Maple 2019 Questions and Posts

These are Posts and Questions associated with the product, Maple 2019

 

I need to get fine curved figure.

please suggest command.   Please also tell 6 differnt markers like symbol = asterisk.

I am not geting value of F3.

question_1.mw
 

restart

A1 := diff(f[3](x), x, x, x, x)+2*R*(((A-1)*x+1)*(diff((1/210)*R^2*((1/72)*(-204*A*C1^2-408*A*C1*C2-204*A*C2^2+204*C1^2+408*C1*C2+204*C2^2)*x^9+(1/56)*(784*A*C1^2+1176*A*C1*C2+392*A*C2^2-1036*C1^2-1680*C1*C2-644*C2^2)*x^8+(1/42)*(2394*A*C1^2*L+4788*A*C1*C2*L+2394*A*C2^2*L-28*A^3-1064*A*C1^2-1064*A*C1*C2-140*A*C2^2-2394*C1^2*L-4788*C1*C2*L-2394*C2^2*L+84*A^2+2072*C1^2+2576*C1*C2+644*C2^2-84*A+28)*x^7+(1/30)*(-6300*A*C1^2*L-9450*A*C1*C2*L-3150*A*C2^2*L+420*A*C1^2+210*A*C1*C2+8820*C1^2*L+14490*C1*C2*L+5670*C2^2*L-140*A^2-1960*C1^2-1750*C1*C2-280*C2^2+280*A-140)*x^6+(1/20)*(-2520*A*C1^2*L^2-5040*A*C1*C2*L^2-2520*A*C2^2*L^2+70*A^3*L+5348*A*C1^2*L+5516*A*C1*C2*L+728*A*C2^2*L+2520*C1^2*L^2+5040*C1*C2*L^2+2520*C2^2*L^2+42*A^3-210*A^2*L+200*A*C1^2+120*A*C1*C2-80*A*C2^2-12068*C1^2*L-15596*C1*C2*L-4088*C2^2*L+14*A^2+210*A*L+780*C1^2+440*C1*C2+220*C2^2-294*A-70*L+238)*x^5+(1/12)*(5040*A*C1^2*L^2+7560*A*C1*C2*L^2+2520*A*C2^2*L^2-1176*A*C1^2*L-672*A*C1*C2*L+84*A*C2^2*L-5040*C1^2*L^2-7560*C1*C2*L^2-2520*C2^2*L^2-14*A^3+210*A^2*L-136*A*C1^2-34*A*C1*C2+32*A*C2^2+7308*C1^2*L+7056*C1*C2*L+1008*C2^2*L+70*A^2-420*A*L-12*C1^2+18*C1*C2-180*C2^2+112*A+210*L-168)*x^4+(1/6)*(-2772*A*C1^2*L^2-3024*A*C1*C2*L^2-252*A*C2^2*L^2-63*A^3*L-300*A*C1^2*L-180*A*C1*C2*L+120*A*C2^2*L+2772*C1^2*L^2+3024*C1*C2*L^2+252*C2^2*L^2-21*A^2*L-1842*C1^2*L-1164*C1*C2*L-162*C2^2*L-28*A^2+231*A*L-48*C1^2-12*C1*C2+36*C2^2-14*A-147*L+42)*x^3)+(1/2)*(-(2/15)*L*R^2*A-(1/30)*L*R^2*A^2+(24/35)*L*R^2*C1^2+(17/35)*L*R^2*C2^2+(1/15)*L*R^2*A^3+(6/35)*L*R^2*C1*C2-(6/5)*L^2*R^2*C1*C2+(68/105)*L*R^2*A*C1^2-(16/105)*L*R^2*A*C2^2+(8/5)*L^2*R^2*A*C1^2-(2/5)*L^2*R^2*C2^2*A+(17/105)*L*R^2*A*C1*C2+(6/5)*L^2*R^2*A*C1*C2-(8/5)*C1^2*R^2*L^2+(2/5)*L^2*R^2*C2^2+(1/10)*L*R^2)*x^2+(-(86/525)*L*R^2*A*C1^2-(29/1050)*L*R^2*A*C1*C2+(1/350)*L*R^2*A*C2^2-(2/1575)*R^2*A^3+(1/140)*R^2*A*C1^2-(1/1260)*R^2*A*C1*C2+(1/420)*R^2*A*C2^2-(19/525)*L*R^2*C1^2-(1/175)*L*R^2*C1*C2-(89/525)*L*R^2*C2^2+(2/525)*R^2*A^2+(1/126)*C1^2*R^2-(1/1260)*R^2*C1*C2+(1/315)*R^2*C2^2+(11/6300)*R^2*A-(3/700)*R^2)*x, x))+(-2*R*(-(1/10)*A*C1*x^5-(1/10)*A*C2*x^5+(1/2)*A*C1*L*x^3+(1/6)*A*C1*x^4+(1/2)*A*C2*L*x^3+(1/12)*A*C2*x^4+(1/10)*x^5*C1+(1/10)*x^5*C2-A*C1*L*x^2-(1/2)*A*C2*L*x^2-(1/2)*C1*x^3*L-(5/12)*x^4*C1-(1/2)*C2*L*x^3-(1/3)*x^4*C2+C1*x^2*L+(2/3)*C1*x^3+(1/2)*C2*L*x^2+(1/3)*x^3*C2-(1/2)*C1*x^2)+(-A*C1*L*R+(2/15)*R*C1*A-(1/30)*R*A*C2+C1*L*R-(3/10)*R*C1+(1/5)*R*C2)*x)*(diff(-2*R*(-(1/10)*A*C1*x^5-(1/10)*A*C2*x^5+(1/2)*A*C1*L*x^3+(1/6)*A*C1*x^4+(1/2)*A*C2*L*x^3+(1/12)*A*C2*x^4+(1/10)*x^5*C1+(1/10)*x^5*C2-A*C1*L*x^2-(1/2)*A*C2*L*x^2-(1/2)*C1*x^3*L-(5/12)*x^4*C1-(1/2)*C2*L*x^3-(1/3)*x^4*C2+C1*x^2*L+(2/3)*C1*x^3+(1/2)*C2*L*x^2+(1/3)*x^3*C2-(1/2)*C1*x^2)+(-A*C1*L*R+(2/15)*R*C1*A-(1/30)*R*A*C2+C1*L*R-(3/10)*R*C1+(1/5)*R*C2)*x, x))+((1/210)*R^2*((1/72)*(-204*A*C1^2-408*A*C1*C2-204*A*C2^2+204*C1^2+408*C1*C2+204*C2^2)*x^9+(1/56)*(784*A*C1^2+1176*A*C1*C2+392*A*C2^2-1036*C1^2-1680*C1*C2-644*C2^2)*x^8+(1/42)*(2394*A*C1^2*L+4788*A*C1*C2*L+2394*A*C2^2*L-28*A^3-1064*A*C1^2-1064*A*C1*C2-140*A*C2^2-2394*C1^2*L-4788*C1*C2*L-2394*C2^2*L+84*A^2+2072*C1^2+2576*C1*C2+644*C2^2-84*A+28)*x^7+(1/30)*(-6300*A*C1^2*L-9450*A*C1*C2*L-3150*A*C2^2*L+420*A*C1^2+210*A*C1*C2+8820*C1^2*L+14490*C1*C2*L+5670*C2^2*L-140*A^2-1960*C1^2-1750*C1*C2-280*C2^2+280*A-140)*x^6+(1/20)*(-2520*A*C1^2*L^2-5040*A*C1*C2*L^2-2520*A*C2^2*L^2+70*A^3*L+5348*A*C1^2*L+5516*A*C1*C2*L+728*A*C2^2*L+2520*C1^2*L^2+5040*C1*C2*L^2+2520*C2^2*L^2+42*A^3-210*A^2*L+200*A*C1^2+120*A*C1*C2-80*A*C2^2-12068*C1^2*L-15596*C1*C2*L-4088*C2^2*L+14*A^2+210*A*L+780*C1^2+440*C1*C2+220*C2^2-294*A-70*L+238)*x^5+(1/12)*(5040*A*C1^2*L^2+7560*A*C1*C2*L^2+2520*A*C2^2*L^2-1176*A*C1^2*L-672*A*C1*C2*L+84*A*C2^2*L-5040*C1^2*L^2-7560*C1*C2*L^2-2520*C2^2*L^2-14*A^3+210*A^2*L-136*A*C1^2-34*A*C1*C2+32*A*C2^2+7308*C1^2*L+7056*C1*C2*L+1008*C2^2*L+70*A^2-420*A*L-12*C1^2+18*C1*C2-180*C2^2+112*A+210*L-168)*x^4+(1/6)*(-2772*A*C1^2*L^2-3024*A*C1*C2*L^2-252*A*C2^2*L^2-63*A^3*L-300*A*C1^2*L-180*A*C1*C2*L+120*A*C2^2*L+2772*C1^2*L^2+3024*C1*C2*L^2+252*C2^2*L^2-21*A^2*L-1842*C1^2*L-1164*C1*C2*L-162*C2^2*L-28*A^2+231*A*L-48*C1^2-12*C1*C2+36*C2^2-14*A-147*L+42)*x^3)+(1/2)*(-(2/15)*L*R^2*A-(1/30)*L*R^2*A^2+(24/35)*L*R^2*C1^2+(17/35)*L*R^2*C2^2+(1/15)*L*R^2*A^3+(6/35)*L*R^2*C1*C2-(6/5)*L^2*R^2*C1*C2+(68/105)*L*R^2*A*C1^2-(16/105)*L*R^2*A*C2^2+(8/5)*L^2*R^2*A*C1^2-(2/5)*L^2*R^2*C2^2*A+(17/105)*L*R^2*A*C1*C2+(6/5)*L^2*R^2*A*C1*C2-(8/5)*C1^2