<

## Magnetic traps in cold-atom physics

by: Maple

This presentation is about magnetic traps for neutral particles, first achieved for cold neutrons and nowadays widely used in cold-atom physics. The level is that of undergraduate electrodynamics and tensor calculus courses. Tackling this topic within a computer algebra worksheet as shown below illustrates well the kind of advanced computations that can be done today with the Physics package. A new feature minimizetensorcomponents and related functionality is used along the presentation, that requires the updated Physics library distributed at the Maplesoft R&D Physics webpage.

Magnetic traps in cold-atom physics

Pascal Szriftgiser1 and Edgardo S. Cheb-Terrab2

(1) Laboratoire PhLAM, UMR CNRS 8523, Université Lille 1, F-59655, France

(2) Maplesoft

We consider a device constructed with a set of electrical wires fed with constant electrical currents. Those wires can have an arbitrary complex shape. The device is operated in a regime such that, in some region of interest, the moving particles experience a magnetic field that varies slowly compared to the Larmor spin precession frequency. In this region, the effective potential is proportional to the modulus of the field: , this potential has a minimum and, close to this minimum, the device behaves as a magnetic trap. Figure 1: Schematic representation of a Ioffe-Pritchard magnetic trap. It is made of four infinite rods and two coils.

_________________________________________

Following , we show that:

 a) For a time-independent magnetic field in vacuum, up to order two in the relative coordinates around some point of interest, the coefficients of orders 1 and 2 in this expansion, and , respectively the gradient and curvature, contain only 5 and 7 independent components.
 b) All stationary points of (nonzero minima and saddle points) are confined to a curved surface defined by .
 c) The effective potential, proportional to , has no maximum, only a minimum.

Finally, we draw the stationary condition surface for the case of the widely used Ioffe-Pritchard magnetic trap.

 Reference
  R. Gerritsma and R. J. C. Spreeuw, Topological constraints on magnetostatic traps,  Phys. Rev. A 74, 043405 (2006)
 The independent components of and entering The stationary points are within the surface  has only minima, no maxima
 Drawing the Ioffe-Pritchard Magnetic Trap

MagneticTraps.mw or in pdf format with the sections open: MagneticTraps.pdf

Edgardo S. Cheb-Terrab
Physics, Differential Equations and Mathematical Functions, Maplesoft

## Equilibrium of a rigid body

Maple 18

Much of this topic is developed using traditional techniques. Maple modernizes and optimizes solutions by displaying the necessary operators and simple commands to solve large problems. Using the conditions of equilibrium for both moment and force we find the forces and moments of reactions for any type of structure. In spanish.

Equlibrium.mw

Lenin Araujo Castillo

## Summer Educational Enrichment in Math (SEE-Math)

Maple Since 2002, the Texas A&M Math Department has sponsored a Summer Educational Enrichment in Math (SEE-Math) Program for gifted middle school students entering the 6th, 7th or 8th grade under the direction of Philip Yasskin and David Manuel.  Students spend two weeks exploring ideas from algebra, geometry, graph theory, topology, and other mathematical topics.

The program’s primary goal is to help students find excitement in the discovery of mathematics and science concepts, and to provide them with the knowledge and confidence to continue their studies in math and science related fields. “I love working with the bright young kids who come to SEE-Math, they keep me young,” said Yasskin, one of the programs directors. Maplesoft has been a sponsor of SEE-Math for many years and are happy to see the students explore math at this young age. Research into the importance of early math skills shows that children who are taught math early and learn the basics at a young age are set up for a lifetime of achievement in all aspects of their academic performance.  Every year, Maplesoft commits time, funds and people to various organizations to enhance the quality of math-based learning and discovery and to encourage students to strengthen their math skills.

One of the major activities of the SEE-Math program, and something the students really enjoy doing, is creating computer animations in Maple. The kids are divided into 3 groups; the Euler group is mostly made up of 6th graders with a few younger, the Fibonacci group is mostly 6th and 7th graders, and the Gauss group is 7th and 8th graders.

Here are the 2017 first place winners from each group and their animations:

Euler Group - Nigel M "Buckets" Fibonacci Group - Gabriel M "Skillz" Gauss Group - Michael C - "Newton's Castle" ## starting with maple for engineering

Maple 18

Good book to start studying maple for engineering.       http://www.gatewaycoalition.org/includes/display_project.aspx?ID=279&maincatid=105&subcatid=1019&thirdcatid=0

Lenin Araujo Castillo

## Plot of equation impulse-momentum

Maple 2017

In this application you can visualize the impulse generated by a constant and variable force for the interaction of a particle with an object in a state of rest or movement. It is also the calculation of the momentum-momentum equation by entering the mass of the particle to solve initial and final velocities respectively according to the case study. Engineering students can quickly display the calculations and then their interpretation. In spanish.

