Personal Stories

Stories about how you have used Maple, MapleSim and Math in your life or work.

Post gialid_GEODROMchik - what is this?

Pilot project of Secondary school # 57 of Kazan, Russia

Use of Maple

in Mathematics Education by mathematics teacher Alsu Gibadullina

and in scientific work of schoolchildren

 

Examples made using the Maple

the 6th class

 

              Arina                         Elza                             David    

       

       Book.mws              Kolobok.mws               sn_angl.mws

 

         Artur    

 

 

Greetings to all. I am writing today to share a personal story / exploration using Maple of an algorithm from the history of combinatorics. The problem here is to count the number of strings over a certain alphabet which consist of some number of letters and avoid a set of patterns (these patterns are strings as opposed to regular expressions.) This counting operation is carried out using rational generating functions that encode the number of admissible strings of length n in the coefficients of their series expansions. The modern approach to this problem uses the Goulden-Jackson method which is discussed, including a landmark Maple implementation from a paper by D. Zeilberger and J. Noonan, at the following link at math.stackexchange.com (Goulden-Jackson has its own website, all the remaining software described in the following discussion is available at the MSE link.) The motivation for this work was a question at the MSE link about the number of strings over a two-letter alphabet that avoid the pattern ABBA.

As far as I know before Goulden-Jackson was invented there was the DFA-Method (Deterministic Finite Automaton also known as FSM, Finite State Machine.) My goal in this contribution was to study and implement this algorithm in order to gain insight about its features and how it influenced its powerful successor. It goes as follows for the case of a single pattern string: compute a DFA whose states represent the longest prefix of the pattern seen at the current position in the string as it is being scanned by the DFA, with the state for the complete pattern doubling as a final absorbing state, since the pattern has been seen. Translate the transitions of the DFA into a system of equations in the generating functions representing strings ending with a given maximal prefix of the pattern, very much like Markov chains. Finally solve the system of equations for the generating functions and thus obtain the sequence of values of strings of length n over the given alphabet that avoid the given pattern.

I have also implemented the DFA method for sets of patterns as opposed to just one pattern. The algorithm is the same except that the DFA does not consist of a chain with backlinks as in the case of a single pattern but a tree of prefixes with backlinks to nodes higher up in the tree. The nodes in the tree represent all prefixes that need to be tracked where obviously a common prefix between two or more patterns is shared i.e. only represented once. The DFA transitions emanating from nodes that are leaves represent absorbing states indicating that one of the patterns has been seen. We run this algorithm once it has been verified that the set of patterns does not contain pairs of patterns where one pattern is contained in another, which causes the longer pattern to be eliminated at the start. (Obviously if the shorter pattern is forbidden the so is the longer.) The number of states of the DFA here is bounded above by the sum of the lengths of the patterns with subpatterns eliminated. The uniqueness property of shared common prefixes holds for subtrees of the main tree i.e. recursively. (The DFA method also copes easily with patterns that have to occur in a certain order.)

I believe the Maple code that I provide here showcases many useful tricks and techniques and can help the reader advance in their Maple studies, which is why I am alerting you to the web link at MSE. I have deliberately aimed to keep it compatible with older versions of Maple as many of these are still in use in various places. The algorithm really showcases the power of Maple in combinatorics computing and exploits many different aspects of the software from the solution of systems of equations in rational generating functions to the implementation of data structures from computer science like trees. Did you know that Maple permits nested procedures as known to those who have met Lisp and Scheme during their studies? The program also illustrates the use of unit testing to detect newly introduced flaws in the code as it evolves in the software life cycle.

Enjoy and may your Maple skills profit from the experience!

Best regards,

Marko Riedel

The software is also available here: dfam-mult.txt

This is the first of three blog posts about working with data sets in Maple.

In 2013, I wrote a library for Maple that used the HTTP package to access the Quandl data API and import data sets into Maple. I was motivated by the fact that, when I was downloading data, I often used multiple data sources, manually updated data when updates were available, and cleaned or manipulated the data into a standardized form (which left me spending too much time on the data acquisition step).

Simply put, I needed a source for data that would provide me with a searchable, stable data API, which would also return data in a form that did not require too much post-processing.

My initial library had really just scratched the surface of what was possible.

Maple 2015 introduced the new DataSets package, which fully integrated a data set search into core library routines and made its functionality more discoverable through availability in Maple’s search bar.