*R^2*L^2+(2/5)*L^2*R^2*C2^2+(1/10)*L*R^2)*x^2+(-(86/525)*L*R^2*A*C1^2-(29/1050)*L*R^2*A*C1*C2+(1/350)*L*R^2*A*C2^2-(2/1575)*R^2*A^3+(1/140)*R^2*A*C1^2-(1/1260)*R^2*A*C1*C2+(1/420)*R^2*A*C2^2-(19/525)*L*R^2*C1^2-(1/175)*L*R^2*C1*C2-(89/525)*L*R^2*C2^2+(2/525)*R^2*A^2+(1/126)*C1^2*R^2-(1/1260)*R^2*C1*C2+(1/315)*R^2*C2^2+(11/6300)*R^2*A-(3/700)*R^2)*x)*(diff((A-1)*x+1, x))+((1/6)*(6*C2+6*C1)*x^3+(1/2)*(-2*C2-4*C1)*x^2+C1*x)*(diff(-(1/105)*R^2*((1/7920)*(-648*C1^3-1944*C1^2*C2-1944*C1*C2^2-648*C2^3)*x^11+(1/5040)*(3024*C1^3+7560*C1^2*C2+6048*C1*C2^2+1512*C2^3)*x^10+(1/3024)*(16632*C1^3*L+49896*C1^2*C2*L+49896*C1*C2^2*L+16632*C2^3*L+21*A^2*C1+21*A^2*C2-5376*C1^3-10752*C1^2*C2-6216*C1*C2^2-840*C2^3-42*A*C1-42*A*C2+21*C1+21*C2)*x^9+(1/1680)*(-55440*C1^3*L-138600*C1^2*C2*L-110880*C1*C2^2*L-27720*C2^3*L+70*A^2*C1+35*A^2*C2+4200*C1^3+6300*C1^2*C2+2100*C1*C2^2+70*A*C1+140*A*C2-140*C1-175*C2)*x^8+(1/840)*(-83160*C1^3*L^2-249480*C1^2*C2*L^2-249480*C1*C2^2*L^2-83160*C2^3*L^2+210*A^2*C1*L+210*A^2*C2*L+65184*C1^3*L+130872*C1^2*C2*L+75432*C1*C2^2*L+9744*C2^3*L-84*A^2*C1+126*A^2*C2-420*A*C1*L-420*A*C2*L-996*C1^3-888*C1^2*C2-48*C1*C2^2-156*C2^3+28*A*C1-112*A*C2+210*C1*L+210*C2*L+476*C1+406*C2)*x^7+(1/360)*(166320*C1^3*L^2+415800*C1^2*C2*L^2+332640*C1*C2^2*L^2+83160*C2^3*L^2+840*A^2*C1*L+420*A^2*C2*L-29232*C1^3*L-44604*C1^2*C2*L-15372*C1*C2^2*L-168*A^2*C1-105*A^2*C2+210*A*C1*L+1050*A*C2*L-336*C1^3-330*C1^2*C2+138*C1*C2^2+132*C2^3+21*A*C1-105*A*C2-1050*C1*L-1470*C2*L-693*C1-210*C2)*x^6+(1/120)*(1890*A^2*C1*L^2+1890*A^2*C2*L^2-101304*C1^3*L^2-205632*C1^2*C2*L^2-122472*C1*C2^2*L^2-18144*C2^3*L^2-966*A^2*C1*L-756*A^2*C2*L-3780*A*C1*L^2-3780*A*C2*L^2+2448*C1^3*L+2052*C1^2*C2*L+540*C1*C2^2*L+936*C2^3*L+119*A^2*C1-14*A^2*C2+252*A*C1*L-588*A*C2*L+132*C1^3+54*C1^2*C2-78*C1*C2^2+1890*C1*L^2+1890*C2*L^2-98*A*C1+98*A*C2+714*C1*L+1344*C2*L+399*C1-84*C2)*x^5)+(1/24)*(-2*L*R^2*A*C2-(1368/5)*L^2*R^2*C1^2*C2-(504/5)*L^2*R^2*C1*C2^2-(44/7)*L*R^2*C1^2*C2+(92/35)*L*R^2*C1*C2^2-(16/5)*L*R^2*A^2*C1-2*L*R^2*A^2*C2-24*L^2*R^2*A*C1-12*L^2*R^2*A*C2+12*L^2*R^2*A^2*C1+6*L^2*R^2*A^2*C2-(4/15)*R^2*A*C1+(12/5)*L*R^2*A*C1+(1/15)*R^2*A*C2+(4/5)*L*R^2*C1+4*L*R^2*C2+12*L^2*R^2*C1+6*L^2*R^2*C2-(864/5)*L^2*R^2*C1^3-(32/5)*L*R^2*C1^3+(88/35)*L*R^2*C2^3-(2/5)*R^2*C2+(3/5)*R^2*C1)*x^4+(1/6)*((157/6300)*R^2*A*C1-(446/525)*L*R^2*A*C1-(2777/242550)*R^2*C1*C2^2+(653/12600)*R^2*A^2*C1+(1783/121275)*R^2*C2^3+(1783/121275)*R^2*C1^3+(359/525)*L*R^2*A*C2+(3882/175)*L^2*R^2*C1^2*C2+(312/175)*L^2*R^2*C1*C2^2+(102/175)*L*R^2*C1^2*C2-(118/175)*L*R^2*C1*C2^2+(33/5)*L^2*R^2*A*C1-(61/1800)*R^2*C1+(13/525)*L*R^2*C1+(157/6300)*R^2*A*C2-(989/1050)*L*R^2*C2-(3/10)*L^2*R^2*C2+(3324/175)*L^2*R^2*C1^3-(61/1800)*R^2*A^2*C2+(209/175)*L*R^2*C1^3-(11/175)*L*R^2*C2^3-(2777/242550)*R^2*C1^2*C2-(246/175)*R^2*L^2*C2^3+(653/12600)*R^2*C2-(33/10)*L^2*R^2*C1+(433/525)*L*R^2*A^2*C1+(271/1050)*L*R^2*A^2*C2+(3/5)*L^2*R^2*A*C2-(33/10)*L^2*R^2*A^2*C1-(3/10)*L^2*R^2*A^2*C2)*x^3+(1/2)*((1/1575)*R^2*A*C1+(131/1050)*L*R^2*A*C1+(59/121275)*R^2*C1*C2^2-(13/1575)*R^2*A^2*C1-(314/121275)*R^2*C2^3-(83/121275)*R^2*C1^3-(19/175)*L*R^2*A*C2-(156/175)*L^2*R^2*C1^2*C2+(54/175)*L^2*R^2*C1*C2^2+(1/175)*L*R^2*C1^2*C2+(8/175)*L*R^2*C1*C2^2-(4/5)*L^2*R^2*A*C1-(17/6300)*R^2*C1-(13/1050)*L*R^2*C1-(8/1575)*R^2*A*C2+(127/1050)*L*R^2*C2-(1/10)*L^2*R^2*C2-(192/175)*L^2*R^2*C1^3+(29/4200)*R^2*A^2*C2-(12/175)*L*R^2*C1^3-(1/35)*L*R^2*C2^3+(58/24255)*R^2*C1^2*C2+(18/175)*R^2*L^2*C2^3-(13/12600)*R^2*C2+(2/5)*L^2*R^2*C1-(59/525)*L*R^2*A^2*C1-(13/1050)*L*R^2*A^2*C2+(1/5)*L^2*R^2*A*C2+(2/5)*L^2*R^2*A^2*C1-(1/10)*L^2*R^2*A^2*C2)*x^2, x, x, x))+(-2*R*((1/140)*C1^2*x^7+(1/70)*C1*C2*x^7+(1/140)*C2^2*x^7-(3/10)*C1^2*L*x^5-(1/30)*C1^2*x^6-(3/5)*C1*C2*L*x^5-(1/20)*C1*C2*x^6-(3/10)*C2^2*L*x^5-(1/60)*C2^2*x^6+(1/120)*A^2*x^5+C1^2*L*x^4+(1/20)*C1^2*x^5+(3/2)*C1*C2*L*x^4+(1/20)*C1*C2*x^5+(1/2)*C2^2*L*x^4-(1/60)*x^5*A+(1/24)*x^4*A+(1/120)*x^5-(1/24)*x^4)+(1/6)*((66/5)*C1^2*L*R+(72/5)*C1*C2*L*R+(6/5)*C2^2*L*R+(3/10)*R*A^2+(22/35)*R*C1^2+(9/35)*R*C1*C2-(13/35)*R*C2^2+(2/5)*R*A-(7/10)*R)*x^3+(1/2)*(-(8/5)*C1^2*L*R-(6/5)*C1*C2*L*R+(2/5)*C2^2*L*R-(1/15)*R*A^2-(4/35)*R*C1^2-(1/35)*R*C1*C2+(3/35)*R*C2^2-(1/30)*R*A+(1/10)*R)*x^2)*(diff(-2*R*((1/140)*C1^2*x^7+(1/70)*C1*C2*x^7+(1/140)*C2^2*x^7-(3/10)*C1^2*L*x^5-(1/30)*C1^2*x^6-(3/5)*C1*C2*L*x^5-(1/20)*C1*C2*x^6-(3/10)*C2^2*L*x^5-(1/60)*C2^2*x^6+(1/120)*A^2*x^5+C1^2*L*x^4+(1/20)*C1^2*x^5+(3/2)*C1*C2*L*x^4+(1/20)*C1*C2*x^5+(1/2)*C2^2*L*x^4-(1/60)*x^5*A+(1/24)*x^4*A+(1/120)*x^5-(1/24)*x^4)+(1/6)*((66/5)*C1^2*L*R+(72/5)*C1*C2*L*R+(6/5)*C2^2*L*R+(3/10)*R*A^2+(22/35)*R*C1^2+(9/35)*R*C1*C2-(13/35)*R*C2^2+(2/5)*R*A-(7/10)*R)*x^3+(1/2)*(-(8/5)*C1^2*L*R-(6/5)*C1*C2*L*R+(2/5)*C2^2*L*R-(1/15)*R*A^2-(4/35)*R