Plot_of_equation_impulse-momentum.mw

Exercises_of_Momentum-Impulse_Linear.mw

Lenin Araujo Castillo

## Jolly Good Times in London

by:

While many of us in North America were getting re-acquainted with the Fall routine, Maplesoft was involved in a major event, the Maple T.A. and Möbius User Summit. In the past, the Summit has alternated locations between Europe and North America, but following the success of last year’s Summit in Vienna, Austria, we recently broke new ground and expanded the reach of the event to include more countries around the world in order to localize the themes and to meet the growing demand from educators to take learning online.

The first event, organized by Cybernet, took place in China. The second of five events on the calendar took place in London, England. Held from September 7-8, this installment was a major stop in the tour, drawing many residents of the UK to hear talks from some of our strongest proponents of Möbius in Europe. The London Summit drew several delegates from the UK alone, many of whom were completely new contacts for us! Other attendees came from as far away as Russia, Pakistan, Sri Lanka, and Australia, as well as some from Sweden, Denmark, Italy and the Netherlands. The turnout was brilliant! Make progress or make excuses

The bulk of the London Summit was divided into three driving themes: Showcasing the Successful Delivery of Online Education; Best Practices for Digital Testing and Assessment; and Creating Engaging and Interactive Online STEM Content. Each theme consisted of 3 user presentations delivered by representatives from renowned institutions like University of Manchester, University of Birmingham, London Imperial College, University of Waterloo, Chalmers University of Technology, and more.

Maplesoft Application Engineer Surak Perera may have inadvertently set the tone for the day when he kicked off theme 1 with a quote from Tony Robbins: Make progress, or make excuses. One thing’s for sure – excuses were nowhere to be found at One Moorgate Place. The audience was captivated and engaged, and wasted no time bouncing questions and ideas off of our presenters. In fact, they were so eager to learn from our Maple T.A. and Möbius users that Jonny Zivku, Maple T.A. Product Manager, had to interject several times in order to keep the schedule moving! Each presentation reinforced the ability of Maple T.A. and Möbius to be used for diverse purposes such as distance education or analyzing incoming students, and in a range of subjects including multidisciplinary engineering cohorts, or simply core mathematics. Each presenter demonstrated that these tools can take you as far as the user’s mind is willing to be stretched.   Evening Reception

As heads were getting full and bellies were getting empty, the group left the luxuries of modern day and stepped back into what must have felt like a scene from Downton Abbey in the Main Reception Room of the venue. On the menu was the most culturally appropriate dish: fish and chips! Oh, and don’t forget the tea and wine!    There was no better way to wrap up the Summit than with Steve Furino’s interactive presentation and open discussion “Collecting Data about Collecting Data.” Small group discussion enabled the attendees to reconcile their inspiration from Day 1 with the practicality of putting it into practice once they return to their schools.

Overall, the London Summit was a smashing hit. The centralized location drew attendees who had a lot of common experiences which made for optimal discussion. The final question posted was the most revealing of everyone’s experience: where will the Summit be next year?

While that’s not yet decided, the Toronto Summit – the next stop in the Summit Series – is just a fortnight away (November 2-3). So for now, we’re saying “Cheers” to jolly good times in London, and “Can I get a double-double, eh” to Toronto!

Until then, you can experience the London Summit as if you were there with the full presentation proceedings and videos. They’re now available on our website!

## Carpet of Baron Munchausen

by: Maple

I accidentally stumbled on this problem in the list of tasks for mathematical olympiads. I quote its text in Russian-English translation:

"The floor in the drawing room of Baron Munchausen is paved with the identical square stone plates.
Baron claims that his new carpet (made of one piece of a material ) covers exactly 24 plates and
at the same time each vertical and each horizontal row of plates in the living room contains
exactly 4 plates covered with carpet. Is not the Baron deceiving?"

At first glance this seems impossible, but in fact the Baron is right. Several examples can be obtained simply by hand, for example or The problem is to find all solutions. This post is dedicated to this problem.

We put in correspondence to each such carpet a matrix of zeros and ones, such that in each row and in each column there are exactly 2 zeros and 4 ones. The problem to generate all such the matrices was already discussed here and Carl found a very effective solution. I propose another solution (based on the method of branches and boundaries), it is less effective, but more universal. I've used this method several times, for example here and here.
There will be a lot of such matrices (total 67950), so we will impose natural limitations. We require that the carpet be a simply connected set that has as its boundary a simple polygon (non-self-intersecting).

