Maple 13 Questions and Posts

These are Posts and Questions associated with the product, Maple 13

> solve({lambda[2]*mu[2]^2*(lambda[2]+mu[2])*lambda[1]/(4*mu[2]^4+4*mu[2]^3*lambda[2]+3*mu[2]^2*lambda[2]^2+2*mu[2]*lambda[2]^3+lambda[2]^4)+lambda[2]*mu[2]*(mu[2]^2+mu[2]*lambda[2]+lambda[2]^2)*lambda[1]/(4*mu[2]^4+4*mu[2]^3*lambda[2]+3*mu[2]^2*lambda[2]^2+2*mu[2]*lambda[2]^3+lambda[2]^4)+mu[2]^4*lambda[2]*lambda[1]/((lambda[1]+mu[2])*(4*mu[2]^4+4*mu[2]^3*lambda[2]+3*mu[2]^2*lambda[2]^2+2*mu[2]*lambda[2]^3+lambda[2]^4))+(1/2)*(mu[2]^3*lambda[1]+mu[2]^3*lambda[2]+lambda[1]*lambda[2]*mu[2]^2+mu[2]^2*lambda[2]^2+mu[2]*lambda[2]^3+mu[2]*lambda[1]*lambda[2]^2+lambda[1]*lambda[2]^3)*lambda[2]*lambda[1]/((lambda[1]+mu[2])*(4*mu[2]^4+4*mu[2]^3*lambda[2]+3*mu[2]^2*lambda[2]^2+2*mu[2]*lambda[2]^3+lambda[2]^4))+3*mu[2]^4*lambda[1]/(4*mu[2]^4+4*mu[2]^3*lambda[2]+3*mu[2]^2*lambda[2]^2+2*mu[2]*lambda[2]^3+lambda[2]^4)+mu[1]*mu[2]^4*lambda[1]/((4*mu[2]^4+4*mu[2]^3*lambda[2]+3*mu[2]^2*lambda[2]^2+2*mu[2]*lambda[2]^3+lambda[2]^4)*(lambda[2]+mu[1]))+mu[2]^4*lambda[2]*lambda[1]/((4*mu[2]^4+4*mu[2]^3*lambda[2]+3*mu[2]^2*lambda[2]^2+2*mu[2]*lambda[2]^3+lambda[2]^4)*(lambda[2]+mu[1]))+mu[2]^3*lambda[2]*lambda[1]/(4*mu[2]^4+4*mu[2]^3*lambda[2]+3*mu[2]^2*lambda[2]^2+2*mu[2]*lambda[2]^3+lambda[2]^4)+(1/2)*(mu[2]^3*lambda[1]+mu[2]^3*lambda[2]+lambda[1]*lambda[2]*mu[2]^2+mu[2]^2*lambda[2]^2+mu[2]*lambda[2]^3+mu[2]*lambda[1]*lambda[2]^2+lambda[1]*lambda[2]^3)*lambda[2]*lambda[1]/(4*mu[2]^5+4*mu[2]^4*lambda[1]+4*mu[2]^4*lambda[2]+4*mu[2]^3*lambda[1]*lambda[2]+3*mu[2]^3*lambda[2]^2+3*lambda[1]*lambda[2]^2*mu[2]^2+2*mu[2]^2*lambda[2]^3+2*lambda[1]*lambda[2]^3*mu[2]+mu[2]*lambda[2]^4+lambda[1]*lambda[2]^4)-3*mu[1]*mu[2]^4/(4*mu[2]^4+4*mu[2]^3*lambda[2]+3*mu[2]^2*lambda[2]^2+2*mu[2]*lambda[2]^3+lambda[2]^4)+mu[1]*mu[2]^4*lambda[2]/((4*mu[2]^4+4*mu[2]^3*lambda[2]+3*mu[2]^2*lambda[2]^2+2*mu[2]*lambda[2]^3+lambda[2]^4)*(lambda[2]+mu[1]))+mu[1]^2*mu[2]^4/((4*mu[2]^4+4*mu[2]^3*lambda[2]+3*mu[2]^2*lambda[2]^2+2*mu[2]*lambda[2]^3+lambda[2]^4)*(lambda[2]+mu[1])) < 0}, [lambda[1]]);
Warning, solutions may have been lost

HI all,


Let all variables be integers here.

I am trying to search 3 variables , "A","B",and "C" so that f(A*x2+B*x+C) factors into two binomials.

Here, f(y) = y2+y+19.

Choose a search space of 0<A<10 and 0<B<30 and 0<C<100.  

I am having some trouble with my Maple code.