*C1^2-(1/35)*R*C1*C2+(3/35)*R*C2^2-(1/30)*R*A+(1/10)*R)*x^2, x, x, x))+(-(1/105)*R^2*((1/7920)*(-648*C1^3-1944*C1^2*C2-1944*C1*C2^2-648*C2^3)*x^11+(1/5040)*(3024*C1^3+7560*C1^2*C2+6048*C1*C2^2+1512*C2^3)*x^10+(1/3024)*(16632*C1^3*L+49896*C1^2*C2*L+49896*C1*C2^2*L+16632*C2^3*L+21*A^2*C1+21*A^2*C2-5376*C1^3-10752*C1^2*C2-6216*C1*C2^2-840*C2^3-42*A*C1-42*A*C2+21*C1+21*C2)*x^9+(1/1680)*(-55440*C1^3*L-138600*C1^2*C2*L-110880*C1*C2^2*L-27720*C2^3*L+70*A^2*C1+35*A^2*C2+4200*C1^3+6300*C1^2*C2+2100*C1*C2^2+70*A*C1+140*A*C2-140*C1-175*C2)*x^8+(1/840)*(-83160*C1^3*L^2-249480*C1^2*C2*L^2-249480*C1*C2^2*L^2-83160*C2^3*L^2+210*A^2*C1*L+210*A^2*C2*L+65184*C1^3*L+130872*C1^2*C2*L+75432*C1*C2^2*L+9744*C2^3*L-84*A^2*C1+126*A^2*C2-420*A*C1*L-420*A*C2*L-996*C1^3-888*C1^2*C2-48*C1*C2^2-156*C2^3+28*A*C1-112*A*C2+210*C1*L+210*C2*L+476*C1+406*C2)*x^7+(1/360)*(166320*C1^3*L^2+415800*C1^2*C2*L^2+332640*C1*C2^2*L^2+83160*C2^3*L^2+840*A^2*C1*L+420*A^2*C2*L-29232*C1^3*L-44604*C1^2*C2*L-15372*C1*C2^2*L-168*A^2*C1-105*A^2*C2+210*A*C1*L+1050*A*C2*L-336*C1^3-330*C1^2*C2+138*C1*C2^2+132*C2^3+21*A*C1-105*A*C2-1050*C1*L-1470*C2*L-693*C1-210*C2)*x^6+(1/120)*(1890*A^2*C1*L^2+1890*A^2*C2*L^2-101304*C1^3*L^2-205632*C1^2*C2*L^2-122472*C1*C2^2*L^2-18144*C2^3*L^2-966*A^2*C1*L-756*A^2*C2*L-3780*A*C1*L^2-3780*A*C2*L^2+2448*C1^3*L+2052*C1^2*C2*L+540*C1*C2^2*L+936*C2^3*L+119*A^2*C1-14*A^2*C2+252*A*C1*L-588*A*C2*L+132*C1^3+54*C1^2*C2-78*C1*C2^2+1890*C1*L^2+1890*C2*L^2-98*A*C1+98*A*C2+714*C1*L+1344*C2*L+399*C1-84*C2)*x^5)+(1/24)*(-2*L*R^2*A*C2-(1368/5)*L^2*R^2*C1^2*C2-(504/5)*L^2*R^2*C1*C2^2-(44/7)*L*R^2*C1^2*C2+(92/35)*L*R^2*C1*C2^2-(16/5)*L*R^2*A^2*C1-2*L*R^2*A^2*C2-24*L^2*R^2*A*C1-12*L^2*R^2*A*C2+12*L^2*R^2*A^2*C1+6*L^2*R^2*A^2*C2-(4/15)*R^2*A*C1+(12/5)*L*R^2*A*C1+(1/15)*R^2*A*C2+(4/5)*L*R^2*C1+4*L*R^2*C2+12*L^2*R^2*C1+6*L^2*R^2*C2-(864/5)*L^2*R^2*C1^3-(32/5)*L*R^2*C1^3+(88/35)*L*R^2*C2^3-(2/5)*R^2*C2+(3/5)*R^2*C1)*x^4+(1/6)*((157/6300)*R^2*A*C1-(446/525)*L*R^2*A*C1-(2777/242550)*R^2*C1*C2^2+(653/12600)*R^2*A^2*C1+(1783/121275)*R^2*C2^3+(1783/121275)*R^2*C1^3+(359/525)*L*R^2*A*C2+(3882/175)*L^2*R^2*C1^2*C2+(312/175)*L^2*R^2*C1*C2^2+(102/175)*L*R^2*C1^2*C2-(118/175)*L*R^2*C1*C2^2+(33/5)*L^2*R^2*A*C1-(61/1800)*R^2*C1+(13/525)*L*R^2*C1+(157/6300)*R^2*A*C2-(989/1050)*L*R^2*C2-(3/10)*L^2*R^2*C2+(3324/175)*L^2*R^2*C1^3-(61/1800)*R^2*A^2*C2+(209/175)*L*R^2*C1^3-(11/175)*L*R^2*C2^3-(2777/242550)*R^2*C1^2*C2-(246/175)*R^2*L^2*C2^3+(653/12600)*R^2*C2-(33/10)*L^2*R^2*C1+(433/525)*L*R^2*A^2*C1+(271/1050)*L*R^2*A^2*C2+(3/5)*L^2*R^2*A*C2-(33/10)*L^2*R^2*A^2*C1-(3/10)*L^2*R^2*A^2*C2)*x^3+(1/2)*((1/1575)*R^2*A*C1+(131/1050)*L*R^2*A*C1+(59/121275)*R^2*C1*C2^2-(13/1575)*R^2*A^2*C1-(314/121275)*R^2*C2^3-(83/121275)*R^2*C1^3-(19/175)*L*R^2*A*C2-(156/175)*L^2*R^2*C1^2*C2+(54/175)*L^2*R^2*C1*C2^2+(1/175)*L*R^2*C1^2*C2+(8/175)*L*R^2*C1*C2^2-(4/5)*L^2*R^2*A*C1-(17/6300)*R^2*C1-(13/1050)*L*R^2*C1-(8/1575)*R^2*A*C2+(127/1050)*L*R^2*C2-(1/10)*L^2*R^2*C2-(192/175)*L^2*R^2*C1^3+(29/4200)*R^2*A^2*C2-(12/175)*L*R^2*C1^3-(1/35)*L*R^2*C2^3+(58/24255)*R^2*C1^2*C2+(18/175)*R^2*L^2*C2^3-(13/12600)*R^2*C2+(2/5)*L^2*R^2*C1-(59/525)*L*R^2*A^2*C1-(13/1050)*L*R^2*A^2*C2+(1/5)*L^2*R^2*A*C2+(2/5)*L^2*R^2*A^2*C1-(1/10)*L^2*R^2*A^2*C2)*x^2)*(diff((1/6)*(6*C2+6*C1)*x^3+(1/2)*(-2*C2-4*C1)*x^2+C1*x, x, x, x)))-L*R*((diff((1/6)*(6*C2+6*C1)*x^3+(1/2)*(-2*C2-4*C1)*x^2+C1*x, x))*(diff(-(1/105)*R^2*((1/7920)*(-648*C1^3-1944*C1^2*C2-1944*C1*C2^2-648*C2^3)*x^11+(1/5040)*(3024*C1^3+7560*C1^2*C2+6048*C1*C2^2+1512*C2^3)*x^10+(1/3024)*(16632*C1^3*L+49896*C1^2*C2*L+49896*C1*C2^2*L+16632*C2^3*L+21*A^2*C1+21*A^2*C2-5376*C1^3-10752*C1^2*C2-6216*C1*C2^2-840*C2^3-42*A*C1-42*A*C2+21*C1+21*C2)*x^9+(1/1680)*(-55440*C1^3*L-138600*C1^2*C2*L-110880*C1*C2^2*L-27720*C2^3*L+70*A^2*C1+35*A^2*C2+4200*C1^3+6300*C1^2*C2+2100*C1*C2^2+70*A*C1+140*A*C2-140*C1-175*C2)*x^8+(1/840)*(-83160*C1^3*L^2-249480*C1^2*C2*L^2-249480*C1*C2^2*L^2-83160*C2^3*L^2+210*A^2*C1*L+210*A^2*C2*L+65184*C1^3*L+130872*C1^2*C2*L+75432*C1*C2^2*L+9744*C2^3*L-84*A^2*C1+126*A^2*C2-420*A*C1*L-420*A*C2*L-996*C1^3-888*C1^2*C2-48*C1*C2^2-156*C2^3+28*A*C1-112*A*C2+210*C1*L+210*C2*L+476*C1+406*C2)*x^7+(1/360)*(166320*C1^3*L^2+415800*C1^2*C2*L^2+332640*C1*C2^2*L^2+83160*C2^3*L^2+840*A^2*C1*L+420*A^2*C2*L-29232*C1^3*L-44604*C1^2*C2*L-15372*C1*C2^2*L-168*A^2*C1-105*A^2*C2+210*A*C1*L+1050*A*C2*L-336*C1^3-330*C1^2*C2+138*C1*C2^2+132*C2^3+21*A*C1-105*A*C2-1050*C1*L-1470*C2*L-693*C1-210*C2)*x^6+(1/120)*(1890*A^2*C1*L^2+1890*A^2*C2*L^2-101304*C1^3*L^2-205632*C1^2*C2*L^2-122472*C1*C2^2*L^2-18144*C2^3*L^2-966*A^2*C1*L-756*A^2*C2*L-3780*A*C1*L^2-3780*A*C2*L^2+2448*C1^3*L+2052*C1^2*C2*L+540*C1*C2^2*L+936*C2^3*L+119*A^2*C1-14*A^2*C2+252*A*C1*L-588*A*C2*L+132*C1^3+54*C