Accessing online data suddenly became much easier. From within Maple, I could now search through over 12 million time series data sets provided by Quandl, and then automatically import the data into a format that I could readily work with.

If you’re not already aware of this online service, Quandl is an online data aggregator that delivers a wide variety of high quality financial and economic data. This includes the latest data on stocks and commodities, exchange rates, and macroeconomic indicators such as population, inflation, unemployment, and so on. Quandl collects both open and proprietary data sets from many sources, such as the US Federal Reserve System, OECD, Eurostat, The World Bank, and Open Data for Africa. Best of all, Quandl's powerful API is free to use.

One of the first examples for the DataSets package that I constructed was in part based on the inspirational work of Hans Rosling. I was drawn in by his ability to use statistical visualizations to break down complex multidimensional data sets and provide insight into underlying patterns; a key example investigating the correlation between rising incomes and life expectancy.

As well as online data, the DataSets package had a database for country data. Hence it seemed fitting to add an example that explored macroeconomic indicators for several countries. Accordingly, I set out to create an example that visualized variables such as Gross Domestic Product, Life Expectancy, and Population for a collection of countries.

I’ll now describe how I constructed this application.

The three key variables are Gross Domestic Product at Power Purchasing Parity, Life Expectancy, and Population. Having browsed through Quandl’s website for available data sets, the World Bank and Open Data for Africa projects seemingly had the most available relevant data; therefore I chose these as my data sources.

Pulling data for a single country from one of these sources was pretty straight forward. For example, the DataSets Reference for the Open Data for Africa data set on GDP at PPP for Canada is:

DataSets:-Reference("quandl", "ODA/CAN_PPPPC"));

In this command, the second argument is the Quandl data set code. If you are on Quandl’s website, this is listed near the top of the data set page as well as in the last few characters of the web address itself: https://www.quandl.com/data/ODA/CAN_PPPPC . Deconstructing the code, “ODA” stands for Open Data for Africa and the rest of the string is constructed from the three letter country code for Canada, “CAN”, and the code for the GDP and PPP. Looking at a small sample of other data set codes, I theorized that both of the data sources used a standardized data set name that included the ISO-3166 3-letter country code for available data sets. Based on this theory, I created a simple script to query for available data and discovered that there was data available for many countries using this standardized code. However, not every country had available data, so I needed to filter my list somewhat in order to pick only those countries for which information was available.

The script that I had constructed required three letter country codes. In order to test all available countries, I created a table to house the country names and three-letter country codes using data from the built-in database for countries:

ccdata := DataSets:-Builtin:-Reference("country")[.., "3 Letter Country Code"];
cctable := table([seq(op(GetElementNames(ccdata[i])) = ccdata[i, "3 Letter Country Code"], 
i = 1 .. CountRows(ccdata))]):

My script filtered this table, returning a subset of the original table, something like:

Countries := table( [“Canada” = “CAN”, “Sweden” = “SWE”, … ] );

You can see the filtered country list in the code edit region of the application below.

With this shorter list of countries, I was now ready to download some data. I created three vectors to hold the data sets by mapping in the DataSets Reference onto the “standardized” data set names that I pulled from Quandl. Here’s the first vector for the data on GDP at PPP.

V1 := Vector( [ (x) -> Reference("quandl", cat("ODA/", x, "_PPPPC"))
                   ~([entries(Countries, nolist, indexorder)])]):
#Open Data for Africa GDP at PPP

Having created three data vectors consisting of 180 x 3 = 540 data sets, I was finally ready to visualize the large set of data that I had amassed.

In Maple’s Statistics package, BubblePlots can use the horizontal axis, vertical axis and the relative bubble size to illustrate multidimensional information. Moreover, if incoming data is stored as a TimeSeries object, BubblePlots can generate animations over a common period of time.

Putting all of this together generated the following animation for 180 available countries.

This example will be included with the next version of Maple, but for now, you can download a copy here:DataSetsBubblePlot.mw

*Note: if you try this application at home, it will download 540 data sets. This operation plus the additional BubblePlot construction can take some time, so if you just want to see the finished product, you can simply interact with the animation in the Maple worksheet using the animation toolbar.

