Maple Questions and Posts

These are Posts and Questions associated with the product, Maple

Environment: Maple2015, MATLAB_R2014b(MacOSX10.8.5), 2015b(MacOSX10.11.4)

MapleToolbox2015.1MacInstaller.app was successfully completed (log tells us), but when MATLAB were booted, following error messages appeared and symbolic operations of maple failed. 

This would be closely related to maple installation on MATLAB as such errors never occur for clean install of MATLABs and looks independent on OSX versions. Now javaforosx.dmg in use by instruction of Maplesoft.  Something wrong is in Maple2015. Note maple-MATLAB link works normally.

Please provide us with direction of how to fix it hopefully by Maplesoft professionals.

 

(Quote of MATLAB command window display)

Exception in thread "Startup Class Loader" java.lang.UnsatisfiedLinkError: jogamp.common.os.MachineDescriptionRuntime.getPointerSizeInBytesImpl()I

at jogamp.common.os.MachineDescriptionRuntime.getPointerSizeInBytesImpl(Native Method)

at jogamp.common.os.MachineDescriptionRuntime.getRuntimeImpl(MachineDescriptionRuntime.java:138)

at jogamp.common.os.MachineDescriptionRuntime.getRuntime(MachineDescriptionRuntime.java:124)

at com.jogamp.common.os.Platform.<clinit>(Platform.java:228)

at javax.media.opengl.GLProfile.<clinit>(GLProfile.java:83)

at com.mathworks.hg.peer.JavaSceneServerPeer.initializeJOGL(JavaSceneServerPeer.java:114)

at com.mathworks.hg.peer.JavaSceneServerPeer.<clinit>(JavaSceneServerPeer.java:100)

at java.lang.Class.forName0(Native Method)

at java.lang.Class.forName(Class.java:190)

at com.mathworks.mde.desk.StartupClassLoader.loadClass(StartupClassLoader.java:258)

at com.mathworks.mde.desk.StartupClassLoader.access$900(StartupClassLoader.java:25)

at com.mathworks.mde.desk.StartupClassLoader$2.run(StartupClassLoader.java:244)

at java.lang.Thread.run(Thread.java:745)

>> maple();

error: maple (line 178)

Invalid MEX-file '/Applications/MATLAB_R2014b.app/toolbox/maple/maplemex.mexmaci64':

dlopen(/Applications/MATLAB_R2014b.app/toolbox/maple/maplemex.mexmaci64, 6): Symbol not found: ___sincos_stret

  Referenced from: /Library/Frameworks/Maple.framework/Versions/2015/bin.APPLE_UNIVERSAL_OSX/libhf.dylib

  Expected in: /usr/lib/libSystem.B.dylib

 in /Library/Frameworks/Maple.framework/Versions/2015/bin.APPLE_UNIVERSAL_OSX/libhf.dylib

>> syms x  y

error: sym (line 186)

Invalid MEX-file '/Applications/MATLAB_R2014b.app/toolbox/maple/maplemex.mexmaci64':

dlopen(/Applications/MATLAB_R2014b.app/toolbox/maple/maplemex.mexmaci64, 6): Symbol not found: ___sincos_stret

  Referenced from: /Library/Frameworks/Maple.framework/Versions/2015/bin.APPLE_UNIVERSAL_OSX/libhf.dylib

  Expected in: /usr/lib/libSystem.B.dylib

 in /Library/Frameworks/Maple.framework/Versions/2015/bin.APPLE_UNIVERSAL_OSX/libhf.dylib

 error: sym (line 56)

           assignin('caller',varargin{i},sym(varargin{i})); 

(Unquote)

 

 

 

I've got the following:

Integral_over_region.mw

M_Iwaniuk

 

Dear Maple researchers

 

I have a problem in solving a system of odes that resulted from discretizing, in space variable, method of lines (MOL).

The basic idea of this code is constructed from the following paper:

http://www.sciencedirect.com/science/article/pii/S0096300313008060

If kindly is possible, please tell me whas the solution of this problem.

With kin dregards,

Emran Tohidi.