Below we give a complete solution to the problem.

restart;
R:=combinat:-permute([0,0,1,1,1,1]);
# All lists of two zeros and four units

# In the procedure OneStep, the matrices are presented as lists of lists. The procedure adds one row to each matrix so that in each column there are no more than 2 zeros and not more than 4 ones

OneStep:=proc(L::listlist)
local m, k, l, r, a, L1;
m:=nops(L); k:=0;
for l in L do
for r in R do
a:=[op(l),r];
if `and`(seq(add(a[..,j])<=4, j=1..6)) and `and`(seq(m-add(a[..,j])<=2, j=1..6)) then k:=k+1; L1[k]:=a fi;
od; od;
convert(L1, list);
end proc:

# M is a list of all matrices, each of which has exactly 2 zeros and 4 units in each row and column

L:=map(t->[t], R):
M:=(OneStep@@5)(L):
nops(M);

67950

M1:=map(Matrix, M):

# From the list of M1 we delete those matrices that contain <1,0;0,1> and <0,1;1,0> submatrices. This means that the boundaries of the corresponding carpets will be simple non-self-intersecting curves

k:=0:
for m in M1 do
s:=1;
for i from 2 to 6 do
for j from 2 to 6 do
if (m[i,j]=0 and m[i-1,j-1]=0 and m[i,j-1]=1 and m[i-1,j]=1) or (m[i,j]=1 and m[i-1,j-1]=1 and m[i,j-1]=0 and m[i-1,j]=0) then s:=0; break fi;
od: if s=0 then break fi; od:
if s=1 then k:=k+1; M2[k]:=m fi;
od:
M2:=convert(M2, list):
nops(M2);

394

# We find the list T of all segments from which the boundary consists

T:='T':
n:=0:
for m in M2 do
k:=0: S:='S':
for i from 1 to 6 do
for j from 1 to 6 do
if m[i,j]=1 then
if j=1 or (j>1 and m[i,j-1]=0) then k:=k+1; S[k]:={[j-1/2,7-i-1/2],[j-1/2,7-i+1/2]} fi;
if i=1 or (i>1 and m[i-1,j]=0) then k:=k+1; S[k]:={[j-1/2,7-i+1/2],[j+1/2,7-i+1/2]} fi;
if j=6 or (j<6 and m[i,j+1]=0) then k:=k+1; S[k]:={[j+1/2,7-i+1/2],[j+1/2,7-i-1/2]} fi;
if i=6 or (i<6 and m[i+1,j]=0) then k:=k+1; S[k]:={[j+1/2,7-i-1/2],[j-1/2,7-i-1/2]} fi;
fi;
od: od:
n:=n+1; T[n]:=[m,convert(S,set)];
od:
T:=convert(T, list):

# Choose carpets with a connected border

C:='C': k:=0:
for t in T do
a:=t; v:=op~(a);
G:=GraphTheory:-Graph([\$1..nops(v)], subs([seq(v[i]=i,i=1..nops(v))],a));
if GraphTheory:-IsConnected(G) then k:=k+1; C[k]:=t fi;
od:
C:=convert(C,list):
nops(C);

208

# Sort the list of border segments so that they go one by one and form a polygon

k:=0: P:='P':
for c in C do
a:=c: v:=op~(a);
G1:=GraphTheory:-Graph([\$1..nops(v)], subs([seq(v[i]=i,i=1..nops(v))],a));
GraphTheory:-IsEulerian(G1,'U');
U; s:=[op(U)];
k:=k+1; P[k]:=[seq(v[i],i=s[1..-2])];
od:
P:=convert(P, list):

# We apply AreIsometric procedure from here to remove solutions that coincide under a rotation or reflection

P1:=[ListTools:-Categorize( AreIsometric, P)]:
nops(P1);

28

We get 28 unique solutions to this problem.

Visualization of all these solutions:

interface(rtablesize=100):
E1:=seq(plottools:-line([1/2,i],[13/2,i], color=red),i=1/2..13/2,1):
E2:=seq(plottools:-line([i,1/2],[i,13/2], color=red),i=1/2..13/2,1):
F:=plottools:-polygon([[1/2,1/2],[1/2,13/2],[13/2,13/2],[13/2,1/2]], color=yellow):
plots:-display(Matrix(4,7,[seq(plots:-display(plottools:-polygon(p,color=red),F, E1,E2), p=[seq(i,i=P1)])]), scaling=constrained, axes=none, size=[800,700]); Carpet1.mw

The code was edited.

## Work of a Force

Maple 2017

Using the syntax in Maple we develop the energy with conservation equations here we are applying the commands int, factor, solve among others. We also integrate vector functions through the scalar product and finally we calculate conservative fields applying the rotational to a field of force. Exclusive for engineering students. In spanish.

Work_of_a_Force.mw

Lenin Araujo castillo

Ambassafor of Maple

## Nobel prize in physics 2017 awarded for discovery...

by: Maple

And the Nobel prize in physics 2017 went for work in General Relativity ! Actually, experimental work involving sophisticated detectors and Numerical Relativity, one of the branches of GR. The prize was awarded to Rainer Weiss (85 years old, 1/2 of the prize), Barry Barish (81 years old, 1/4 of the prize) and Kip Thorne (77 years old, 1/4 of the prize) who have "shaken the world again" with their work on Ligo experiment, which was able to detect ripples in the fabric of spacetime.