1^2*C2-78*C1*C2^2+1890*C1*L^2+1890*C2*L^2-98*A*C1+98*A*C2+714*C1*L+1344*C2*L+399*C1-84*C2)*x^5)+(1/24)*(-2*L*R^2*A*C2-(1368/5)*L^2*R^2*C1^2*C2-(504/5)*L^2*R^2*C1*C2^2-(44/7)*L*R^2*C1^2*C2+(92/35)*L*R^2*C1*C2^2-(16/5)*L*R^2*A^2*C1-2*L*R^2*A^2*C2-24*L^2*R^2*A*C1-12*L^2*R^2*A*C2+12*L^2*R^2*A^2*C1+6*L^2*R^2*A^2*C2-(4/15)*R^2*A*C1+(12/5)*L*R^2*A*C1+(1/15)*R^2*A*C2+(4/5)*L*R^2*C1+4*L*R^2*C2+12*L^2*R^2*C1+6*L^2*R^2*C2-(864/5)*L^2*R^2*C1^3-(32/5)*L*R^2*C1^3+(88/35)*L*R^2*C2^3-(2/5)*R^2*C2+(3/5)*R^2*C1)*x^4+(1/6)*((157/6300)*R^2*A*C1-(446/525)*L*R^2*A*C1-(2777/242550)*R^2*C1*C2^2+(653/12600)*R^2*A^2*C1+(1783/121275)*R^2*C2^3+(1783/121275)*R^2*C1^3+(359/525)*L*R^2*A*C2+(3882/175)*L^2*R^2*C1^2*C2+(312/175)*L^2*R^2*C1*C2^2+(102/175)*L*R^2*C1^2*C2-(118/175)*L*R^2*C1*C2^2+(33/5)*L^2*R^2*A*C1-(61/1800)*R^2*C1+(13/525)*L*R^2*C1+(157/6300)*R^2*A*C2-(989/1050)*L*R^2*C2-(3/10)*L^2*R^2*C2+(3324/175)*L^2*R^2*C1^3-(61/1800)*R^2*A^2*C2+(209/175)*L*R^2*C1^3-(11/175)*L*R^2*C2^3-(2777/242550)*R^2*C1^2*C2-(246/175)*R^2*L^2*C2^3+(653/12600)*R^2*C2-(33/10)*L^2*R^2*C1+(433/525)*L*R^2*A^2*C1+(271/1050)*L*R^2*A^2*C2+(3/5)*L^2*R^2*A*C2-(33/10)*L^2*R^2*A^2*C1-(3/10)*L^2*R^2*A^2*C2)*x^3+(1/2)*((1/1575)*R^2*A*C1+(131/1050)*L*R^2*A*C1+(59/121275)*R^2*C1*C2^2-(13/1575)*R^2*A^2*C1-(314/121275)*R^2*C2^3-(83/121275)*R^2*C1^3-(19/175)*L*R^2*A*C2-(156/175)*L^2*R^2*C1^2*C2+(54/175)*L^2*R^2*C1*C2^2+(1/175)*L*R^2*C1^2*C2+(8/175)*L*R^2*C1*C2^2-(4/5)*L^2*R^2*A*C1-(17/6300)*R^2*C1-(13/1050)*L*R^2*C1-(8/1575)*R^2*A*C2+(127/1050)*L*R^2*C2-(1/10)*L^2*R^2*C2-(192/175)*L^2*R^2*C1^3+(29/4200)*R^2*A^2*C2-(12/175)*L*R^2*C1^3-(1/35)*L*R^2*C2^3+(58/24255)*R^2*C1^2*C2+(18/175)*R^2*L^2*C2^3-(13/12600)*R^2*C2+(2/5)*L^2*R^2*C1-(59/525)*L*R^2*A^2*C1-(13/1050)*L*R^2*A^2*C2+(1/5)*L^2*R^2*A*C2+(2/5)*L^2*R^2*A^2*C1-(1/10)*L^2*R^2*A^2*C2)*x^2, x, x, x, x))+(diff(-2*R*((1/140)*C1^2*x^7+(1/70)*C1*C2*x^7+(1/140)*C2^2*x^7-(3/10)*C1^2*L*x^5-(1/30)*C1^2*x^6-(3/5)*C1*C2*L*x^5-(1/20)*C1*C2*x^6-(3/10)*C2^2*L*x^5-(1/60)*C2^2*x^6+(1/120)*A^2*x^5+C1^2*L*x^4+(1/20)*C1^2*x^5+(3/2)*C1*C2*L*x^4+(1/20)*C1*C2*x^5+(1/2)*C2^2*L*x^4-(1/60)*x^5*A+(1/24)*x^4*A+(1/120)*x^5-(1/24)*x^4)+(1/6)*((66/5)*C1^2*L*R+(72/5)*C1*C2*L*R+(6/5)*C2^2*L*R+(3/10)*R*A^2+(22/35)*R*C1^2+(9/35)*R*C1*C2-(13/35)*R*C2^2+(2/5)*R*A-(7/10)*R)*x^3+(1/2)*(-(8/5)*C1^2*L*R-(6/5)*C1*C2*L*R+(2/5)*C2^2*L*R-(1/15)*R*A^2-(4/35)*R*C1^2-(1/35)*R*C1*C2+(3/35)*R*C2^2-(1/30)*R*A+(1/10)*R)*x^2, x))*(diff(-2*R*((1/140)*C1^2*x^7+(1/70)*C1*C2*x^7+(1/140)*C2^2*x^7-(3/10)*C1^2*L*x^5-(1/30)*C1^2*x^6-(3/5)*C1*C2*L*x^5-(1/20)*C1*C2*x^6-(3/10)*C2^2*L*x^5-(1/60)*C2^2*x^6+(1/120)*A^2*x^5+C1^2*L*x^4+(1/20)*C1^2*x^5+(3/2)*C1*C2*L*x^4+(1/20)*C1*C2*x^5+(1/2)*C2^2*L*x^4-(1/60)*x^5*A+(1/24)*x^4*A+(1/120)*x^5-(1/24)*x^4)+(1/6)*((66/5)*C1^2*L*R+(72/5)*C1*C2*L*R+(6/5)*C2^2*L*R+(3/10)*R*A^2+(22/35)*R*C1^2+(9/35)*R*C1*C2-(13/35)*R*C2^2+(2/5)*R*A-(7/10)*R)*x^3+(1/2)*(-(8/5)*C1^2*L*R-(6/5)*C1*C2*L*R+(2/5)*C2^2*L*R-(1/15)*R*A^2-(4/35)*R*C1^2-(1/35)*R*C1*C2+(3/35)*R*C2^2-(1/30)*R*A+(1/10)*R)*x^2, x, x, x, x))+(diff(-(1/105)*R^2*((1/7920)*(-648*C1^3-1944*C1^2*C2-1944*C1*C2^2-648*C2^3)*x^11+(1/5040)*(3024*C1^3+7560*C1^2*C2+6048*C1*C2^2+1512*C2^3)*x^10+(1/3024)*(16632*C1^3*L+49896*C1^2*C2*L+49896*C1*C2^2*L+16632*C2^3*L+21*A^2*C1+21*A^2*C2-5376*C1^3-10752*C1^2*C2-6216*C1*C2^2-840*C2^3-42*A*C1-42*A*C2+21*C1+21*C2)*x^9+(1/1680)*(-55440*C1^3*L-138600*C1^2*C2*L-110880*C1*C2^2*L-27720*C2^3*L+70*A^2*C1+35*A^2*C2+4200*C1^3+6300*C1^2*C2+2100*C1*C2^2+70*A*C1+140*A*C2-140*C1-175*C2)*x^8+(1/840)*(-83160*C1^3*L^2-249480*C1^2*C2*L^2-249480*C1*C2^2*L^2-83160*C2^3*L^2+210*A^2*C1*L+210*A^2*C2*L+65184*C1^3*L+130872*C1^2*C2*L+75432*C1*C2^2*L+9744*C2^3*L-84*A^2*C1+126*A^2*C2-420*A*C1*L-420*A*C2*L-996*C1^3-888*C1^2*C2-48*C1*C2^2-156*C2^3+28*A*C1-112*A*C2+210*C1*L+210*C2*L+476*C1+406*C2)*x^7+(1/360)*(166320*C1^3*L^2+415800*C1^2*C2*L^2+332640*C1*C2^2*L^2+83160*C2^3*L^2+840*A^2*C1*L+420*A^2*C2*L-29232*C1^3*L-44604*C1^2*C2*L-15372*C1*C2^2*L-168*A^2*C1-105*A^2*C2+210*A*C1*L+1050*A*C2*L-336*C1^3-330*C1^2*C2+138*C1*C2^2+132*C2^3+21*A*C1-105*A*C2-1050*C1*L-1470*C2*L-693*C1-210*C2)*x^6+(1/120)*(1890*A^2*C1*L^2+1890*A^2*C2*L^2-101304*C1^3*L^2-205632*C1^2*C2*L^2-122472*C1*C2^2*L^2-18144*C2^3*L^2-966*A^2*C1*L-756*A^2*C2*L-3780*A*C1*L^2-3780*A*C2*L^2+2448*C1^3*L+2052*C1^2*C2*L+540*C1*C2^2*L+936*C2^3*L+119*A^2*C1-14*A^2*C2+252*A*C1*L-588*A*C2*L+132*C1^3+54*C1^2*C2-78*C1*C2^2+1890*C1*L^2+1890*C2*L^2-98*A*C1+98*A*C2+714*C1*L+1344*C2*L+399*C1-84*C2)*x^5)+(1/24)*(-2*L*R^2*A*C2-(1368/5)*L^2*R^2*C1^2*C2-(504/5)*L^2*R^2*C1*C2^2-(44/7)*L*R^2*C1^2*C2+(92/35)*L*R^2*C1*C2^2-(16/5)*L*R^2*A^2*C1-2*L*R^2*A^2*C2-24*L^2*R^2*A*C1-12*L^2*R^2*A*C2+12*L^2*R^2*A^2*C1+6*L^2*R^2*A^2*C2-(4/15)*R^2*A*C1+(12/5)*L*R