My codes is here:

> restart;
> with(orthopoly);
print(`output redirected...`); # input placeholder
> N := 4; Digits := 20;
print(`output redirected...`); # input placeholder

> A := -1; B := 1; rho := 3/4;
> g1 := proc (t) options operator, arrow; 1/2+(1/2)*tanh((1/2)*(A-(2*rho-1)*t/sqrt(2))/sqrt(2)) end proc; g2 := proc (t) options operator, arrow; 1/2+(1/2)*tanh((1/2)*(B-(2*rho-1)*t/sqrt(2))/sqrt(2)) end proc;
print(`output redirected...`); # input placeholder
> f := proc (x) options operator, arrow; 1/2+(1/2)*tanh((1/2)*x/sqrt(2)) end proc;
print(`output redirected...`); # input placeholder
> uexact := proc (x, t) options operator, arrow; 1/2+(1/2)*tanh((1/2)*(x-(2*rho-1)*t/sqrt(2))/sqrt(2)) end proc;
print(`output redirected...`); # input placeholder
> basiceq := simplify(diff(uexact(x, t), `$`(t, 1))-(diff(uexact(x, t), `$`(x, 2)))+uexact(x, t)*(1-uexact(x, t))*(rho-uexact(x, t)));
print(`output redirected...`); # input placeholder
                                      0
> alpha := 0; beta := 0; pol := P(N-1, alpha+1, beta+1, x); pol := unapply(pol, x); dpol := simplify(diff(pol(x), x)); dpol := unapply(dpol, x);
print(`output redirected...`); # input placeholder
> nodes := fsolve(P(N-1, alpha+1, beta+1, x));
%;
> xx[0] := -1;
> for i to N-1 do xx[i] := nodes[i] end do;
print(`output redirected...`); # input placeholder
> xx[N] := 1;
> for k from 0 to N do h[k] := 2^(alpha+beta+1)*GAMMA(k+alpha+1)*GAMMA(k+beta+1)/((2*k+alpha+beta+1)*GAMMA(k+1)*GAMMA(k+alpha+beta+1)) end do;
print(`output redirected...`); # input placeholder
> w[0] := 2^(alpha+beta+1)*(beta+1)*GAMMA(beta+1)^2*GAMMA(N)*GAMMA(N+alpha+1)/(GAMMA(N+beta+1)*GAMMA(N+alpha+beta+2));
print(`output redirected...`); # input placeholder
> for jj to N-1 do w[jj] := 2^(alpha+beta+3)*GAMMA(N+alpha+1)*GAMMA(N+beta+1)/((1-xx[jj]^2)^2*dpol(xx[jj])^2*factorial(N-1)*GAMMA(N+alpha+beta+2)) end do;
print(`output redirected...`); # input placeholder
> w[N] := 2^(alpha+beta+1)*(alpha+1)*GAMMA(alpha+1)^2*GAMMA(N)*GAMMA(N+beta+1)/(GAMMA(N+alpha+1)*GAMMA(N+alpha+beta+2));
print(`output redirected...`); # input placeholder
> for j from 0 to N do dpoly1[j] := simplify(diff(P(j, alpha, beta, x), `$`(x, 1))); dpoly1[j] := unapply(dpoly1[j], x); dpoly2[j] := simplify(diff(P(j, alpha, beta, x), `$`(x, 2))); dpoly2[j] := unapply(dpoly2[j], x) end do;
print(`output redirected...`); # input placeholder
print(??); # input placeholder
> for n to N-1 do for i from 0 to N do BB[n, i] := sum(P(jjj, alpha, beta, xx[jjj])*dpoly2[jjj](xx[n])*w[i]/h[jjj], jjj = 0 .. N) end do end do;
> for n to N-1 do d[n] := BB[n, 0]*g1(t)+BB[n, N]*g2(t); d[n] := unapply(d[n], t) end do;
print(`output redirected...`); # input placeholder
> for nn to N-1 do F[nn] := simplify(sum(BB[nn, ii]*u[ii](t), ii = 1 .. N-1)+u[nn](t)*(1-u[nn](t))*(rho-u[nn](t))+d[nn](t)); F[nn] := unapply(F[nn], t) end do;
print(`output redirected...`); # input placeholder
> sys1 := [seq(d*u[q](t)/dt = F[q](t), q = 1 .. N-1)];
print(`output redirected...`); # input placeholder
[d u[1](t)                                                                
[--------- = 40.708333333333333334 u[1](t) + 52.190476190476190476 u[2](t)
[   dt                                                                    