A more advanced example that uses multiple threads for data download can be seen at the bottom of the following page: https://www.maplesoft.com/products/maple/new_features/maple19/datasets_maple2015.pdf You can also interact with this example in Maple by searching for: ?updates,Maple2015,DataSets

In my next post, I’ll discuss how I used programmatic content generation to construct an interactive application for data retrieval.

You, I, and others like us, are the beneficiaries of decades of software evolution.

From its genesis as a research project at the University of Waterloo in the early 80s, Maple has continually evolved to meet the challenges of technical computing.

This January 28th, we will be hosting another full-production, live streaming webinar featuring an all-star cast of Maplesoft employees: Andrew Rourke (Director of Teaching Solutions), Jonny Zivku (Maple T.A. Product Manager), and Daniel Skoog (Maple Product Manager). Attend the webinar to learn how educators all around the world are using Maple and Maple T.A. in their own classrooms.

Any STEM educator, administrator, or curriculum coordinator who is interested in learning how Maple and Maple T.A. can help improve student grades, reduce drop-out rates, and save money on administration costs will benefit from attending this webinar.

Click here for more information and registration.

I am learning to use maple for my notes preparation for the subject Finite Element Analysis. It is interesting to know that how often we blame maple or computer for the silly mistakes we made in our commands and expect the exact answers. I have used a small file and find it easy to analyse my mistakes fatser. If we make a small mistake in a big file, it not only gives us problem finding our mistakes, it leads to more mistakes in other parts as well. A command working in one document need not necessarily work the same way in other document.

I have made my first document and people will come with suggestions to make appropriate modifications in the various sections to improve my knowledge on maple as well as the subject.

Download FINITE_ELEMENT_ANALYSIS.mw

Ramakrishnan V

rukmini_ramki@hotmail.com

As an Arts major at the University of Waterloo, my first day as a co-op student in the Maplesoft marketing department was a bit of a blur. I was hearing a lot of mathematical jargon that I did not understand. Other than a mandatory statistics class in my second year at university, I haven’t taken a math course since high school, over two years ago. I spent my first week as the marketing assistant educating myself about the basics of marketing complex math software. My favourite method for doing this was to read through the Maplesoft user stories. As I read, I was amazed by the variety of customers and the endless applications that Maplesoft products had contributed to. It became apparent that math is a part of every industry and it is in the design of many products. There were a few stories from the robotics industry in particular that really sparked my interest in the software that I now market. 

 

We’ve all seen the futuristic movies where robots gradually get smarter and smarter, developing enough intelligence to control the human race, and eventually, take over the world. As it turns out, Engineered Arts, a UK robotics company, is bringing us one step closer to that reality. Well… they’re maybe not ready for world domination just yet, but they are working on one of the most advanced and human-like robots that the world has seen outside of a Hollywood production, and they are doing this using MapleSim. The first generation of the biologically inspired robot was named RoboThespian. With his ability to speak and sing, he was used to educate, entertain, and investigate new developments in robotics. However, he was largely static. That’s when the engineers began work on generation two of their robot, named Byrun, who has the ability to walk, run, jump, and hop as well as speak and sing. Byrun can even express thousands of different facial features thanks to his projective head display. This makes him even more human-like; scary or cool? I’m thinking a bit of both. If you’re interested in the story, click here to continue reading about it.

 

Another unexpected use of MapleSim was adopted as a joint research project between Ryerson University and McMaster University. I never would have guessed that math software could be applied to the process of human birth. Nevertheless, a group of researchers used MapleSim to simulate induced labour with a Foley Catheter. In short, this is when a small balloon is inserted through the opening of the cervix creating a downward pressure that effectively tricks the cervix into opening for labour to begin. Though the application of this story surprised me, it makes a lot of sense to use modelling software for a research project like this. It’s more efficient to get all of the kinks out of the virtual model in a simulation program before building a physical model that could end up being dysfunctional. According to Dr. James Andrew Smith, a Biomedical Engineering researcher and Assistant Professor in Electrical and Computer Engineering, who is the lead researcher on the project, “Modern engineering has a lot to offer the medical world,” especially when it saves on time and cost. Click here to read more about this story and to watch a video of the finished model.

 

After two months at Maplesoft, I have noticed that I don’t look at things in the same way that I used to. I find myself staring at a toaster and imagining how it was designed. Did the engineers use advanced physical simulation and modeling software to make the most efficient toaster possible? Well, if it can still only toast on one side then, my guess is no! Maplesoft has many more user stories that I haven’t had the chance to read yet. With customers ranging from BMW to Pixar, Maplesoft continues to expand its customer base and adapt its software to support more and more unique applications. I can’t wait to hear what new and unexpected things will be done with the software next!