^2*A*C1+(1/15)*R^2*A*C2+(4/5)*L*R^2*C1+4*L*R^2*C2+12*L^2*R^2*C1+6*L^2*R^2*C2-(864/5)*L^2*R^2*C1^3-(32/5)*L*R^2*C1^3+(88/35)*L*R^2*C2^3-(2/5)*R^2*C2+(3/5)*R^2*C1)*x^4+(1/6)*((157/6300)*R^2*A*C1-(446/525)*L*R^2*A*C1-(2777/242550)*R^2*C1*C2^2+(653/12600)*R^2*A^2*C1+(1783/121275)*R^2*C2^3+(1783/121275)*R^2*C1^3+(359/525)*L*R^2*A*C2+(3882/175)*L^2*R^2*C1^2*C2+(312/175)*L^2*R^2*C1*C2^2+(102/175)*L*R^2*C1^2*C2-(118/175)*L*R^2*C1*C2^2+(33/5)*L^2*R^2*A*C1-(61/1800)*R^2*C1+(13/525)*L*R^2*C1+(157/6300)*R^2*A*C2-(989/1050)*L*R^2*C2-(3/10)*L^2*R^2*C2+(3324/175)*L^2*R^2*C1^3-(61/1800)*R^2*A^2*C2+(209/175)*L*R^2*C1^3-(11/175)*L*R^2*C2^3-(2777/242550)*R^2*C1^2*C2-(246/175)*R^2*L^2*C2^3+(653/12600)*R^2*C2-(33/10)*L^2*R^2*C1+(433/525)*L*R^2*A^2*C1+(271/1050)*L*R^2*A^2*C2+(3/5)*L^2*R^2*A*C2-(33/10)*L^2*R^2*A^2*C1-(3/10)*L^2*R^2*A^2*C2)*x^3+(1/2)*((1/1575)*R^2*A*C1+(131/1050)*L*R^2*A*C1+(59/121275)*R^2*C1*C2^2-(13/1575)*R^2*A^2*C1-(314/121275)*R^2*C2^3-(83/121275)*R^2*C1^3-(19/175)*L*R^2*A*C2-(156/175)*L^2*R^2*C1^2*C2+(54/175)*L^2*R^2*C1*C2^2+(1/175)*L*R^2*C1^2*C2+(8/175)*L*R^2*C1*C2^2-(4/5)*L^2*R^2*A*C1-(17/6300)*R^2*C1-(13/1050)*L*R^2*C1-(8/1575)*R^2*A*C2+(127/1050)*L*R^2*C2-(1/10)*L^2*R^2*C2-(192/175)*L^2*R^2*C1^3+(29/4200)*R^2*A^2*C2-(12/175)*L*R^2*C1^3-(1/35)*L*R^2*C2^3+(58/24255)*R^2*C1^2*C2+(18/175)*R^2*L^2*C2^3-(13/12600)*R^2*C2+(2/5)*L^2*R^2*C1-(59/525)*L*R^2*A^2*C1-(13/1050)*L*R^2*A^2*C2+(1/5)*L^2*R^2*A*C2+(2/5)*L^2*R^2*A^2*C1-(1/10)*L^2*R^2*A^2*C2)*x^2, x))*(diff((1/6)*(6*C2+6*C1)*x^3+(1/2)*(-2*C2-4*C1)*x^2+C1*x, x, x, x, x))+3*(diff((A-1)*x+1, x))*(diff((1/210)*R^2*((1/72)*(-204*A*C1^2-408*A*C1*C2-204*A*C2^2+204*C1^2+408*C1*C2+204*C2^2)*x^9+(1/56)*(784*A*C1^2+1176*A*C1*C2+392*A*C2^2-1036*C1^2-1680*C1*C2-644*C2^2)*x^8+(1/42)*(2394*A*C1^2*L+4788*A*C1*C2*L+2394*A*C2^2*L-28*A^3-1064*A*C1^2-1064*A*C1*C2-140*A*C2^2-2394*C1^2*L-4788*C1*C2*L-2394*C2^2*L+84*A^2+2072*C1^2+2576*C1*C2+644*C2^2-84*A+28)*x^7+(1/30)*(-6300*A*C1^2*L-9450*A*C1*C2*L-3150*A*C2^2*L+420*A*C1^2+210*A*C1*C2+8820*C1^2*L+14490*C1*C2*L+5670*C2^2*L-140*A^2-1960*C1^2-1750*C1*C2-280*C2^2+280*A-140)*x^6+(1/20)*(-2520*A*C1^2*L^2-5040*A*C1*C2*L^2-2520*A*C2^2*L^2+70*A^3*L+5348*A*C1^2*L+5516*A*C1*C2*L+728*A*C2^2*L+2520*C1^2*L^2+5040*C1*C2*L^2+2520*C2^2*L^2+42*A^3-210*A^2*L+200*A*C1^2+120*A*C1*C2-80*A*C2^2-12068*C1^2*L-15596*C1*C2*L-4088*C2^2*L+14*A^2+210*A*L+780*C1^2+440*C1*C2+220*C2^2-294*A-70*L+238)*x^5+(1/12)*(5040*A*C1^2*L^2+7560*A*C1*C2*L^2+2520*A*C2^2*L^2-1176*A*C1^2*L-672*A*C1*C2*L+84*A*C2^2*L-5040*C1^2*L^2-7560*C1*C2*L^2-2520*C2^2*L^2-14*A^3+210*A^2*L-136*A*C1^2-34*A*C1*C2+32*A*C2^2+7308*C1^2*L+7056*C1*C2*L+1008*C2^2*L+70*A^2-420*A*L-12*C1^2+18*C1*C2-180*C2^2+112*A+210*L-168)*x^4+(1/6)*(-2772*A*C1^2*L^2-3024*A*C1*C2*L^2-252*A*C2^2*L^2-63*A^3*L-300*A*C1^2*L-180*A*C1*C2*L+120*A*C2^2*L+2772*C1^2*L^2+3024*C1*C2*L^2+252*C2^2*L^2-21*A^2*L-1842*C1^2*L-1164*C1*C2*L-162*C2^2*L-28*A^2+231*A*L-48*C1^2-12*C1*C2+36*C2^2-14*A-147*L+42)*x^3)+(1/2)*(-(2/15)*L*R^2*A-(1/30)*L*R^2*A^2+(24/35)*L*R^2*C1^2+(17/35)*L*R^2*C2^2+(1/15)*L*R^2*A^3+(6/35)*L*R^2*C1*C2-(6/5)*L^2*R^2*C1*C2+(68/105)*L*R^2*A*C1^2-(16/105)*L*R^2*A*C2^2+(8/5)*L^2*R^2*A*C1^2-(2/5)*L^2*R^2*C2^2*A+(17/105)*L*R^2*A*C1*C2+(6/5)*L^2*R^2*A*C1*C2-(8/5)*C1^2*R^2*L^2+(2/5)*L^2*R^2*C2^2+(1/10)*L*R^2)*x^2+(-(86/525)*L*R^2*A*C1^2-(29/1050)*L*R^2*A*C1*C2+(1/350)*L*R^2*A*C2^2-(2/1575)*R^2*A^3+(1/140)*R^2*A*C1^2-(1/1260)*R^2*A*C1*C2+(1/420)*R^2*A*C2^2-(19/525)*L*R^2*C1^2-(1/175)*L*R^2*C1*C2-(89/525)*L*R^2*C2^2+(2/525)*R^2*A^2+(1/126)*C1^2*R^2-(1/1260)*R^2*C1*C2+(1/315)*R^2*C2^2+(11/6300)*R^2*A-(3/700)*R^2)*x, x, x))+3*(diff(-2*R*(-(1/10)*A*C1*x^5-(1/10)*A*C2*x^5+(1/2)*A*C1*L*x^3+(1/6)*A*C1*x^4+(1/2)*A*C2*L*x^3+(1/12)*A*C2*x^4+(1/10)*x^5*C1+(1/10)*x^5*C2-A*C1*L*x^2-(1/2)*A*C2*L*x^2-(1/2)*C1*x^3*L-(5/12)*x^4*C1-(1/2)*C2*L*x^3-(1/3)*x^4*C2+C1*x^2*L+(2/3)*C1*x^3+(1/2)*C2*L*x^2+(1/3)*x^3*C2-(1/2)*C1*x^2)+(-A*C1*L*R+(2/15)*R*C1*A-(1/30)*R*A*C2+C1*L*R-(3/10)*R*C1+(1/5)*R*C2)*x, x))*(diff(-2*R*(-(1/10)*A*C1*x^5-(1/10)*A*C2*x^5+(1/2)*A*C1*L*x^3+(1/6)*A*C1*x^4+(1/2)*A*C2*L*x^3+(1/12)*A*C2*x^4+(1/10)*x^5*C1+(1/10)*x^5*C2-A*C1*L*x^2-(1/2)*A*C2*L*x^2-(1/2)*C1*x^3*L-(5/12)*x^4*C1-(1/2)*C2*L*x^3-(1/3)*x^4*C2+C1*x^2*L+(2/3)*C1*x^3+(1/2)*C2*L*x^2+(1/3)*x^3*C2-(1/2)*C1*x^2)+(-A*C1*L*R+(2/15)*R*C1*A-(1/30)*R*A*C2+C1*L*R-(3/10)*R*C1+(1/5)*R*C2)*x, x, x))+3*(diff((1/210)*R^2*((1/72)*(-204*A*C1^2-408*A*C1*C2-204*A*C2^2+204*C1^2+408*C1*C2+204*C2^2)*x^9+(1/56)*(784*A*C1^2+1176*A*C1*C2+392*A*C2^2-1036*C1^2-1680*C1*C2-644*C2^2)*x^8+(1/42)*(2394*A*C1^2*L+4788*A*C1*C2*L+2394*A*C2^2*L-28*A^3-1064*A*C1^2-1064*A*C1*C2-140*A*C2^2-2394*C1^2*L-4788*C1*C2*L-2394*C2^2*L+84*A^2+2072*C1^2+2576*C1*C2+644*C2^2-84*A+28)*x^7+(1/30)*(-6300*A*C1^2*L-9450*