                                                                  2          3
   + 39.958333333333333334 u[3](t) - 1.7500000000000000000 u[1](t)  + u[1](t)

   + 7.3392857142857142858

   - 3.6696428571428571429 tanh(0.35355339059327376220

   + 0.12500000000000000000 t) - 3.6696428571428571429 tanh(
                                                     d u[2](t)   
-0.35355339059327376220 + 0.12500000000000000000 t), --------- =
                                                        dt       
-20.416666666666666667 u[1](t) - 25.916666666666666667 u[2](t)

                                                                  2          3
   - 20.416666666666666667 u[3](t) - 1.7500000000000000000 u[2](t)  + u[2](t)

   - 3.7500000000000000000

   + 1.8750000000000000000 tanh(0.35355339059327376220

   + 0.12500000000000000000 t) + 1.8750000000000000000 tanh(
                                                     d u[3](t)                
-0.35355339059327376220 + 0.12500000000000000000 t), --------- = 29.458333333\
                                                        dt                    

  333333333 u[1](t) + 38.476190476190476190 u[2](t)

                                                                  2          3
   + 30.208333333333333333 u[3](t) - 1.7500000000000000000 u[3](t)  + u[3](t)

   + 5.4107142857142857144

   - 2.7053571428571428572 tanh(0.35355339059327376220

   + 0.12500000000000000000 t) - 2.7053571428571428572 tanh(
                                                   ]
-0.35355339059327376220 + 0.12500000000000000000 t)]
                                                   ]
> ics := seq(u[qq](0) = evalf(f(xx[qq])), qq = 1 .. N-1);
print(`output redirected...`); # input placeholder
    u[1](0) = 0.38629570659055483825, u[2](0) = 0.50000000000000000000,

      u[3](0) = 0.61370429340944516175
> dsolve([sys1, ics], numeic);
%;
Error, (in dsolve) invalid input: `PDEtools/sdsolve` expects its 1st argument, SYS, to be of type {set({`<>`, `=`, algebraic}), list({`<>`, `=`, algebraic})}, but received [[d*u[1](t)/dt = (20354166666666666667/500000000000000000)*u[1](t)+(13047619047619047619/250000000000000000)*u[2](t)+(19979166666666666667/500000000000000000)*u[3](t)-(7/4)*u[1](t)^2+u[1](t)^3+36696428571428571429/5000000000000000000-(36696428571428571429/10000000000000000000)*tanh(1767766952966368811/5000000000000000000+(1/8)*t)-(36696428571428571429/10000000000000000000)*tanh(-1767766952966368811/5000000000000000000+(1/8)*t), d*u[2](t)/dt = -(20416666666666666667/1000000...

I want to solve system of non linear odes numerically.

I encounter following error

Error, (in dsolve/numeric/bvp) cannot determine a suitable initial profile, please specify an approximate initial solution

how to correct it

regards

Is it possible to view maple workbook content in older versions?

Hello everyone,

I am trying to solve numerically int( f(t,z) , t=0..T ) = 0 , in z for a cumbersome f.

I tried z1=fsolve( int( f(t,z) , t=0..T ) = 0 , z). But then I tried int( f(t,z1) , t=0..T ) and the result is clearly not zero nor anything small.

It looks like Maple evaluates analytically the integral, and does it wrong (check this for more details) so fsolve uses the wrong equations.

Anyone knows how I can force Maple to evaluate numerically the integral at each step of the fsolve function?