 

The engineering design process involves numerous steps that allow the engineer to reach his/her final design objectives to the best of his/her ability. This process is akin to creating a fine sculpture or a great painting where different approaches are explored and tested, then either adopted or abandoned in favor of better or more developed and fine-tuned ones. Consider the x-ray of an oil painting. X-rays of the works of master artists reveal the thought and creative processes of their minds as they complete the work. I am sure that some colleagues may disagree with the comparison of our modern engineering designs to art masterpieces, but let me ask you to explore the innovations and their brilliant forms, and maybe you will agree with me even a little bit.

Design Process

Successful design engineers must have the very best craft, knowledge and experience to generate work that is truly worthy of being incorporated in products that sell in the tens, or even hundreds, of millions. This is presently achieved by having cross-functional teams of engineers work on a design, allowing cross checking and several rounds of reviews, followed by multiple prototypes and exhaustive preproduction testing until the team reaches a collective conclusion that “we have a design.” This is then followed by the final design review and release of the product. This necessary and vital approach is clearly a time consuming and costly process. Over the years I have asked myself several times, “Did I explore every single detail of the design fully”? “Am I sure that this is the very best I can do?” And more importantly, “Does every component have the most fine-tuned value to render the best performance possible?” And invariably I am left with a bit of doubt. That brings me to a tool that has helped me in this regard.

A Great New Tool

I have used Maple for over 25 years to dig deeply into my designs and understand the interplay between a given set of parameters and the performance of the particular circuit I am working on. This has always given me a complete view of the problem at hand and solidly pointed me in the direction of the best possible solutions.

In recent years, a new feature called “Explore” has been added to Maple. This amazing feature allows the engineer/researcher to peer very deeply into any formula and explore the interaction of EVERY variable in the formula. 

Take for example the losses in the control MOSFET in a synchronous buck converter. In order to minimize these losses and maximize the power conversion efficiency, the most suitable MOSFET must be selected. With thousands of these devices being available in the market, a dozen of them are considered very close to the best at any given time. The real question then is, which one is really the very best amongst all of them? 

There are two possible approaches - one, build an application prototype, test a random sample of each and choose the one that gives you the best efficiency.  Or, use an accurate mathematical model to calculate the losses of each and chose the best. The first approach lacks the variability of each parameter due to the six sigma statistical distribution where it is next to impossible to get a device laying on the outer limits of the distribution. That leaves the mathematical model approach. If you take this route, you can have built-in tolerances in the equations to accommodate all the variabilities and use a simplified equation for the control MOSFET losses (clearly you can use a very detailed model should you chose to) to explore these losses. Luckily you can explore the losses using the Explore function in Maple.

The figure below shows a three dimensional plot, plus five other variables in the formula that the user can change using sliders that cover the range of values of interest including Minima and Maxima, while observing in real time the effects of the change on the power loss.

This means that by changing the values of any set of variables, you can observe their effect on the function. To put it simply, this single feature helps you replace dozens of plots with just one, saving you precious time and cost in fine-tuning your design. In my opinion, this is equivalent to an eight-dimensional/axes plot.

I used this amazing feature in the last few weeks and I was delighted at how simple it is to use and how much it simplifies the study of my approach and my components selection, in record times!

Hello!

The last ten posts I see are spam!

Isn't it possible to stop them from spaming this Forum?

Best,

Jean-Michel

 

Hello all ,

Having read a recent post about comparing Maple and Mathematica I'd like to throw my 2 cents (FWIW).

It is *silly* (not to say stupid) to compare these two softwares.

Maple can do "things" that Mathematica can't. For examples Differential Geometry, Lie Algrebra, covariant derivative and the like.

And Mathematica Manipulate command is far better than Maple Explore (just another exemple).

I have being using Maple since Release V.2 (1992) and Mathematica since Release 1.1.a (1991).

I use both of them on a daily basis and I *LOVE* them both.

Inputs are welcome :-)

Kind regards to all,

Jean-Michel.

 

Hello all ,

Having read a recent post about comparing Maple and Mathematica I'd like to throw my 2 cents (FWIW).

It is *silly* (not to say stupid) to compare these two softwares.

