, s)+laplace((diff(u(x, t), x))^2, t, s))/s^2}

(7)

eq3 := invlaplace(%, s, t)

{u(x, t) = exp(x)*t-(int(u(x, _U1)^2*(t-_U1), _U1 = 0 .. t))+int((diff(u(x, _U1), x))^2*(t-_U1), _U1 = 0 .. t)}

(8)

NULL

NULL

NULL

"u[0](x,t):=exp(x)*t"

proc (x, t) options operator, arrow, function_assign; exp(x)*t end proc

(9)

n := N

N

(10)

k := K

K

(11)

f := proc (u) options operator, arrow; u^2 end proc

proc (u) options operator, arrow; u^2 end proc

(12)

for j from 0 to 3 do A[j] := subs(lambda = 0, (diff(f(seq(sum(lambda^i*u[i](x, t), i = 0 .. 20), m = 1 .. 2)), [`$`(lambda, j)]))/factorial(j)) end do

(exp(x))^2*t^2

 

2*exp(x)*t*u[1](x, t)

 

u[1](x, t)^2+2*exp(x)*t*u[2](x, t)

 

2*u[1](x, t)*u[2](x, t)+2*exp(x)*t*u[3](x, t)

(13)

NULL

NULL

n := N

N

(14)

k := K

K

(15)

f := proc (u) options operator, arrow; (diff(u, x))^2 end proc

proc (u) options operator, arrow; (diff(u, x))^2 end proc

(16)

for j from 0 to 3 do B[j] := subs(lambda = 0, (diff(f(seq(sum(lambda^i*u[i](x, t), i = 0 .. 20), m = 1 .. 2)), [`$`(lambda, j)]))/factorial(j)) end do

(exp(x))^2*t^2

 

2*exp(x)*t*(diff(u[1](x, t), x))

 

(diff(u[1](x, t), x))^2+2*exp(x)*t*(diff(u[2](x, t), x))

 

2*(diff(u[1](x, t), x))*(diff(u[2](x, t), x))+2*exp(x)*t*(diff(u[3](x, t), x))

(17)

"#` know we need find all term of  u[0]=exp(x)*t` #` u`[1]=-invlaplace(1/(s^(2))(`A__0`+`B__0`))  u[2]=-invlaplace(1/(s^(2))(`A__1`+`B__1`))   ans so on ... at end i want collect all of them and find final result even if is aproximate and want do test of pde too "

NULL

Download explananing_of_get_solution.mw

First 21 22 23 24 25 26 27 Last Page 23 of 32