Thank you!

hi,i am studying the maple most recent.But when calculating function integral,I ran into trouble.I hope to get your help.Here is the code I wrote, but it runs a very long time. How to effectively reduce the integration time?

restart;
with(student);
assume(n::integer);
Fourierf := proc (sigma, a, b, N) local A, A0, B, T, S, Ff; T := b-a; A0 := int(sigma, t = a .. b); A := int(sigma*sin(n*Pi*t/T), t = a .. b); B := int(sigma*cos(n*Pi*t/T), t = a .. b); S := sum(A*sin(n*Pi*t/T)+B*cos(n*Pi*t/T), n = 1 .. N)+(1/2)*A0; Ff := unapply(S, t) end proc;

f := proc (t) options operator, arrow; piecewise(t < .13*2.6 and 0 <= t, 100*t/(.13*2.6), .13*2.6 <= t and t < 2.6, 100, 2.6 <= t and t < 2.6*1.1, 0) end proc;

sigma := f(t);
a := 0;
b := 1.1*2.6;
s1 := unapply((Fourierf(sigma, a, b, 500))(t)/uw0, t);

s2 := unapply((Fourierf(sigma, a, b, 500))(t)/ua0, t);
A1 := (2*n+1)^2*Pi^2*(C3+1+sqrt(4*C1*C2*C3+C3^2-2*C3+1))/(8*C1*C2-8);
A2 := (2*n+1)^2*Pi^2*(C3+1-sqrt(4*C1*C2*C3+C3^2-2*C3+1))/(8*C1*C2-8);
g := -C2*Cww*(diff(s1(x), `$`(x, 2)))+Caa*(diff(s2(x), `$`(x, 2))+(n+1/2)^2*Pi^2*(diff(s2(x), x)));
f1 := -(1/2)*(n+1/2)^2*Pi^2*sqrt(4*C1*C2*C3+C3^2-2*C3+1)+C2*Cww*((D@@1)(s1))(0)-Caa*((D@@1)(s2))(0)+(n+1/2)^2*Pi^2*(C2-(1/2)*C3+1/2);

CN := ((2*(int(exp(-A1*x)*g, x = 0 .. t)-f1))*exp(A1*t)-(2*(int(exp(-A2*x)*g, x = 0 .. t)-f1))*exp(A2*t))/((n+1/2)^3*Pi^3*sqrt(4*C1*C2*C3+C3^2-2*C3+1));
ua := sum(CN*sin((n+1/2)*Pi*z), n = 0 .. 100);

 

 

Dear All

I have started exploring Lie Algebra package in Maple 18 and it wonderful experience for me. But as I am in learning stage so I feel little difficulty to understand even its basic enviroment.

I am trying to fing quotient algebra for Normalizer of certain element W1 in Lie algebra and I don't how to do it. I have expected answer for quotient of Normlizer but don't know to obtain it. Please see following details:

 

with(DifferentialGeometry):with(LieAlgebras):``

L1 := _DG([["LieAlgebra", Alg1, [6]], [[[1, 3, 1], -1], [[1, 6, 2], -1], [[2, 3, 2], -1], [[2, 4, 1], 1], [[2, 5, 2], 1], [[4, 5, 4], -1], [[4, 6, 3], -1], [[4, 6, 5], -2], [[5, 6, 6], -1]]])

_DG([["LieAlgebra", Alg1, [6]], [[[1, 3, 1], -1], [[1, 6, 2], -1], [[2, 3, 2], -1], [[2, 4, 1], 1], [[2, 5, 2], 1], [[4, 5, 4], -1], [[4, 6, 3], -1], [[4, 6, 5], -2], [[5, 6, 6], -1]]])

(1)

DGsetup(L1)

`Lie algebra: Alg1`

(2)
Alg1 > 

MultiplicationTable("LieTable")

"[[[,`| `,e1,e2,e3,e4,e5,e6],[,-`---`,-`---`,-`---`,-`---`,-`---`,-`---`,-`---`],[e1,`| `,0,0,_DG([["vector",Alg1,[]],[[[1],-1]]]),0,0,_DG([["vector",Alg1,[]],[[[2],-1]]])],[e2,`| `,0,0,_DG([["vector",Alg1,[]],[[[2],-1]]]),_DG([["vector",Alg1,[]],[[[1],1]]]),_DG([["vector",Alg1,[]],[[[2],1]]]),0],[e3,`| `,_DG([["vector",Alg1,[]],[[[1],1]]]),_DG([["vector",Alg1,[]],[[[2],1]]]),0,0,0,0],[e4,`| `,0,_DG([["vector",Alg1,[]],[[[1],-1]]]),0,0,_DG([["vector",Alg1,[]],[[[4],-1]]]),_DG([["vector",Alg1,[]],[[[3],-1],[[5],-2]]])],[e5,`| `,0,_DG([["vector",Alg1,[]],[[[2],-1]]]),0,_DG([["vector",Alg1,[]],[[[4],1]]]),0,_DG([["vector",Alg1,[]],[[[6],-1]]])],[e6,`| `,_DG([["vector",Alg1,[]],[[[2],1]]]),0,0,_DG([["vector",Alg1,[]],[[[3],1],[[5],2]]]),_DG([["vector",Alg1,[]],[[[6],1]]]),0]]]"