Maple can do "things" that Mathematica can't. For examples Differential Geometry, Lie Algrebra, covariant derivative and the like.

And Mathematica Manipulate command is far better than Maple Explore (just another exemple).

I have being using Maple since Release V.2 (1992) and Mathematica since Release 1.1.a (1991).

I use both of them on a daily basis and I *LOVE* them both.

Inputs are welcome :-)

Kind regards to all,

Jean-Michel.

 

My desk was covered with papers, a glass of water, and a big shipping container. Even though my chair was there, I was sitting on the floor with my laptop, having a bad hair day, and a robot was seated next to me.  This was a typical day at Maplesoft for an engineering co-op student.

For this project, at the request of my manager, I left my duties as Spanish translator and marketing assistant and I started to work with the robot NAO from Aldebaran Robotics. The purpose of this project was to program NAO using Aldebaran’s Choreographe software to make new movements and dances that I would later use to create new MapleSim models for Maplesoft’s Model Gallery. Maplesoft’s marketing team would then use these models in some of their promotional activities.

Given that NAO was going to travel to Taiwan in a short period of time, I wanted to focus on doing one elaborate dance and a couple of simple movements.Thanks to F.U.N. lab from the University of Notre Dame, I was able to focus on the detailed dance because they had an amazing Choreographe database of behaviour/movement code.   

I started this project with zero knowledge about Choreographe, but with a good understanding of NAO´s MapleSim model that the Maplesoft engineers had previously created. After a few weeks with NAO and some YouTube tutorials, I discovered that programming NAO was really easy. I would move NAO’s joints to the positions I wanted to, and then I would tap its head to record and save them. I did this for a couple of weeks making sure that the sequence of movements wouldn’t make NAO fall or break a finger. At this point I was already a NAO expert.

After finishing up all the movements and dances it was time to move on to the next phase of the project: obtaining the data for the MapleSim model. The MapleSim model was created using the Denavit-Hartenberg (DH) convention; therefore, I needed the values of the degrees of rotation of each joint while the robot performed a dance. These numbers were easily obtained using the “record” button in Choreographe and exporting them into a CSV file. This file was later attached to the MapleSim model, so it could be used in a time look up table. The input of NAO´s joints were then specified by using the values within this table.

I started by recording the simplest movements: NAO blowing kisses and doing the sprinkler. These were the best ones to start working on because in these examples, the robot only needs to move its upper body, meaning that the lower body didn’t need any flexibility. This gave me and Abtin Athari, Application Engineer at Maplesoft, the freedom to simplify the original model by removing unnecessary degrees of freedom on the lower body. Abtin and I also realized that at the beginning of some of the new movements the robot would have too much torque, so we extended some of the recorded position of the rotational joints so the robot could stay in the same position for a longer time. These modifications ensured that the model wouldn´t have any problems during any of the simulations.

To finish the project, I worked with the Marketing team to create some videos where we could display the real robot next to the MapleSim model doing the same movements. The purpose of these videos was to showcase the essence of the high-fidelity models that MapleSim allowed us to create. It was amazing to see how the MapleSim model corresponded so closely to the physical robot.

After three weeks of intense work and meetings, my days as a robot whisperer ended. I learned new things about robots, how to build models with MapleSim, and the processes behind developing videos. It was a project that allowed me to wear both an engineer’s and a marketer’s shoes.  I was able to put into practice my technical knowledge and problem solving skills; and at the same time I was able to enhance my creative and analytical skills by evaluating the quality and impact of my work.

On this week I asked Maplesoft Customer Service for help. Here is our correspondence
(Only the purchase code and e-mail addresses are censored. PS. Also the last name of Kari was deleted by Bryon Thur on 28.08.2015.).
I think this is of interest for many Maple users. I have got some experience contacting
with Kaspersky Antivirus (They helped me by the use of indices of my comp.) and ABBYYLingvo
(They helped to install an ABBYYLingvo vocabulary on my phone.) so I can compare and
make conclusions.


From:
Sent: August-15-15 4:44 AM
To: Maplesoft Customer Service
Subject: Customer Service Request: (Web) Installation questions

Hello,
After upgrading my Windows 7 HB 32-bit to Windows 10 I cannot uninstall my Maple 16 PE.
 It cannot be uninstalled by neither Start/Parameters/System/Applications nor
Uninstall in C/ProgramFiles/Maple 16.
The Uninstall option is not seen in Maple 16 as application.
Also the overinstallation of Maple 16 does not work.
Waiting for your feedback.
Sincerely,
Markiyan Hirnyk
------------------------------------------------------------------------------------------------------

Dear Markiyan Hirnyk,

Thank you for contacting Maplesoft.