Here is how far I got -





I use the following plot in Maple 13. I would like to have the colorbar also along with the plots. Help me to write the commands to get the colorbar.

> y0:=0;
> D[0](y):=1;
> D(D(y))[0]:=A;
> G(x):=diff(y(x),[x$3])=-1/2*y(x)*diff(y(x),[x$2]);
> for k from 1 to 12 do
> G(k):=D@@(k)(G)[0];
> value(G(k));
> od;
> for k from 1 to 12 do
> D@@(k)(y):=G[k];
> od;
> for k from 0 to 12 do
> y0:=y0+(G[k]/k!)*x^k;
> od;
> y(x):=y0;


how to evaulate the value of R(z) for different values of z=0 to 1 with an interval of 0.1 and print ten values  in one column

R(z):= 1-cos^2*(Pi*z);

why i can not evaluate 29 polynomial. maple try to evaluate last 7hr, how many time required too solve it?



I require help to plot graphs by changing differernt parameters. i am enclosing my codes and sample codes,

Thanks in advance.

Hai any one help me to plot the curves and remove the errors  i am attaching the codes and  sample graph. thanks in advanced.



I am unable to the get the output  in ans2 , error is comming


#dsolve( (ode), { v[1](r) } ):
IC1 := {v[1](0) = 0}:
ans2 := combine(dsolve(`union`(ode, IC1),{v[1](r)}));

 How to display the result in the desired form in partial differential equation and also collect the same terms

i am attaching sample codes

# we want the result out put  like this
A1 := lambda*(C[o]^2*exp(2*lambda*z)-D[o]^2*exp(-2*lambda*z))*(1-r^2):
#we want the  resultant output like this

 Any one can help me to solve the differential equations using maple to get the velocities u ,v and pressure p for the problem mentioned below

How do I save these fonts as my default ones?                                

"Maple Input: Arial 24, Red"

and "2D Output: Arial 18, Blue".

I am using Maple 13.

Thank you!


Any one can help me to convert matlab codes to

%Finite element method code for solving bvp nonlinear ODEs%

% u''+uu'-u=exp(2x), u(0)= 1, u(1)=e     %


function FEM_Code()

clear all; close all; clc

n=5;                     % NO of element

nn=n+1;                  % No of nodes

lgth=1;                  % Domain length

he=lgth/n;               % lenth of each elemnet

x=[0:he:lgth];           % Data point for independant variable

AC=0.00005;              % Accuracy

F=zeros(nn,1);           % Initialization

F(1)=exp(0); F(nn)=exp(1);  % Boundary conditions



% Direct Iterative process to handle nonlinear problem



count=0;                   % Initializations for count for iterations

tic                        % Time start

while (c>0)



          for i=1:nn

            if (abs(F(i)-F1(i))>AC)








  disp('Hence solution=:');


  % Output for prinmary and secondary variables %%%



  fprintf('No of element=%d\n',n)

  disp('      x       FEM          Exact       Error')


  fprintf('No of iterations=%d\n',count)


  %%% Ploting of primary variable %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%






  title('solution plot to given BVP')

  toc                                % given totlal time




%%% Derivative of element matrix and Assembly%%%%%%%%%%%%%%%%%%%%



function [F1]=assembly(F,n,he)


k = zeros(nn,nn);               % Initialization of main Matrix

R = zeros(nn,1);                % Initialization of RHS Matrix

syms x                          % x as symbolic variable

s=[1-x/he,x/he];                % linear shape function

ds=diff(s,x);                   % Differentiations of shape function

lmm =[];

for i=1:n

    lmm=[lmm;[i,i+1]];          % connectvity Matrix


for i=1:n



    %%% Generation of Element Matrix k11 and RHS Matrix f1%%%%%%%%%%




    f1 = int(exp(2*(x+(i-1)*he))*s',x,0,he);


    %%% Assembly accroding to connectivity Matrix%%%%%%%%%%%%%%%%%%%%



    k(lm,lm) = k(lm,lm) + k11;

    R(lm) = R(lm) + f1;



%%% Imposing Boundary Conditions %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%



k(1,:) = 0.0; k(nn,:) = 0.0;

k(1,1) = 1.0; k(nn,nn) = 1.0;

R(1,1) = F(1); R(nn,1) = F(nn);


%%% Solution of equations (F1) %%%%%%



d = k\R;           % better than using inverse k*R

F1 = d;




















i am attaching the codes and file. i will be thankful to you .

How can I activate my maple 13?

I have no activatIon left but installed maple


My purchase Code is BNN7VMT4BPFN7ESG

Thank. You 

3 4 5 6 7 8 9 Last Page 5 of 53