(3)
Alg1 > 

W1 := [a*e3+e5]

[a*_DG([["vector", Alg1, []], [[[3], 1]]])+_DG([["vector", Alg1, []], [[[5], 1]]])]

(4)
Alg1 > 

Nor[W1] := SubalgebraNormalizer(W1)

[_DG([["vector", Alg1, []], [[[5], 1]]]), _DG([["vector", Alg1, []], [[[3], 1]]])]

(5)

How one can find Quotient alegebra "(Nor[W1])/(W1)....???`? ``The expected answer is {e3}.`"

I am trying verify 4th 2-dimensional subalgebra results given in research artcle by Coggeshall and Meyer-ter-Vehn (See pp. 3592 in article).

Download [670]_Normalizer_in_Abstract_Lie_Algebra.mw

Regards

I have tried to perform the examples given in the help section for DataSet retrival.  I cannot get Maple 2016 to access the internet available databases.  It does not return any outside of PC resources, like Maple 2015 did, on search items. Is there a setup item that I am missing or is there something amiss in Maple 2016.

This is the Error that I am getting: "Error, (in DataSets:-Search) invalid input: find_count expects its 1st argument, lst, to be of type list(nonnegint), but received [FAIL["total_count"], 0]. "

I was able to run this example in Maple 2105.  The example is the "Average Global Temperature"

 

Thanks

Bill Tolrud

Hello everyone, Im now doing my fyp project in cryptography. I need to encrypt a message by using genetic operator, mutation and crossover and decrypt it after that.

For example:

message:=elgamal;

m:=convert(message,bytes);

with(Bits):

for i from 1 to l do
bit[i]:=Split(M[i]);

end do;

After that I will use genetic operator to change some bit for each character.

The output I might get will be something like this [1,1,1,1,1,1,1] , after that I need to convert it back to Ascii key value by join function, but sometime it might exceed 127 which out of the range of Ascii key value. Any command can solve this problem or any method can be used which will not affect the original message? Thank you.

Hi,

 

I would like to start using maple workbook to manage my projects but i can't figure out the paths. suppose i have a workbook named: WorkBookTest.maple

and inside this i have a folder containing Data in which i have an excel workbook DataTest.xlsx

and also i have a folder containing Documents in which i have a maple worksheet Document.mw

and also i have a folder containing Code in which i have a mathematica notebook Code.nb

 

Now inside the maple worksheet, to import the excel data i use the command: Import("this:///Data/DataTest.xlsx")

and it works

Now inside the mathematica workbook, to import the excel data i use the command: Import["this:///Data//DataTest.xlsx"]

and it fails

 

so if i have other program like mathematica notebook inside maple workbook that wants to call a file with data, how should i define the path?

hi

how pdsolve 2D couple  non linear differential equations which attached below?

thanks

2D.mw

PD1 := 12.6000000000000*(diff(U(x, theta), x, x, x, x))-7500*(diff(U(x, theta), x, x))+10.2112755389544*(diff(U(x, theta), x, x, theta, theta))+7.22165554279476*(diff(V(x, theta), x, x, x, theta))-3730.19397871630*(diff(V(x, theta), x, theta))+4.57316679658261*(diff(V(x, theta), x, theta, theta, theta))+36.0000000000000*(diff(W(x, theta), x, x, x))-9375.00*(diff(W(x, theta), x))-15.6731205946742*(diff(W(x, theta), x, theta, theta))-1947.26649812618*(diff(U(x, theta), theta, theta))+1.41357763467822*(diff(U(x, theta), theta, theta, theta, theta)):