Maple 16 is not officially supported on Windows 10 but I have added an activation to your
existing Maple 16 Personal Edition purchase code: XXXXXXXXXXXXXXXX to see if reactivating
your license fixes the issue.  If reactivating doesn't give you access to Maple 16, please
send me the exact wording of any error messages that you receive so that I can send
 the information to our Technical Support Team so that they can investigate further.

Kind regards,

Kari
Maplesoft
Customer Service
-----------------------------------------------------------------------------------------------------------
Hello Kari,
Unfortunately, neither the  reactivation of my Maple 16 PE by XXXXXXXXXX nor its uninstallation
do not succeed for me. See the error communications in the attached screens (both in one file) screens_1_2.docx.
It should be noticed that Maple V Release 4 works on Windows 10 of my comp without any problems.
Regards,
Markiyan Hirnyk

--------------------------------------------------------------------------------------------------------
Hi Markiyan Hirnyk,

Thanks for your response.
I am forwarding your information to our Technical Support Team.
A representative will contact you soon.
Kind regards, Kari
Maplesoft Customer Service
------------------------------------------------------------------------------------------------------------
Hello Markiyan,

This error is usually caused by a Windows permissions setting. To fix this, please do the following:

1. Ensure that all Maple programs are completely closed.
2. Click on your Start Menu and go to the 'Programs' > 'Maple 16' > 'Tools' folder.
3. Right click the 'Activate Maple' icon and choose 'Run as administrator'.
4. Activate Maple using your purchase code and this should fix your issue.

Please let me know if you continue to experience any troubles.

Regards,

Chris
Technical Support Analyst
--------------------------------------------------------------------------------------------------------
Hello Chris,
Following your directions, I have just reactivated Maple 16, but my problem is not solved.
To shed light on the situation, my Maple 16.02 works properly,
but I cannot uninstall it after upgrading to Windows 10 Home 32bit.
See the screens in the attached file screen.docx .
Regards,
Markiyan Hirnyk
----------------------------------------------------------------------------------------
Hello Markiyan,
If you are seeing error messages about Maple still being open,
 I would suggest you try to restart your PC and then attempt the uninstall again to ensure
that you do not have any lingering Maple programs running. Please let me know
if you still see this message after restarting.

Regards,

Chris
Technical Support Analyst
------------------------------------------------------------------------------------------------------
Hello Chris,
This does not help too. My guess is execution failure when Maple 16 was installing.
Because of that reason the Maple 16 installer did not create Maple uninstaller in my Maple 16.
 See the attached screen of the uninstall folder in C:/ Program Files/ screen_3.docx.
Regards,
Markiyan Hirnyk
--------------------------------------------------------------------------------------------------------
Hello,
If you think that you have a corrupted installation, I recommend that you reinstall Maple
using the new Maple 16.02 installer link provided below.
 This version of the installer was created to get around the Windows 8 installation issues and
 may be of help to you in Windows 10 as well, though again please be aware that
 we do not officially support Windows 10 yet.
Here are the steps to reinstall Maple:
1. Click on the Start Menu > Control Panel > Programs and Features ( or Add/Remove Programs).
 Find ‘Maple 16’ in the list and uninstall it. If this is not possible, move on to the next step and continue.
2. Restart your computer.
3. Click on the Start Menu > Computer > Local Disk C: > Program Files.
If there is a folder here called ‘Maple 16’, please delete it.
4. Download the installer for Maple 16 from the following link:
        http://www.maplesoft.com/downloads/?d=C75DEBEC838C08BB1DCCED0440B49503&pr=Maple16
5. Make sure to download the correct version for your operating system, i.e. Windows version and 32 or 64-bit.
6. Install Maple by right clicking the installation file and choosing ‘Run as administrator’.
I hope that this helps to resolve the issues that you’re having and if it does not,
contact us and we can further investigate for you.