A*C1*C2*L-3150*A*C2^2*L+420*A*C1^2+210*A*C1*C2+8820*C1^2*L+14490*C1*C2*L+5670*C2^2*L-140*A^2-1960*C1^2-1750*C1*C2-280*C2^2+280*A-140)*x^6+(1/20)*(-2520*A*C1^2*L^2-5040*A*C1*C2*L^2-2520*A*C2^2*L^2+70*A^3*L+5348*A*C1^2*L+5516*A*C1*C2*L+728*A*C2^2*L+2520*C1^2*L^2+5040*C1*C2*L^2+2520*C2^2*L^2+42*A^3-210*A^2*L+200*A*C1^2+120*A*C1*C2-80*A*C2^2-12068*C1^2*L-15596*C1*C2*L-4088*C2^2*L+14*A^2+210*A*L+780*C1^2+440*C1*C2+220*C2^2-294*A-70*L+238)*x^5+(1/12)*(5040*A*C1^2*L^2+7560*A*C1*C2*L^2+2520*A*C2^2*L^2-1176*A*C1^2*L-672*A*C1*C2*L+84*A*C2^2*L-5040*C1^2*L^2-7560*C1*C2*L^2-2520*C2^2*L^2-14*A^3+210*A^2*L-136*A*C1^2-34*A*C1*C2+32*A*C2^2+7308*C1^2*L+7056*C1*C2*L+1008*C2^2*L+70*A^2-420*A*L-12*C1^2+18*C1*C2-180*C2^2+112*A+210*L-168)*x^4+(1/6)*(-2772*A*C1^2*L^2-3024*A*C1*C2*L^2-252*A*C2^2*L^2-63*A^3*L-300*A*C1^2*L-180*A*C1*C2*L+120*A*C2^2*L+2772*C1^2*L^2+3024*C1*C2*L^2+252*C2^2*L^2-21*A^2*L-1842*C1^2*L-1164*C1*C2*L-162*C2^2*L-28*A^2+231*A*L-48*C1^2-12*C1*C2+36*C2^2-14*A-147*L+42)*x^3)+(1/2)*(-(2/15)*L*R^2*A-(1/30)*L*R^2*A^2+(24/35)*L*R^2*C1^2+(17/35)*L*R^2*C2^2+(1/15)*L*R^2*A^3+(6/35)*L*R^2*C1*C2-(6/5)*L^2*R^2*C1*C2+(68/105)*L*R^2*A*C1^2-(16/105)*L*R^2*A*C2^2+(8/5)*L^2*R^2*A*C1^2-(2/5)*L^2*R^2*C2^2*A+(17/105)*L*R^2*A*C1*C2+(6/5)*L^2*R^2*A*C1*C2-(8/5)*C1^2*R^2*L^2+(2/5)*L^2*R^2*C2^2+(1/10)*L*R^2)*x^2+(-(86/525)*L*R^2*A*C1^2-(29/1050)*L*R^2*A*C1*C2+(1/350)*L*R^2*A*C2^2-(2/1575)*R^2*A^3+(1/140)*R^2*A*C1^2-(1/1260)*R^2*A*C1*C2+(1/420)*R^2*A*C2^2-(19/525)*L*R^2*C1^2-(1/175)*L*R^2*C1*C2-(89/525)*L*R^2*C2^2+(2/525)*R^2*A^2+(1/126)*C1^2*R^2-(1/1260)*R^2*C1*C2+(1/315)*R^2*C2^2+(11/6300)*R^2*A-(3/700)*R^2)*x, x))*(diff((A-1)*x+1, x, x))+2*(diff((1/6)*(6*C2+6*C1)*x^3+(1/2)*(-2*C2-4*C1)*x^2+C1*x, x, x))*(diff(-(1/105)*R^2*((1/7920)*(-648*C1^3-1944*C1^2*C2-1944*C1*C2^2-648*C2^3)*x^11+(1/5040)*(3024*C1^3+7560*C1^2*C2+6048*C1*C2^2+1512*C2^3)*x^10+(1/3024)*(16632*C1^3*L+49896*C1^2*C2*L+49896*C1*C2^2*L+16632*C2^3*L+21*A^2*C1+21*A^2*C2-5376*C1^3-10752*C1^2*C2-6216*C1*C2^2-840*C2^3-42*A*C1-42*A*C2+21*C1+21*C2)*x^9+(1/1680)*(-55440*C1^3*L-138600*C1^2*C2*L-110880*C1*C2^2*L-27720*C2^3*L+70*A^2*C1+35*A^2*C2+4200*C1^3+6300*C1^2*C2+2100*C1*C2^2+70*A*C1+140*A*C2-140*C1-175*C2)*x^8+(1/840)*(-83160*C1^3*L^2-249480*C1^2*C2*L^2-249480*C1*C2^2*L^2-83160*C2^3*L^2+210*A^2*C1*L+210*A^2*C2*L+65184*C1^3*L+130872*C1^2*C2*L+75432*C1*C2^2*L+9744*C2^3*L-84*A^2*C1+126*A^2*C2-420*A*C1*L-420*A*C2*L-996*C1^3-888*C1^2*C2-48*C1*C2^2-156*C2^3+28*A*C1-112*A*C2+210*C1*L+210*C2*L+476*C1+406*C2)*x^7+(1/360)*(166320*C1^3*L^2+415800*C1^2*C2*L^2+332640*C1*C2^2*L^2+83160*C2^3*L^2+840*A^2*C1*L+420*A^2*C2*L-29232*C1^3*L-44604*C1^2*C2*L-15372*C1*C2^2*L-168*A^2*C1-105*A^2*C2+210*A*C1*L+1050*A*C2*L-336*C1^3-330*C1^2*C2+138*C1*C2^2+132*C2^3+21*A*C1-105*A*C2-1050*C1*L-1470*C2*L-693*C1-210*C2)*x^6+(1/120)*(1890*A^2*C1*L^2+1890*A^2*C2*L^2-101304*C1^3*L^2-205632*C1^2*C2*L^2-122472*C1*C2^2*L^2-18144*C2^3*L^2-966*A^2*C1*L-756*A^2*C2*L-3780*A*C1*L^2-3780*A*C2*L^2+2448*C1^3*L+2052*C1^2*C2*L+540*C1*C2^2*L+936*C2^3*L+119*A^2*C1-14*A^2*C2+252*A*C1*L-588*A*C2*L+132*C1^3+54*C1^2*C2-78*C1*C2^2+1890*C1*L^2+1890*C2*L^2-98*A*C1+98*A*C2+714*C1*L+1344*C2*L+399*C1-84*C2)*x^5)+(1/24)*(-2*L*R^2*A*C2-(1368/5)*L^2*R^2*C1^2*C2-(504/5)*L^2*R^2*C1*C2^2-(44/7)*L*R^2*C1^2*C2+(92/35)*L*R^2*C1*C2^2-(16/5)*L*R^2*A^2*C1-2*L*R^2*A^2*C2-24*L^2*R^2*A*C1-12*L^2*R^2*A*C2+12*L^2*R^2*A^2*C1+6*L^2*R^2*A^2*C2-(4/15)*R^2*A*C1+(12/5)*L*R^2*A*C1+(1/15)*R^2*A*C2+(4/5)*L*R^2*C1+4*L*R^2*C2+12*L^2*R^2*C1+6*L^2*R^2*C2-(864/5)*L^2*R^2*C1^3-(32/5)*L*R^2*C1^3+(88/35)*L*R^2*C2^3-(2/5)*R^2*C2+(3/5)*R^2*C1)*x^4+(1/6)*((157/6300)*R^2*A*C1-(446/525)*L*R^2*A*C1-(2777/242550)*R^2*C1*C2^2+(653/12600)*R^2*A^2*C1+(1783/121275)*R^2*C2^3+(1783/121275)*R^2*C1^3+(359/525)*L*R^2*A*C2+(3882/175)*L^2*R^2*C1^2*C2+(312/175)*L^2*R^2*C1*C2^2+(102/175)*L*R^2*C1^2*C2-(118/175)*L*R^2*C1*C2^2+(33/5)*L^2*R^2*A*C1-(61/1800)*R^2*C1+(13/525)*L*R^2*C1+(157/6300)*R^2*A*C2-(989/1050)*L*R^2*C2-(3/10)*L^2*R^2*C2+(3324/175)*L^2*R^2*C1^3-(61/1800)*R^2*A^2*C2+(209/175)*L*R^2*C1^3-(11/175)*L*R^2*C2^3-(2777/242550)*R^2*C1^2*C2-(246/175)*R^2*L^2*C2^3+(653/12600)*R^2*C2-(33/10)*L^2*R^2*C1+(433/525)*L*R^2*A^2*C1+(271/1050)*L*R^2*A^2*C2+(3/5)*L^2*R^2*A*C2-(33/10)*L^2*R^2*A^2*C1-(3/10)*L^2*R^2*A^2*C2)*x^3+(1/2)*((1/1575)*R^2*A*C1+(131/1050)*L*R^2*A*C1+(59/121275)*R^2*C1*C2^2-(13/1575)*R^2*A^2*C1-(314/121275)*R^2*C2^3-(83/121275)*R^2*C1^3-(19/175)*L*R^2*A*C2-(156/175)*L^2*R^2*C1^2*C2+(54/175)*L^2*R^2*C1*C2^2+(1/175)*L*R^2*C1^2*C2+(8/175)*L*R^2*C1*C2^2-(4/5)*L^2*R^2*A*C1-(17/6300)*R^2*C1-(13/1050)*L*R^2*C1-(8/1575)*R^2*A*C2+(127/1050)*L*R^2*C2-(1/10)*L^2*R^2*C2-(192/175)*L^2*R^2*C1^3+(29/4200)*R^2*A^2*C2-(12/175)*L*R^2*C1^3-(1/35)*L*R^2*C2^3+(58/24255)*R^2*C1^2*C2+(18/