PD2 := 3.52500000000000*(diff(V(x, theta), x, x, x, x))-3150.00*(diff(V(x, theta), x, x))+5.05278814097746*(diff(V(x, theta), theta, theta, theta, theta))-4972.65371594662*(diff(V(x, theta), theta, theta))+10.2112755389544*(diff(V(x, theta), x, x, theta, theta))+7.22165554279476*(diff(U(x, theta), x, x, x, theta))+4.57316679658261*(diff(U(x, theta), x, theta, theta, theta))-2536.53190552708*(diff(U(x, theta), x, theta))+97.2834589649212*(diff(W(x, theta), x, x, theta))+30.9917088694028*(diff(W(x, theta), theta, theta, theta))-31273.9463175575*(diff(W(x, theta), theta)):

PD3 := -0.168000000000000e-2*(diff(W(x, theta), x, x, x, x, x, x))+16.9000000000000*(diff(W(x, theta), x, x, x, x))-0.319161728473364e-2*(diff(W(x, theta), x, x, x, x, theta, theta))-37.5000000000000*(diff(W(x, theta), x, x))+796.276013656496*(diff(W(x, theta), x, x, theta, theta))-0.202111525639098e-2*(diff(W(x, theta), x, x, theta, theta, theta, theta))-36.0000000000000*(diff(U(x, theta), x, x, x))+9375.00*(diff(U(x, theta), x))+15.6731205946742*(diff(U(x, theta), x, theta, theta))-97.2834589649212*(diff(V(x, theta), x, x, theta))+31273.9463175575*(diff(V(x, theta), theta))-30.9917088694028*(diff(V(x, theta), theta, theta, theta))+2.06625000000000*10^5*W(x, theta)+313.462411893484*(diff(W(x, theta), theta, theta))+6.77715234781900*(diff(W(x, theta), theta, theta, theta, theta))-0.426628729281504e-3*(diff(W(x, theta), theta, theta, theta, theta, theta, theta))-400/((1-h3*f3(x))*ln(10-10*h3*f3(x))^2)-500/(1-h3*f3(x))^4:

BC := {D[1](U)*(0, theta) = 0, D[1](U)*(1, theta) = 0, D[1](U)*(x, 0) = 0, D[1](U)*(x, 1) = 0, D[1](V)*(0, theta) = 0, D[1](V)*(1, theta) = 0, D[1](V)*(x, 0) = 0, D[1](V)*(x, 1) = 0, D[1](W)*(0, theta) = 0, D[1](W)*(1, theta) = 0, D[1](W)*(x, 0) = 0, D[1](W)*(x, 1) = 0, D[2](W)*(0, theta) = 0, D[2](W)*(1, theta) = 0, D[2](W)*(x, 0) = 0, D[2](W)*(x, 1) = 0, U(0, theta) = 0, U(1, theta) = 0, U(x, 0) = 0, U(x, 1) = 0, V(0, theta) = 0, V(1, theta) = 0, V(x, 0) = 0, V(x, 1) = 0, W(0, theta) = 0, W(1, theta) = 0, W(x, 0) = 0, W(x, 1) = 0}

``

 

Download 2D.mw

I am examining the curve given by

y=R(x/L)^n

When I put this in and assign a number to any one variable, Maple always returns

 

y=0.8660254038

I have tried changing the names of the variables, unnassigning variables, restarting Maple, etc. but I cannot plot a function of y with x, I always get y=0.8660254038, even with only one variable assigned to a value.  I am using the student version of Maple 17.

 

Thanks,

David

Hi,

I have a linear mathematical model that is in deterministic form, but actually one of the input parameters has a stochastic nature and follows a log normal distribution function. and I need to include this in the formulation. Please help me with this questions:

1) Do I need to use stochastic programming methods to solve it? if yes, how?

2) How can I include the distribution function in my model?

3) Can I solve the these kinds of problems using Maple?

How difficult is it to simulate gravitational influences and perturbing effects on celestial orbits with Maple? Could this syntax http://www.maplesoft.com/applications/view.aspx?SID=4484&view=html be altered without excessive changes to consider these aspects?

Are there somewhere worksheets to take a look at as an introduction and to see how such goals would be approached and implemented?

First 169 170 171 172 173 174 175 Last Page 171 of 2218