Regards,
Chris
Technical Support Analyst
--------------------------------------------------------------------------------------------------------
 Hi Chris,
My problem with Maple 16 is solved. I completely uninstalled it by Uninstall Tool 3.4, not using brute force. After that I installed Maple 16 by the distributive suggested by you. That's all right.
Regards,
Markiyan Hirnyk
---------------------------------------------------------------------------------------------------------
Alright, that is good to hear. Please let us know if you run into any further issues with your installation.
Regards,
Chris
Technical Support Analyst

Dear friends,

some time ago I shared a story here on the use of Maple to compute the cycle index of the induced action on the edges of an ordinary graph of the symmetric group permuting the vertices and the use of the Polya Enumeration Theorem to count non-isomorphic graphs by the number of edges. It can be found at the following Mapleprimes link.

I am writing today to alert you to another simple Maple program that is closely related and demonstrates Maple's capability to implement concepts from group theory and Polya enumeration. This link at Math.Stackexchange.com shows how to use the cycle index of the induced action by the symmetric group permuting vertices on the edges of a multigraph that includes loops to count set partitions of multisets containing two instances of n distinct types of items. The sequence that corresponds to these set partitions is OEIS A020555 where it is pointed out that we can equivalently count multigraphs with n labeled i.e. distinct edges where the vertices of the graph represent the multisets of the multiset partition and are connected by an edge k if the two instances of the value k are included in the sets represented by the two vertices that constitute the edge. The problem then reduces to a simple substitution into the aforementioned cycle index of a polynomial representing the set of labels on an edge including no labels on an edge that is not included.

This computation presents a remarkable simplicity while also implementing a non-trivial application of Polya counting. It is hoped that MaplePrimes users will enjoy reading this program, possibly profit from some of the techniques employed and be motivated to use Maple in their work on combinatorics problems.

Best regards,

Marko Riedel

For the past thirty years, I have used several mathematical packages for problem solving and graphing. It all started with spreadsheet software that really helped speedup calculations compared to calculators. As many people do, once I had one tool I then started looking for another that would offer even more capabilities and features. I tested several of the very early math software but none really did all that I wanted until I came across Maple while I was working at SPAR Aerospace in Canada. For me, the rest is history. As long as I had a copy of Maple, it was all that I needed.

On occasions when I did not have a copy of this amazing software, I resorted to spreadsheets once more to complete fairly large and complex projects involving large databases and large numbers of calculations, especially when performing What-If scenarios. One distinct disadvantage of using a spreadsheet was the cryptic form of equation writing. I had to divide one long equation into several sections in different cells and then add them all up, which clearly is not good for documentation of the calculations. It is also very confusing for other engineers to know what that equation is or what it does. The development of the full engineering spreadsheet took months to complete, debug and verify. During this process, when I had errors, it was often very difficult to track exactly where the problem was, making the debugging process time consuming and sometimes very frustrating.

Having worked with Maple before, I remembered how easy it was to enter equations in a very familiar, readable math format. The real power of this software is that it allows you to write the equation(s) anyway you like and solve for any given parameter, unlike spreadsheets where you have to solve the problem first, by hand, for the parameter you want and then get the spreadsheet to calculate the value. I remember one time a few years ago when I wrote nine or ten simultaneous differential equations all in symbolic form and asked Maple to calculate certain parameters in a fully symbolic form. To my utmost disbelief, the answer came back within few minutes. With results in hand, I was able to quickly finish my research, and the results were published at PCIM Europe 2005 in “Distributed Gate ESR and its Effect on Shoot Through Performance at the Die Level”. I would never have gotten the results I needed if I was using a spreadsheet.

Even with much simpler systems of equations, finding solutions with a paper and pencil was never an easy task for me. It took a very long time, and even then there was no guarantee that I did not make copying errors, accidentally leave out a term, or make a calculation error. After I found the correct solution, I then had the problem of plotting the results, which I often needed in 3-D. Plotting allowed much deeper insights into the interdependency of all the parameters and made it easy for me to concentrate on the important ones without wasting any time. I was very happy when I could pass all these tasks onto Maple, which could do them much faster and more reliably then I ever could. Maple is a software that allows me to go beyond routine engineering calculations and gives me the tools to reach levels of insight and understanding that were completely out of reach of the average engineer until a few years ago.

For the record, I have no business affiliations with Maplesoft. I’m writing this article because Maple makes such a difference in my work that I feel it is important to share my experiences so other engineers can get the same benefits.

4 5 6 7 8 9 10 Last Page 6 of 21