175)*R^2*L^2*C2^3-(13/12600)*R^2*C2+(2/5)*L^2*R^2*C1-(59/525)*L*R^2*A^2*C1-(13/1050)*L*R^2*A^2*C2+(1/5)*L^2*R^2*A*C2+(2/5)*L^2*R^2*A^2*C1-(1/10)*L^2*R^2*A^2*C2)*x^2, x, x, x))+2*(diff(-2*R*((1/140)*C1^2*x^7+(1/70)*C1*C2*x^7+(1/140)*C2^2*x^7-(3/10)*C1^2*L*x^5-(1/30)*C1^2*x^6-(3/5)*C1*C2*L*x^5-(1/20)*C1*C2*x^6-(3/10)*C2^2*L*x^5-(1/60)*C2^2*x^6+(1/120)*A^2*x^5+C1^2*L*x^4+(1/20)*C1^2*x^5+(3/2)*C1*C2*L*x^4+(1/20)*C1*C2*x^5+(1/2)*C2^2*L*x^4-(1/60)*x^5*A+(1/24)*x^4*A+(1/120)*x^5-(1/24)*x^4)+(1/6)*((66/5)*C1^2*L*R+(72/5)*C1*C2*L*R+(6/5)*C2^2*L*R+(3/10)*R*A^2+(22/35)*R*C1^2+(9/35)*R*C1*C2-(13/35)*R*C2^2+(2/5)*R*A-(7/10)*R)*x^3+(1/2)*(-(8/5)*C1^2*L*R-(6/5)*C1*C2*L*R+(2/5)*C2^2*L*R-(1/15)*R*A^2-(4/35)*R*C1^2-(1/35)*R*C1*C2+(3/35)*R*C2^2-(1/30)*R*A+(1/10)*R)*x^2, x, x))*(diff(-2*R*((1/140)*C1^2*x^7+(1/70)*C1*C2*x^7+(1/140)*C2^2*x^7-(3/10)*C1^2*L*x^5-(1/30)*C1^2*x^6-(3/5)*C1*C2*L*x^5-(1/20)*C1*C2*x^6-(3/10)*C2^2*L*x^5-(1/60)*C2^2*x^6+(1/120)*A^2*x^5+C1^2*L*x^4+(1/20)*C1^2*x^5+(3/2)*C1*C2*L*x^4+(1/20)*C1*C2*x^5+(1/2)*C2^2*L*x^4-(1/60)*x^5*A+(1/24)*x^4*A+(1/120)*x^5-(1/24)*x^4)+(1/6)*((66/5)*C1^2*L*R+(72/5)*C1*C2*L*R+(6/5)*C2^2*L*R+(3/10)*R*A^2+(22/35)*R*C1^2+(9/35)*R*C1*C2-(13/35)*R*C2^2+(2/5)*R*A-(7/10)*R)*x^3+(1/2)*(-(8/5)*C1^2*L*R-(6/5)*C1*C2*L*R+(2/5)*C2^2*L*R-(1/15)*R*A^2-(4/35)*R*C1^2-(1/35)*R*C1*C2+(3/35)*R*C2^2-(1/30)*R*A+(1/10)*R)*x^2, x, x, x))+2*(diff(-(1/105)*R^2*((1/7920)*(-648*C1^3-1944*C1^2*C2-1944*C1*C2^2-648*C2^3)*x^11+(1/5040)*(3024*C1^3+7560*C1^2*C2+6048*C1*C2^2+1512*C2^3)*x^10+(1/3024)*(16632*C1^3*L+49896*C1^2*C2*L+49896*C1*C2^2*L+16632*C2^3*L+21*A^2*C1+21*A^2*C2-5376*C1^3-10752*C1^2*C2-6216*C1*C2^2-840*C2^3-42*A*C1-42*A*C2+21*C1+21*C2)*x^9+(1/1680)*(-55440*C1^3*L-138600*C1^2*C2*L-110880*C1*C2^2*L-27720*C2^3*L+70*A^2*C1+35*A^2*C2+4200*C1^3+6300*C1^2*C2+2100*C1*C2^2+70*A*C1+140*A*C2-140*C1-175*C2)*x^8+(1/840)*(-83160*C1^3*L^2-249480*C1^2*C2*L^2-249480*C1*C2^2*L^2-83160*C2^3*L^2+210*A^2*C1*L+210*A^2*C2*L+65184*C1^3*L+130872*C1^2*C2*L+75432*C1*C2^2*L+9744*C2^3*L-84*A^2*C1+126*A^2*C2-420*A*C1*L-420*A*C2*L-996*C1^3-888*C1^2*C2-48*C1*C2^2-156*C2^3+28*A*C1-112*A*C2+210*C1*L+210*C2*L+476*C1+406*C2)*x^7+(1/360)*(166320*C1^3*L^2+415800*C1^2*C2*L^2+332640*C1*C2^2*L^2+83160*C2^3*L^2+840*A^2*C1*L+420*A^2*C2*L-29232*C1^3*L-44604*C1^2*C2*L-15372*C1*C2^2*L-168*A^2*C1-105*A^2*C2+210*A*C1*L+1050*A*C2*L-336*C1^3-330*C1^2*C2+138*C1*C2^2+132*C2^3+21*A*C1-105*A*C2-1050*C1*L-1470*C2*L-693*C1-210*C2)*x^6+(1/120)*(1890*A^2*C1*L^2+1890*A^2*C2*L^2-101304*C1^3*L^2-205632*C1^2*C2*L^2-122472*C1*C2^2*L^2-18144*C2^3*L^2-966*A^2*C1*L-756*A^2*C2*L-3780*A*C1*L^2-3780*A*C2*L^2+2448*C1^3*L+2052*C1^2*C2*L+540*C1*C2^2*L+936*C2^3*L+119*A^2*C1-14*A^2*C2+252*A*C1*L-588*A*C2*L+132*C1^3+54*C1^2*C2-78*C1*C2^2+1890*C1*L^2+1890*C2*L^2-98*A*C1+98*A*C2+714*C1*L+1344*C2*L+399*C1-84*C2)*x^5)+(1/24)*(-2*L*R^2*A*C2-(1368/5)*L^2*R^2*C1^2*C2-(504/5)*L^2*R^2*C1*C2^2-(44/7)*L*R^2*C1^2*C2+(92/35)*L*R^2*C1*C2^2-(16/5)*L*R^2*A^2*C1-2*L*R^2*A^2*C2-24*L^2*R^2*A*C1-12*L^2*R^2*A*C2+12*L^2*R^2*A^2*C1+6*L^2*R^2*A^2*C2-(4/15)*R^2*A*C1+(12/5)*L*R^2*A*C1+(1/15)*R^2*A*C2+(4/5)*L*R^2*C1+4*L*R^2*C2+12*L^2*R^2*C1+6*L^2*R^2*C2-(864/5)*L^2*R^2*C1^3-(32/5)*L*R^2*C1^3+(88/35)*L*R^2*C2^3-(2/5)*R^2*C2+(3/5)*R^2*C1)*x^4+(1/6)*((157/6300)*R^2*A*C1-(446/525)*L*R^2*A*C1-(2777/242550)*R^2*C1*C2^2+(653/12600)*R^2*A^2*C1+(1783/121275)*R^2*C2^3+(1783/121275)*R^2*C1^3+(359/525)*L*R^2*A*C2+(3882/175)*L^2*R^2*C1^2*C2+(312/175)*L^2*R^2*C1*C2^2+(102/175)*L*R^2*C1^2*C2-(118/175)*L*R^2*C1*C2^2+(33/5)*L^2*R^2*A*C1-(61/1800)*R^2*C1+(13/525)*L*R^2*C1+(157/6300)*R^2*A*C2-(989/1050)*L*R^2*C2-(3/10)*L^2*R^2*C2+(3324/175)*L^2*R^2*C1^3-(61/1800)*R^2*A^2*C2+(209/175)*L*R^2*C1^3-(11/175)*L*R^2*C2^3-(2777/242550)*R^2*C1^2*C2-(246/175)*R^2*L^2*C2^3+(653/12600)*R^2*C2-(33/10)*L^2*R^2*C1+(433/525)*L*R^2*A^2*C1+(271/1050)*L*R^2*A^2*C2+(3/5)*L^2*R^2*A*C2-(33/10)*L^2*R^2*A^2*C1-(3/10)*L^2*R^2*A^2*C2)*x^3+(1/2)*((1/1575)*R^2*A*C1+(131/1050)*L*R^2*A*C1+(59/121275)*R^2*C1*C2^2-(13/1575)*R^2*A^2*C1-(314/121275)*R^2*C2^3-(83/121275)*R^2*C1^3-(19/175)*L*R^2*A*C2-(156/175)*L^2*R^2*C1^2*C2+(54/175)*L^2*R^2*C1*C2^2+(1/175)*L*R^2*C1^2*C2+(8/175)*L*R^2*C1*C2^2-(4/5)*L^2*R^2*A*C1-(17/6300)*R^2*C1-(13/1050)*L*R^2*C1-(8/1575)*R^2*A*C2+(127/1050)*L*R^2*C2-(1/10)*L^2*R^2*C2-(192/175)*L^2*R^2*C1^3+(29/4200)*R^2*A^2*C2-(12/175)*L*R^2*C1^3-(1/35)*L*R^2*C2^3+(58/24255)*R^2*C1^2*C2+(18/175)*R^2*L^2*C2^3-(13/12600)*R^2*C2+(2/5)*L^2*R^2*C1-(59/525)*L*R^2*A^2*C1-(13/1050)*L*R^2*A^2*C2+(1/5)*L^2*R^2*A*C2+(2/5)*L^2*R^2*A^2*C1-(1/10)*L^2*R^2*A^2*C2)*x^2, x, x))*(diff((1/6)*(6*C2+6*C1)*x^3+(1/2)*(-2*C2-4*C1)*x^2+C1*x, x, x, x))) = 0; Eq7 := dsolve({A1, f[3](0) = 0, f[3](1) = 0, (D(f[3]))(0) = 0, (D(f[3]))(1) = 0}, f[3](x))