General Relativity continues to be at the center of work in theoretical and experimental physics. I take this opportunity to note that, in Maple 2017, among the several improvements in the Physics package regarding General Relativity, there is a new package, Physics:-ThreePlusOne, all dedicated to the symbolic manipulations necessary to formulate problems in Numerical Relativity.

The GR functionality implemented in Physics, Physics:-Tetrads and Physics:-ThreePlusOne is unique in computer algebra systems and reflects the Maplesoft intention, for several years now, to provide the very best possible computer algebra environment for Physics, regarding current research activity as well as related education in advanced mathematical-physics methods.

For what is going on in theoretical physics nowadays and its connection with General Relativity, in very short: the unification of gravity with the other forces, check for instance this map from Aug/2015 (by the way a very nice summary for whoever is interested): It is also interesting the article behind this map of topics as well as this brilliant and accessible presentation by Nima Arkani-Hamed (Princeton):  Quantum Mechanics and Spacetime in the 21st Century, given in the Perimeter Institute for Theoretical Physics (Waterloo), November 2014.

Edgardo S. Cheb-Terrab
Physics, Differential Equations and Mathematical Functions, Maplesoft

## Exercises of vectors, forces and moment

Maple 2017

Group of exercises solved using Maple scientific software, with the necessary considerations of some basic commands: evalf and convert that will show the solutions with the user-defined digits and the angular measurement in sexagesimal degrees. Important use of the law of the triangle through of vector position applied to vectors in vector spaces, vector force and vector moment for engineering students. In spanish.

Exercises_of_vectors_forces_and_moment_with_Maple.mw

Videotutorial:

Lenin Araujo Castillo

## Riemann hypothesis is false! (simple proof)

by: Maple

# Riemann hypothesis is false! (simple proof)

restart;
assume( s>0, s<1/2, t>0 );
coulditbe(abs(Zeta(s+I*t))=0);

true

# Q.E.D.

Unfortunately coulditbe(Zeta(s+I*t)=0) returns FAIL, but our assertion is already demonstrated!

The moral: the assume facility deserves a much more careful implementation.

## Moment of a force using vectors

Maple 18

The development of the calculation of moments using force vectors is clearly observed by taking a point and also a line. Different exercises are solved with the help of Maple syntax. We can also visualize the vector behavior in the different configurations of the position vector. Applications designed exclusively for engineering students. In Spanish.

Moment_of_a_force_using_vectors_updated.mw

Lenin Araujo Castillo

## Plot of Curvature in Maple

Maple 2017

With this app you will be able to interpret the curvatures generated by two position vectors, either in the plane or in space. Just enter the position vectors and drag the slider to calculate the curvature at different times and you will of course be able to observe its respective graph. At first I show you how it is developed using the natural syntax of Maple and then optimize our
app with the use of buttons. App made in Maple for engineering students. In spanish.

Plot_of_Curvature.mw

Videotutorial:

Lenin Araujo Castillo

## Vector space with projections and forces

Maple 18

With this application you will learn the beginning of the study of the vectors. Graphing it in a vector space from the plane to the space. You can calculate its fundamental characteristics as triangle laws, projections and strength. App made entirely in Maple for engineering students so they can develop their exercises and save time. It is recommended to first use the native syntax then the embedded components. In Spanish.

Vector_space_with_projections_and_forces_UPDATED_2018.mw

Vector_space_with_projections_and_forces_UPDATED.mw

Movie #01

Movie #02

Movie #03

Lenin Araujo Castillo

## Serious and critical bugs in IntTutor

Maple 2017

I'd like to present the following bugs in the IntTutor command.

1. Initialize

`Student[Calculus1]:-IntTutor((1+cos(3*x))^(3/2), x);`

then press the All Steps button. The command produces the answer (see Bug1_in_IntTutor.mw)

(4/9)*sqrt(2)*sin((3/2)*x)^3-(4/3)*sqrt(2)*sin((3/2)*x)

which is not correct in view of

`plot(diff((4/9)*sqrt(2)*sin((3/2)*x)^3-(4/3)*sqrt(2)*sin((3/2)*x), x)-(1+cos(3*x))^(3/2), x = 0 .. .2);` One may compare it with the Mathematica result Step-by-step2.pdf.

2. Initialize

`Student[Calculus1]:-IntTutor(cos(x)^2/(1+tan(x)), x);`

In the window press the Next Step button. This crashes (The kernel connection has been lost) my comp in approximately an half of hour (see screen2.docx). One may compare it with the Mathematica result Step-by-step.pdf .

﻿