(1)

``


 

Download question_1.mw

 

 

If I have a tensor T[mu,nu,alpha] in 3-dimensions which is symmetric on {mu,nu} and anti-symmetric on {nu,alpha}, then the number of independent components should be zero. However, if I put this into Maple, using Library:-MinimizeTensorComponents followed by Library:-NumberOfIndependentTensorComponents it returns 4.

Any insight into why it does this would be great, thanks.

Here is a strange one...

1> /Library/Frameworks/Maple.framework/Versions/2019/bin/maple ; exit;
    |\^/|     Maple 2019 (APPLE UNIVERSAL OSX)
._|\|   |/|_. Copyright (c) Maplesoft, a division of Waterloo Maple Inc. 2019
 \  MAPLE  /  All rights reserved. Maple is a trademark of
 <____ ____>  Waterloo Maple Inc.
      |       Type ? for help.
> version();
 User Interface: 1435526
         Kernel: 1435526
        Library: 1435526
                                    1435526

> DE := (28*x + 44)*u(x) + (336*x^2 +
> 726*x - 12)*diff(u(x), x) + (144*x^3 + 396*x^2 - 9*x)*diff(u(x), x, x);
                               2               /d      \
DE := (28 x + 44) u(x) + (336 x  + 726 x - 12) |-- u(x)|
                                               \dx     /

                               / 2      \
             3        2        |d       |
     + (144 x  + 396 x  - 9 x) |--- u(x)|
                               |  2     |
                               \dx      /

> dsolve({DE,u(0)=2},u(x));
memory used=21.5MB, alloc=44.3MB, time=0.37
memory used=53.3MB, alloc=84.3MB, time=0.94
Error, (in dsolve) when calling 'property/ConvertRelation'. Received: 'numeric
exception: division by zero'

Presumably, the solution should be


u0:=2*HeunG((11 - 5*sqrt(5))/(11 + 5*sqrt(5)), 352/(9*(11 + 5*sqrt(5))^3*(-11 + 5*sqrt(5))^2), 1/6, 7/6, 4/3, 1/2, -8*x/(11 + 5*sqrt(5)));

(I get that by replacing coefficient 44 in DE with variable e44, solve, then substitute back e44 = 44.)

But maybe the problem is that this solution turns out to be an algebraic function:

u1:=2^(7/6)/(1 - 22*x + sqrt(-16*x^2 - 44*x + 1))^(1/6);

 

 

 

f[2](x) = -(3*R^2*x^11)/30800 + R^2*x^9/420 - (177*R^2*x^7)/9800 + M1*M2*x^5/40 + (17*R^2*x^5)/700 + ((-(3*M1*M2)/10 - (443*R^2)/21560)*x^3)/6 + (M1*M2/40 - (137*R^2)/26950)*x

What is the best way to get some one on one training in maple , has anyone done this?

I would like to plot a specific vector with an initial point of <4,3,-5> and a terminal point of <3,-1,4>. I have been searching through Maple Primes and Maple Soft.

restart;
M1 := 12.3:
M2 := 12.4:
M3 := 12.5:
R := 50:

EQ:={(diff(F(x), x $ 4)) - M1*diff(G(x),x$2) -2*R*F(x)*diff(F(x),x$3)=0, diff(G(x),x$2)+ M2*(diff(F(x),x$2)-2*G(x)) +M3*(diff(F(x),x)*G(x)-2*F(x)*diff(G(x),x))=0}:


IC:={D(F)(-1)=0, D(F)(1)=0,F(-1)=-1,F(1)=1,G(-1)=0,  G(1)=0}:

sol:= dsolve(EQ union IC,numeric,output=Array([-1,-0.9,-0.8,-0.7,-0.6,-0.5,-0.4,-0.3,-0.2,-0.1,0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1]));
Error, (in dsolve/numeric/bvp) uanble to achieve continuous solution with requested accuracy of 0.1e-5 with maximum 128 point mesh (was able to get 0.47e-5), consider increasing `maxmesh` or using larger `abserr`
plots:-odeplot(sol,[x,F(x)],x=-1..1,color=red,axes=box)


Error, (in plots/odeplot) input is not a valid dsolve/numeric solution
plots:-odeplot(sol,  [x, diff(F(x), x)], x = -1 .. 1, color =  green, axes = box)
Error, (in plots/odeplot) input is not a valid dsolve/numeric solution
plots:-odeplot(sol,[[x,F(x)],[x,diff(F(x),x)],[x,G(x)]],x=-1..1,color=[red,green,blue],axes=box):
Error, (in plots/odeplot) input is not a valid dsolve/numeric solution
plots:-odeplot(sol, [x, G(x)], x = -1 .. 1, color = blue, axes = box);
Error, (in plots/odeplot) input is not a valid dsolve/numeric solution

 

I have to find the distance between a point and a plot. The point is (2,-3,4) and the plane is x+2y+2z=13. How do I plot this?

 

i need to find a y(2) and than work with it in a loop

but i cant do it because i solved my equation with "dsolve" and "sol(2)" and its solution is list

really need a help

Since I've updated maple to version 2019 it's has become very slow. Erverytime I enter something it seems to reload all the side buttons just like when a new worksheet is started. This is very annoying because during this loading time you cannot enter anything. Has anyone any suggestions? btw I've bought my pc in march 2020 and it has enough CPU and GPU.

 

 

Hello, Everyone. can anyone help me to find the solution of the transcendental equation by using the newton raphson method ( want to calculate the valve of lambda by putting p=0) by assuming the valve of k=0.1,beta=0.2 in the attached maple file?

help.mw

I am trying to compute the rank of the Commutator Matrix of a Lie algebra. That is, I wish to construct a matrix version of the multiplication table for a given matrix Lie algebra, and then compute the rank of this matrix.

 

Download CommutatorExample.mw
 

with(DifferentialGeometry); with(LieAlgebras)

``

``

M := [Matrix([[1, 0], [0, 0]]), Matrix([[0, 0], [0, 1]]), Matrix([[0, 1], [0, 0]])]

[Matrix(%id = 18446744078224010646), Matrix(%id = 18446744078224010766), Matrix(%id = 18446744078224003190)]

(1)

L := LieAlgebraData(M, Alg1)

_DG([["LieAlgebra", Alg1, [3, table( [ ] )]], [[[1, 3, 3], 1], [[2, 3, 3], -1]]])

(2)

``

DGsetup(L)

`Lie algebra: Alg1`

(3)

T := MultiplicationTable("LieTable")

Matrix(%id = 18446744078223968366)

(4)

``

``

``

``

 

 

I have the above, but I run into two issues:

1. It doesn't have matrix format, so Rank is undefined (I have tried convert(T,matrix) to no avail),

2. I need to be able to remove the first and second rows and columns from T (because these rows/columns are occupied by the Lie algebra's basis elements, and separating lines, respectively).

 

I believe that if I can convert T into a matrix somehow, I can simply use SubMatrix to remove the things I don't want, and then Rank should work.

 

Any help would be greatly appreciated!

 

P.S. Thanks to dharr1338 for the suggestion of including the worksheet, I'm very new to Maple and MaplePrimes, so I appreciate the patience.

MacDude posted a worksheet for creating help files using the makehelp command that I found very useful.  However, his worksheet created a table of contents that organized the command help pages under a single folder.  I wanted to create a help file table of contents with the commands organized into sub-folders under the main application folder. ie. Package Name,Folder Name, command. The help page for makehelp is not very informative; in particular the example that shows (purportedly) how to override the existing help pages with your own help file is very misleading.  Also, the description of the parameters to the browser option of the makehelp command is too vague. I needed an error message to tell me that the browser option expects parameters in the form List(Name,String).  In the end, I was able to get a folder/sub-folder structure using a structure [`Folder Name`,`Subfolder Name`,"Command"].  Sub-folders are sorted alphabetically. If anyone has a need, the attached worksheet shows how I created the table of contents structure. 

helpcode.mw

I have loaded a series of worksheets into a help file using the makehelp command and installed in my toolbox package. Except for one of them, the worksheets appear in the help browser as worksheets instead of help files. Whenever I select one of them, it opens in maple as a worksheet. I would like to control whether a given help file opens as a worksheet or opens as a help.  I have read the helptools help and the help page for makehelp, but have been unable to identify the setting that determines which mode the help file operates in. Please advise what I am missing here.

1 2 3 4 5 6 7 Last Page 1 of 31